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Abstract

The capital asset pricing model (CAPM) is frequently used to capture a linear relation-
ship between the daily returns of an asset and a market index. We extend this model
to an intraday high-frequency setting by proposing a functional CAPM. The functional
CAPM is a stylized example of a function-on-function linear regression with a bivariate
functional regression coefficient. The two-dimensional regression coefficient measures the
cross-covariance between cumulative intraday asset returns and market returns. We apply it
to the Standard and Poor’s 500 index and its constituent stocks to demonstrate its practi-
cality. We investigate the functional CAPM’s in-sample goodness-of-fit and out-of-sample
prediction for an asset’s cumulative intraday return. The findings suggest that the proposed
functional CAPM methods have both superior model goodness-of-fit and forecast accuracy
in comparison to the traditional CAPM. In particular, the functional methods produce bet-
ter model goodness-of-fit and prediction accuracy for those stocks that are traditionally
considered less price-efficient or information-opaque.
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1 Introduction

The capital asset pricing model (CAPM) (Sharpe 1964, Linter 1965) has been the cornerstone of

theoretical and empirical finance. It is a benchmark model in asset pricing research due to its

simplicity and efficiency for measuring the cost of equity. CAPM assumes that securities markets

are highly competitive and efficient so that relevant information about companies is quickly

and universally distributed and absorbed. It also assumes that these markets are dominated by

rational, risk-averse investors, who seek to maximize returns on their investments, that is, they

demand higher returns for greater risks. Therefore, in an efficient market without arbitrage

opportunities, asset prices take into account all available information and the expected return

of a stock is influenced by its correlation with the market index, which is measured by beta.

Since the introduction of CAPM, much attention has been placed on improving its model

specifications (see, e.g., Casabona and Vora 1982, Jagannathan and Meier 2002, Bernardo et al.

2007). For example, considerable evidence suggests that elements in the CAPM model, that is,

market risk premium, risk-free interest rates, and betas, are time-varying (see, e.g., Bollerslev

et al. 1988, Fama and French 1989, D’Souza et al. 1989, Jagannathan and Wang 1996, Ghysels

1998, Wang 2003, Ang and Chen 2003, Zhou and Paseka 2017), and conditional modeling that

explicitly allows for temporal variation in the factor loading results in statistically significant

and economically meaningful improvements (see, e.g., Ball and Kothari 1989, Bera et al. 1988,

Wiggins 1992, Braun et al. 1995, Ellis 1996, Fletcher 2002, Andersen et al. 2003, Bali et al. 2009,

2017, Zhou and Paseka 2017). Bali et al. (2017) argue that generalized autoregressive conditional

heteroskedasticity-based time-varying conditional betas help explain cross-sectional variation

in expected stock returns.

Building on the conditional CAPM, Bollerslev et al. (2016) use high-frequency-based esti-

mates and propose a pricing framework that uses a continuous beta to reflect smooth intraday

co-movements in the market and two rough betas associated with intraday price discontinu-

ities, or jumps, during the active part of the trading day and overnight close-to-open return,

respectively. Furthermore, Bollerslev et al. (2022) propose ”granular betas” that provide a much

more refined look at the inherent dependencies between an asset and a given set of factors.

The literature on time-varying beta presents many models that consider the time points
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at which close prices are observed but these models largely overlook changes in the intraday

price curves, that is, how a financial instrument shifts from time to time. High-frequency

financial data, that is, observations on financial instruments taken at a granular scale, such as

time-stamped transaction-by-transaction or tick-by-tick data, may better address this deficiency.

With the advent of new exchanges, every online transaction is recorded and compiled into

databases, such as Island electronic communication networks or data for individual bids to buy

and sell.

Recent advances in computer storage and data collection have enabled researchers in finance

to record and analyze high-frequency data to understand market microstructure related to price

discovery and market efficiency (see, e.g., Campbell et al. 1997, Engle 2000, Andersen 2000, An-

dersen et al. 2001, 2003, Goodhart and O’Hara 1997, Ghysels 2000, Wood 2000, Gençay et al. 2001,

Gouriéroux and Jasiak 2001, Lyons 2001, Andreou and Ghysels 2002, Gençay et al. 2001, Tsay

2010, Papavassiliou 2013, Goldstein et al. 2014, Bollerslev et al. 2022). This stream of research

demonstrates that high-frequency-based sampling allows more accurate factor representations

and improved asset pricing predictions compared to conventional lower-frequency estimates,

resulting in more efficient ex-post mean-variance portfolios (Bollerslev and Zhang 2003, Cenesi-

zoglu et al. 2016, Hollstein et al. 2020). Andersen et al. (2004, p.13) provide further evidence

suggesting that high-frequency beta measures are capable of ”more clearly highlighting the

dynamic evolution of individual security betas” compared to the results obtained from lower

frequency daily data. Aue et al. (2012) introduces a modified functional CAPM and sequential

monitoring procedures and suggests that the functional data-analytic approach performs better

in detecting a structural break, in other words, time variability in the betas.

High-frequency intraday financial data are examples of dense functional data in statistics,

represented in graphical form as curves (see, e.g., Andersen et al. 2024). As an integral part

of functional data analysis (Ramsay and Silverman 2005, Ferraty and Vieu 2006) and time

series analysis (Kokoszka and Reimherr 2017, Peña and Rsay 2021), functional time series

consist of random functions observed at a time interval. Functional time series can be grouped

into two categories, regardless of whether the continuum is also a time variable. On the one

hand, functional time series can arise from measurements obtained by separating an almost

continuous time record into consecutive intervals, for example, days, weeks, or years (see, e.g.,
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Hörmann and Kokoszka 2012). We refer to such data structures as sliced functional time series,

examples of which include the intraday price or volatility curves of a financial stock (see, e.g.,

Shang 2017, Shang et al. 2019, Andersen et al. 2021). On the other hand, the functional variable

can be other continuous variables, such as maturity-specific yield curves (see, e.g., Hays et al.

2012) or near-infrared spectroscopy wavelength (see, e.g., Shang et al. 2022). In either case, the

object of interest is a discrete-time series of functions with a continuum (see, e.g., Wang et al.

2008, Kokoszka and Zhang 2012, Kokoszka et al. 2017). In Section 2, we describe our motivating

data sets – 5-minute cumulative intraday returns (CIDRs) of the Standard and Poor’s 500 (S&P

500) indexes and their constituents. These data sets belong to the first type of functional time

series.

If prices are modeled as a univariate time series of discrete observations, the underlying

process that generates these observations cannot be fully discovered. The advantages of

functional time series include: 1) Thanks to continuity, we can study the temporal correlation

between two intraday functional objects. 2) The beta function estimate is a two-dimensional

image capturing (cross-) correlation between an asset and its stock index, so we can study

the cross-sectional dependence between two random points on a functional object. 3) We

handle missing values via interpolation or smoothing techniques. 4) By converting a univariate

time series to a time series of functions, we implicitly overcome the “curse of dimensionality”

(Donoho 2000), where nonparametric and semiparametric techniques can be implemented (see,

e.g., Ferraty and Vieu 2006, Aneiros-Pérez and Vieu 2006).

We propose an extension of a CAPM tailored for high-frequency financial data, termed

a functional CAPM. The functional CAPM has recently been considered in a working paper

of Pedersen (2022), but we present a novel way of estimating the regression coefficient and

investigating the difference between the CAPM and its functional version from an aspect of firm

characteristics. It is designed to explain how much variability (i.e., information) in the market

cumulative intraday return can explain the variability in an asset. Our functional CAPM can be

cast as a function-on-function linear regression, where our objective is to estimate the bivariate

functional regression coefficient. The bivariate functional regression coefficient measures a

linear relationship between a functional response (i.e., CIDRs of an asset) and a functional

predictor (i.e., CIDRs of a market index). Through the functional CAPM, we can predict the in-
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sample conditional expectation of the CIDRs of an asset with the estimated bivariate regression

coefficient function and evaluate the model’s goodness of fit via a functional R2. The findings in

this study suggest that the proposed functional CAPM methods present superior performance

in model goodness-of-fit for those less price-efficient stocks, and better prediction accuracy for

information opaque stocks.

Our article is structured as follows. In Section 2, we describe a financial stock market index

and its respective constituent stocks. In Section 3, we introduce the functional CAPM to estimate

the bivariate regression coefficient function, which captures the linear relationship between

the S&P 500 index and its constituent stock. We apply the functional CAPM to model CIDRs

by selecting assets representing various asset classes. In Section 4, we display the estimated

regression coefficient functions obtained from the functional principal component regression

(FPCR), functional partial least squares regression (FPLSR), and penalized function-on-function

regression (PFLM). Intraday R2, root mean squared error (RMSE), and root mean squared

prediction error (RMSPE) are presented to summarize the goodness-of-fit and out-of-sample

prediction for the intraday financial data. The integrated values of these errors can be used

to evaluate and compare the overall goodness-of-fit among different constituent stocks in

Section 5.1. In Section 5.3, we relate the differences in forecast accuracy between the classical

CAPM and functional CAPM with firm characteristics and corporate governance. Section 6

concludes, and offers some ideas on how the methodology presented can be further extended.

Details of the FPCR, FPLSR, and PFLM techniques are presented in Appendixes A-C.

2 Empirical data analysis

2.1 Data and sample selection

The S&P500 (SPX) is a financial stock market index that tracks the performance of around 500

large companies listed on stock exchanges in the United States. The intraday tick history for

the S&P500 (SPX) index and its constituent stocks were obtained from the Refinitiv Datascope

(https://select.datascope.refinitiv.com/DataScope/). We consider daily cross-sectional

returns from January 4, 2021, to December 31, 2021. In 2021, there were 252 trading days.

Following early work by Bollerslev and Zhang (2003), we downloaded transaction prices for
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SPX and each constituent stock at each 5-min interval from 09:30 to 16:00. For each stock,

the sampling process yielded 78 data points per day and approximately 20,000 data points in

the sampling period for analysis. This study utilized 10 million intraday data points for the

purposes of demonstration. The sample size could be expanded without computing power

constraints.

We obtained data on the financial balance sheet and the firm Global Industry Classification

Standard (GICS) sector from Compustat. Daily data on returns, prices, market capitalizations,

and volumes were obtained from the Center for Research in Security Prices (CRSP). Institu-

tional holdings were downloaded from 13F filings. Analyst following and earnings forecast

accuracy data were downloaded from the I/B/E/S summary file, and board structure informa-

tion was obtained from the BoardEx database (https://wrds-www.wharton.upenn.edu/pages/

about/data-vendors/boardex/). Winsorization was not performed since dealing with extreme

observations is a part of the functional modeling.

Table 1: Summary statistics of the S&P 500 index and firm characteristics.

Variables Min 1st Quantile Median Mean 3rd Quantile Max

SPX intraday price 3667 4074 4298 4274 4488 4808

ln MCi,t 7.889 9.843 10.434 10.555 11.139 14.659
ln Pi,t 1.778 4.164 4.781 4.799 5.436 8.112
LEVi,t 0.102 0.505 0.653 0.640 0.774 0.990
VOLi,t (million) 2.191 20.075 40.540 91.834 89.521 1900.558
ILLIQi,t (10−9) 0.001 0.031 0.063 0.084 0.108 1.872
BidAskSpreadi,t -8.452 -7.991 -7.806 -7.758 -7.622 -4.361

Coveragei,t 0.2624 2.5871 2.8502 2.8059 3.1061 3.9269
Accuracyi,t 0.0000 0.0314 0.0957 0.3114 0.2962 6.0809
InstoHoldi,t 0.002 0.728 0.829 0.846 0.907 3.763
Independenti,t 0.5556 0.8333 0.9000 0.8723 0.9167 1.0000
*Dualityi,t 0.0000 1.0000 1.0000 0.8187 1.0000 1.0000

* Binary variable, there are 411 ones and 91 zeros.

Table 1 presents summary statistics for the S&P 500 mid-point 5-minute intraday prices

observed over 252 days. We also show the summary statistics of the firm characteristics; detailed

variable definitions are presented in Section 5.3.
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2.2 Cumulative intraday returns of S&P 500

We considered five-minute resolution data, 78 data points, covering the period from 9:30 to

16:00 Eastern standard time. For each asset, intraday 5-minute close price data, Pt(ui), are

available on each trading day, which we used to construct a sequence of CIDRs (see also Rice

et al. 2020)

X j
t (ui) = 100 × [ln Pj

t (ui)− ln Pj
t (u1)], i = 2, 3, . . . , 78 (1)

where j denotes an asset in the S&P 500 index, i denotes the ith intraday period, t denotes a given

trading day and ln(·) denotes a natural logarithm. From (1), we take the inverse transformation

to obtain the 5-minute intraday price

Pj
t (ui) = exp

Xt(ui)
100 ×Pj

t (u1),

where Pj
t (u1) denotes the beginning close price on day t.

In a given day t, we observe CIDRs of the S&P 500 index and its constituent stocks over

the intraday period. Let Xt(u) be the functional predictor, consisting of the CIDR of a market

index. Let Y j
t (v) be the functional response, consisting of the CIDR of an index’s constituent

stock. Let Y j(v) = [Y j
1(v),Y

j
2(v), . . . ,Y j

n(v)]⊤ and X (u) = [X1(u),X2(u), . . . ,Xn(u)]⊤ be two

functional time series of response and predictor, respectively. Let Y j,c(v) = Y j(v)−R f and

X c(u) = X (u) −R f denote excess intraday returns of an asset and a stock, where R f =

[R f
1 , R f

2 , . . . , R f
n]

⊤. R f
t can be computed by dividing the daily treasury par yield curve rate at

one-year maturity by (251 × 78) intraday trading time over 251 trading days.

3 Functional Capital Asset Pricing Model (CAPM)

Before presenting the proposed functional CAPM, we provide an intuitive understanding of

how the curves are obtained from discrete data.
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3.1 From discrete data points to curves

With high-frequency financial data, the data points are observed discretely. For our intraday

financial data, they are observed densely at an equally-spaced grid, that is five-minute time

interval. In practice, a basis function expansion can be utilized to convert the discrete data

points into a continuous function. Because of this, an advantage of our functional data-analytic

approach is that it can address non-synchronicities, that is, time intervals of irregular lengths,

in asset returns when measured at high frequencies (Dimson 1979, Lewellen and Nagel 2006,

Gilbert et al. 2014, Boguth et al. 2016).

Among all possible basis functions, those widely used are polynomial basis functions (which

are constructed from the monomials ϕk(u) = uk−1), Bernstein polynomial basis functions (which

are constructed from 1, 1 − u, u, (1 − u)2, 2u(1 − u), u2, . . . ), Fourier basis functions (which are

constructed from 1, sin(ωu), cos(ωu), sin(2ωu), cos(2ωu), . . . ), radial basis functions, wavelet

basis functions, spline basis functions, and orthogonal basis functions. Our functional predictor

and response are approximated by 20 B-spline basis functions:

Y j,c
t (v) =

20

∑
k=1

ẑj
t,kπ̂

j
k(v) = Ẑ

j
t Π̂

j
(v), (2)

X c
t (u) =

20

∑
m=1

âmγ̂m(u) = ÂtΓ̂(u), (3)

where Π̂
j
(v) and Γ̂(u) are the bases, and Ẑ and Â are the corresponding coefficient matrices.

This pre-smoothing step allows us to mitigate the curse of dimensionality by choosing to

work in a square-integrable function space. From these discrete data points, a continuous curve

can be constructed from [Xt(u2), . . . ,Xt(u78)] representing six and half hours of trading at the

New York Stock Exchange on a trading day.

A univariate time series of 19, 327 discrete returns was converted into n = 251 days of CIDR

curves. In Figure 1, we present CIDRs for the S&P 500 and BlackRock Inc. Using a functional

KPSS test of Horváth et al. (2014), both CIDR series are stationary with p-values of 0.669 and

0.546, respectively.
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Figure 1: Univariate and functional time series plots of the CIDRs of the SPX index and BlackRock Inc.

3.2 Functional CAPM

The classic CAPM can be expressed as:

Ri = R f + βi(Rm − R f ) + ϑi,

where Ri and Rm denote daily asset and market returns, R f denotes a risk-free rate of interest,

βi is a real-valued slope parameter associated with the asset, and ϑi denotes an error term with

a mean of zero and finite variance.

The functional CAPM captures a linear relationship between a centered functional predic-

tor and a centered functional response through an unknown bivariate regression coefficient
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function, known as beta surface. The functional CAPM can be expressed as

Y j
t (v) = R f

t +
∫
I

βj(u, v)
[
Xt(u)− R f

t
]
du + ε

j
t(v), (4)

where R f
t denotes the intraday risk-free rate of interest, X c

t (u) = [Xt(u) − R f
t ] denotes the

intraday market risk premium, βj(u, v) is the bivariate regression coefficient function associated

with the jth constituent stock, ε
j
t(v) denotes an independent and identically distributed (i.i.d.)

random error function, and u, v ∈ I denote a function support range of I (i.e., intraday trading

period between 9:30 and 16:00 Eastern Time).

The functional CAPM is a special case of the concurrent function-on-function linear regres-

sion (see, e.g., Ramsay and Dalzell 1991). The direct estimation of the regression coefficient in

the functional CAPM is an ill-posed problem due to the singularity and curse of dimensionality.

Since the functional predictor and response belong to infinite-dimensional function space, we

consider projecting the functional predictor and response onto orthonormal and B-spline bases.

3.3 Estimation of regression coefficient function

Within the framework of functional CAPM in (4), it is crucial to accurately estimate the bivariate

regression coefficient function βj(u, v) from a finite sample. Toward this end, we explore

three distinct methodologies: FPCR, FPLSR, and PFLM. The PFLM relies on general basis

expansion techniques such as B-spline basis functions. The FPCR and FPLSR adopt a data-

driven dimension reduction paradigm, and they entail projecting infinite-dimensional curves

onto finite-dimensional spaces of orthonormal bases. In contrast, PFLM may necessitate a

larger number of basis functions to approximate the functional regression coefficient, which can

potentially lead to model overfitting and reduced prediction accuracy.

In FPCR, the components used for approximating the bivariate regression coefficient function

βj(u, v) are derived from the covariance among functional predictors alone. A few of the leading

principal components generally comprise most of the variance between the functional predictors.

These latent components may not necessarily be important to prediction accuracy (see, for

example Delaigle and Hall 2012). FPLSR addresses this issue by leveraging both response and

predictors during the extraction of latent components, thereby capturing more information
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with comparably fewer terms. Additionally, studies have demonstrated that FPLSR offers

more accurate parameter function estimation compared to FPCR, albeit with greater dimension

reduction (see, e.g., Aguilera et al. 2010, Beyaztas and Shang 2022, Saricam et al. 2022).

In both FPCR and FPLSR, the data-driven orthogonal bases may lack of smoothness to the

functional parameter. However, this can lead to significant under-smoothing if the functional

parameter exhibits considerably more smoothness than the higher-order FPLSR and FPCR

scores (see, e.g., Ivanescu et al. 2015, Beyaztas et al. 2024). Consequently, including one or two

additional latent components may alter the shape and interpretation of the functional parameter

(see also Crainiceanu et al. 2009). Contrarily, in PFLM, the penalty term applied during the

estimation phase imposes a specific level of smoothness on the parameter estimate, thereby

preventing overfitting.

The comprehensive details regarding the methodologies of FPCR, FPLSR, and PFLM for

estimating the bivariate regression coefficient function βj(u, v) in (4) have been deferred to

Appendixes A-C.

4 Illustration of the functional CAPM

We apply the FPCR and FPLSR to estimate the bivariate regression coefficient function in the

functional CAPM. We consider the CIDRs of the S&P 500 index as the functional predictor and

of BlackRock Inc stock as the functional response for the purposes of demonstration. In Figure 2,

we display the estimated regression coefficient functions obtained from the two function-on-

function regression models. The regression coefficient function, estimated by the FPCR, shows

intense activity between 10:00 and 11:30 and between 13:30 and 14:30. In contrast, the regression

coefficient function estimated by the FPLSR demonstrates intense activity between 10:00 and

11:30 and between 15:00 and 16:00.

The difference between the estimated beta surfaces is because of the characteristics of the

basis functions. In the FPCR, the basis functions obtained from the functional predictors

are orthonormal, and there are no off-diagonal elements. Thus, its estimated beta surface

is comparably smooth. In contrast, the FPLSR basis functions obtained from the functional

predictors and responses are not orthogonal. The inverse square root of the inner product
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Figure 2: Plots of the estimated bivariate regression coefficient functions β̂j(u, v) when the CIDR curves of a
market index are the realizations of the functional predictor and the CIDRs of an asset are the functional
response realizations. The bivariate regression coefficient function is estimated via the FPCR, FPLSR, or
PFLM on the left, bottom, and right panels, respectively.

matrices plays an essential role in computing the regression coefficient surface of the FPLSR. In

the FPLSR basis functions, the off-diagonal elements of the inner product matrices capture the

linear dependence between the functional predictor and response at different intraday periods.

As a result, the FPLSR can show more local features than the FPCR.

5 Estimation accuracy of the response

Using BlackRock Inc.’s CIDRs, we evaluate and compare the model performance to traditional

CAPM, FPCR, and FPLSR. We firstly measure the in-sample goodness-of-fit and estimation

accuracy of FPCR and FPLSR by computing R2 and root-mean-square error (RMSE) and then

compute root-mean-square percentage error (RMSPE) to measure one-step-ahead out-of-sample

prediction accuracy. Further, we investigate whether these performance measures are impacted

by firm characteristics, such as industry sector, firm size, leverage, liquidity, and valuation

uncertainty.

5.1 In-sample goodness-of-fit

While the estimated regression coefficient functions differ, we compute an intraday version of

R2 and RMSE as two in-sample goodness-of-fit criteria. The intraday R2 and RMSE criteria
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extend from conventional linear models, defined as

R2(v) = 1 − ∑n
t=1[Y

j
t (v)− Ŷ j

t (v)]
2

∑n
t=1[Y

j
t (v)−Y j

(v)]2
, v ∈ I ,

RMSE(v) =

√
1
n

n

∑
t=1

[Y j
t (v)− Ŷ j

t (v)]2

=

√
1
n
[1 − R2(v)]

n

∑
t=1

[Y j
t (v)−Y j

(v)]2,

where Ŷ j
t (v) represents the fitted values obtained from the functional CAPM, using the esti-

mated regression coefficient function.

In Figure 3, we compute the intraday R2 and RMSE between the observed and fitted CIDRs

for Goldman Sachs. The FPLSR consistently produces larger R2 and smaller RMSE values than

those obtained from the FPCR. Thus, the off-diagonal elements of the inner product matrices

help estimate the response. It is evident that R2 for FPLSR peaks around 11am, on average,

and remains relatively still over the trading day. However, on the other hand, R2 for FPCR

peaks much later, around 1pm, and drops in the last two trading hours. It indicates that FPLSR

generally offers better in-sample model goodness-of-fit for longer trading hours. A possible

reason is that FPLSR extracts latent components by maximizing covariance between functional

predictor and response variables.
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Figure 3: Intraday R2 and in-sample RMSE values between the observed and fitted CIDRs for BlackRock Inc.

Averaged R2 and RMSE are useful if one requires single numerical measures of fit. They can
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be expressed as

R2 =
∫
I

R2(v)dv =
1

78

78

∑
i=1

R2(vi)

RMSE =
∫
I

RMSE(v)dv.

The larger the R2 value, the better the functional CAPM can capture the overall linear re-

lationship between predictor and response. The smaller RMSE often reflects the larger R2

value.

We employ a linearity test between the decentered functional response and decentered func-

tional predictor as proposed by Garcia-Portugués et al. (2021) to examine the linear relationship

between the intraday returns of an asset, denoted as Y j,c(v), and the stock X c(u). The null

hypothesis is formulated as follows:

H0 : mβ ∈ L =

{
mβ(X c)(v) =

∫
I

βj(u, v)X c(u)du : βj ∈ L2[u × v]
}

,

where mβ is a Hilbert-Schmidt operator between L2 spaces that can be represented integrally

using a bivariate kernel β, that is Y j,c = mβ(X c) + ϵj. This test defines H0 through an integral

regression operator obtained by projecting the functional covariate and response into finite-

dimensional functional directions. The Cramér–von Mises statistic, which integrates these

directions, measures the deviation of the empirical process from its expected zero mean. The

statistic is calibrated using an efficient wild bootstrap on the residuals.

The results of the linearity test, conducted at a 0.05 significance level, reveal a clear linear

relationship for 449 firms between Y j,c(v) and X c(u). This indicates that the intraday returns

of these firms’ assets can be adequately explained by a linear functional CAPM. Conversely,

for the remaining 58 firms, we observe p-values close to zero (i.e., p-value < 0.05), suggesting

a potential nonlinear relationship between these firms’ intraday returns and the stock. This

implies that a more complex model may be required to accurately capture the relationship for

this subset of firms.

14



5.2 Out-of-sample prediction accuracy

Apart from in-sample estimation accuracy, we compare one-step-ahead out-of-sample prediction

accuracy among the methods by computing the RMSPE. The total RMSPE is defined as follows:

RMSPE =
∫
I

RMSPE(v)dv,

where

RMSPE(v) =

√√√√ 1
ntest

ntest

∑
ζ=1

[Y j
ζ(v)− Ŷ j

ζ(v)]
2,

where Ŷ j
ζ(v) is the predicted response function.

We consider an expanding-window approach to compare the out-of-sample prediction

performance of the methods. For both datasets, we divide n = 251 into two parts; a training

sample consisting of first ntrain = 200 curves and a test sample consisting of the remaining

ntest = 51 curves. Using the entire observations in the training sets, we obtain the one-step-

ahead forecast for the 201st curve. We increase the training sample by one day and obtain the

forecast for the 202st curve. This procedure is repeated until the training samples cover the

entire dataset.

5.3 Firm characteristics and model performance

We compare the model performance measures among the four methods and investigate whether

firm characteristics impact these measures. For the traditional CAPM, the input is the daily

closing price and beta is a real value. In contrast, the parameters in the FPCR, FPLSR and

PFLM methods are estimated using the intraday data and beta is a two-dimensional surface.

Intuitively, the outcomes of the four methods are not directly comparable due to the nature of

the data. Hence, we have performed an integration for the functional methods so that the mean

and median of the four performance measures for the traditional CAPM, FPCR, FPLSR and

PFLM are comparable.

Table 2 displays the in-sample estimations using the total R2 and RMSE values between the

holdout and estimated responses. For the stocks in the S&P 500 index, we summarize the results

by their GICS sectors. The results presented in Table 2 indicate that the model goodness-of-fit
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(measured by R2) varies greatly amongst different industries. However, the rankings of the

model fitness produced by the four methods are consistent. The traditional CAPM produces

higher R2 values than the FPCR and the FPLSR methods but under-performs the PFLM method.

We find that Information Technology, Financials, and Industrials are the sectors with the highest

R2 values, while Utilities and Consumer Staples are the sectors with the lowest goodness of fit.

This is consistent with existing literature that finds that stocks in some industries have less noisy

prices and reflect relatively more firm-specific private information. Hence, this is reflected in

the better goodness of fit for firms in these particular industries (see, e.g., Brogaard et al. 2022).

When investigating in-sample fitting (measured by RMSE), the PFLM method again out-

performs the other comparable methods with the smallest mean and median estimation errors.

The sectors with better in-sample goodness of fit are Consumer Staples and Utilities, while the

Energy and Consumer Discretionary sectors have relatively larger in-sample prediction errors.

Overall, the PFLM method presents superiority with in-sample estimation accuracy.

Table 2: Computed total R2 and total RMSE values between the traditional daily CAPM and functional CAPM
sorted by the 11 sectors. N = 488.

Total R2 Total RMSE
Sector CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM

Energy (21) 0.160 0.093 0.118 0.172 2.400 1.591 1.570 1.525
Materials (27) 0.207 0.139 0.180 0.222 1.813 1.117 1.092 1.066
Industrials (69) 0.234 0.154 0.205 0.246 1.897 0.993 0.963 0.939
Consumer Discretionary (59) 0.202 0.136 0.180 0.220 2.028 1.292 1.258 1.228
Consumer Staples (31) 0.105 0.060 0.111 0.145 1.223 0.843 0.820 0.804
Health Care (61) 0.149 0.111 0.148 0.189 1.678 1.042 1.020 0.997
Financials (66) 0.247 0.186 0.231 0.268 2.013 1.001 0.973 0.952
Information Technology (76) 0.254 0.192 0.253 0.300 2.454 1.090 1.047 1.015
Communication Services (20) 0.141 0.115 0.157 0.202 2.159 1.140 1.109 1.082
Utilities (28) 0.079 0.044 0.087 0.131 1.211 0.852 0.832 0.812
Real Estate (30) 0.160 0.070 0.121 0.151 1.630 0.987 0.960 0.944

Mean 0.176 0.118 0.163 0.204 1.864 1.086 1.059 1.033
Median 0.160 0.115 0.157 0.202 1.897 1.042 1.020 0.997

Table 3 displays the model comparison on out-of-sample forecast accuracy using the total

RMSPE values. It suggests that FPCR is the best performer with the smallest RMSPE and PFLM

is ranked the second. The traditional CAPM is the worst performer with the highest forecast

errors. This observation is consistent regardless of the stock’s GICS sector. The results further

confirm the wider applicability of the FPCR for out-of-sample forecasting (see, e.g., Wang and
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Cao 2023, for a comparison between the FPCR and FPLSR).

In summary, the PFLM method performs best in model goodness-of-fit and in-sample

estimation accuracy, while FPCR performs best in out-of-sample forecast. The above mentioned

functional methods presents superior performance than the traditional CAPM. This is because

the traditional CAPM uses only one observation for a trading day (closing price recorded at

16:00), that is, it is highly aggregated and, consequently, ignores the rich information embedded

in the intraday fluctuation. On the other hand, the functional methods utilize intraday data (78

data points) for a single trading day. The functional methods utilize B-spline basis functions

to reconstruct smooth curves from discrete data. With an adequate amount of smoothing, it

mitigates the data measurement error that is often ignored by the traditional CAPM.

Table 3: Computed total RMSPE values between the traditional daily CAPM and functional CAPM sorted by the
11 sectors. N = 488.

Total RMSPE
Sector CAPM FPCR FPLSR PFLM

Energy (21) 1.966 1.228 1.466 1.265
Materials (27) 1.536 0.917 1.130 0.938
Industrials (69) 2.102 0.867 1.230 0.878
Consumer Discretionary (59) 2.332 1.134 1.572 1.139
Consumer Staples (31) 1.287 0.732 1.186 0.753
Health Care (61) 1.855 0.918 1.225 0.931
Financials (66) 2.768 0.832 1.097 0.837
Information Technology (76) 3.485 0.982 1.466 0.985
Communication Services (20) 2.911 1.026 1.459 1.034
Utilities (28) 1.135 0.669 1.063 0.669
Real Estate (30) 2.064 0.855 1.333 0.875

Mean 2.131 0.924 1.293 0.937
Median 2.064 0.917 1.230 0.931

We next investigate whether model performance varies with firm characteristics. We sort

each of the S&P 500 firms by firm characteristics, then adopt the two-sample t tests to investigate

whether model performance (measured by R2, RMSE, and RMSPE) is significantly different

between the top and bottom decile sub-sample groups. We follow Brogaard et al. (2022) and

investigate the following firm characteristics: log market capitalization (ln MCi,t), log stock price

(ln Pi,t), and leverage (LEVi,t). We follow Kumar (2009) and adopt volume turnover (VOLi,t) to

proxy valuation uncertainty, which is measured as the ratio of the number of shares traded in

a month and the number of shares outstanding. Next, we include two measures of illiquidity
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and trading costs to capture limits to arbitrage. The first is the illiquidity measure (ILLIQi,t) in

Amihud (2002) and Bali et al. (2009), which is defined as the average ratio of the daily absolute

return to the (dollar) trading volume on that day. The second is the stock’s average effective

bid-ask spread (BidAskSpreadi,t), which is measured by the natural logarithm of the average

daily effective spread.

Table 4 presents the results of mean differences for model performance when comparing

firms with different characteristics. For model goodness-of-fit, as measured by R2, all four

methods suggest significantly superior performance for larger (ln MCi,t) and higher-priced

(ln Pi,t) stocks. This is consistent with prior studies in the literature showing that larger firms

are more transparent and liquid, and are therefore more efficiently priced (Brogaard et al. 2022).

The three functional methods yield significantly better model goodness-of-fit for stocks with

higher illiquidity (ILLIQi,t), and FPCR and PFLM perform better for firms with higher bid-ask

spread (BidAskSpreadi,t). It indicates that for less liquid stocks with greater trading costs, the

functional methods provide superior model goodness-of-fit when compared to the traditional

CAPM.

When measuring in-sample fitting, all four methods produce significantly smaller RMSE for

stocks with greater market capitalization (ln MCi,t), higher illiquidity (ILLIQi,t), and greater

trading costs (BidAskSpreadi,t). It is also evident that the three functional methods perform

significantly better for higher-priced stocks (ln Pi,t) and stocks with lower monthly volume

turnover (VOLi,t), while the performance difference for the traditional CAPM was not observed

for such stocks. The test results for the out-of-sample forecast accuracy are similar. The RMSPE

is significantly smaller for for stocks with greater market capitalization (ln MCi,t) and greater

trading costs (BidAskSpreadi,t). Similarly, the three functional methods performs significantly

better for firms with higher illiquidity (ILLIQi,t), while the performance difference for the

traditional CAPM was not observed.

Table 4: The impact of firm characteristics on model performance.

Firm R2 RMSE RMSPE

characteristic CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM

ln MCi,t High 0.227 0.167 0.212 0.260 1.494 0.869 0.845 0.819 1.554 0.800 1.051 0.798

Continued on next page
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Firm R2 RMSE RMSPE

characteristic CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM

Low 0.152 0.108 0.152 0.191 2.324 1.324 1.289 1.261 2.881 1.118 1.644 1.137

t.statistic 3.208 3.676 3.323 3.901 -3.059 -6.246 -6.248 -6.383 -2.699 -4.555 -5.239 -4.911

p.value 0.002 0.001 0.001 0.000 0.003 0.000 0.000 0.000 0.010 0.000 0.000 0.000

Sig. *** *** *** *** ** *** *** *** *** *** *** ***

ln Pi,t High 0.235 0.173 0.220 0.268 2.173 1.064 1.032 1.002 3.347 0.962 1.371 0.960

Low 0.160 0.108 0.148 0.188 2.094 1.344 1.314 1.284 2.145 1.087 1.530 1.110

t.statistic 3.361 4.576 4.470 5.066 0.269 -3.903 -3.990 -4.085 1.762 -1.949 -1.511 -2.343

p.value 0.001 0.000 0.000 0.000 0.789 0.000 0.000 0.000 0.083 0.054 0.134 0.021

Sig. *** *** *** *** *** *** *** *

LEVi,t High 0.192 0.135 0.182 0.220 2.091 1.081 1.052 1.028 2.939 0.958 1.339 0.970

Low 0.221 0.160 0.214 0.258 2.591 1.129 1.093 1.061 3.518 0.993 1.411 0.996

t.statistic -0.331 -1.093 -0.722 -0.943 0.665 0.616 0.588 0.601 0.347 -0.146 1.429 0.037

p.value 0.742 0.278 0.472 0.348 0.508 0.540 0.558 0.550 0.730 0.884 0.157 0.971

Sig.

VOLi,t High 0.164 0.110 0.159 0.201 1.726 1.048 1.017 0.992 1.998 0.890 1.302 0.901

Low 0.187 0.136 0.182 0.226 2.352 1.035 1.006 0.979 3.288 0.907 1.294 0.920

t.statistic -0.932 -0.799 -1.153 -0.880 -0.107 3.236 3.273 3.254 -2.423 2.849 1.227 2.943

p.value 0.354 0.426 0.252 0.381 0.915 0.002 0.002 0.002 0.019 0.006 0.224 0.005

Sig. *** *** *** * ** **

ILLIQi,t High 0.185 0.126 0.169 0.212 1.848 1.047 1.021 0.995 1.879 0.868 1.208 0.881

Low 0.152 0.113 0.161 0.202 2.286 1.140 1.107 1.081 3.222 0.999 1.417 1.010

t.statistic -1.654 -2.558 -2.355 -3.005 2.151 4.807 4.786 5.011 1.940 2.402 3.238 2.795

p.value 0.102 0.012 0.021 0.004 0.035 0.000 0.000 0.000 0.058 0.018 0.002 0.006

Sig. * * ** ** *** *** *** * ** **

BidAskSpreadi,t High 0.216 0.135 0.187 0.226 1.539 0.983 0.952 0.930 1.796 0.850 1.259 0.864

Low 0.193 0.133 0.177 0.220 1.719 1.046 1.018 0.992 2.119 0.895 1.262 0.901

t.statistic 0.938 2.400 1.679 2.040 4.499 6.562 6.483 6.471 3.170 6.317 5.782 6.140

p.value 0.351 0.018 0.096 0.044 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Sig. * * *** *** *** *** ** *** *** ***

*** significance at 0.001, ** significance at 0.01, * significance at 0.05

Definitions of firm characteristics are defined: ln MCi,t is the log market capitalization for firm i at time t and ln Pi,t

is the log price. LEVi,t is leverage measured by the ratio of total liabilities to total assets. VOLi,t monthly volume

turnover is a valuation uncertainty proxy, which is measured as the ratio of the number of shares traded in a month

and the number of shares outstanding.ILLIQi,t is the Amihud (2002) measure of illiquidity, which is measured

by the average ratio of the daily absolute return to the (dollar) trading volume on that day. BidAskSpreadi,t is the
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average effective bid-ask spread, which is measured by the natural logarithm of the average daily effective spread.

Next, we investigate model performance as a result of external monitoring and corporate

governance factors. We adopt analyst following variables as well as institutional holdings to

measure the external monitoring effect. Financial analysts gather information from diverse

sources, assess current firm performance, forecast future prospects, and provide buy, hold, or

sell recommendations to investors. Prior literature indicates analysts mitigate information asym-

metry across various dimensions, acting as external monitors for firm managers. Consequently,

they impact on firms’ investment, financing decisions, stock prices, liquidity, and valuation (He

and Tian 2013, Hong et al. 2000, Derrien and Kecskes 2013). To investigate the effect of analysts

following on model performance, we adopt the widely used analyst coverage (Coveragei,t)

(He and Tian 2013) and analyst forecast accuracy (Accuracyi,t) (Payne 2008) measures. The

Coveragei,t is measured as the natural logarithm of one plus the average of the 12 monthly

numbers of earnings forecasts, and the numbers of forecasts are obtained from the I/B/E/S

summary file. Following Payne (2008), we measure analyst consensus forecast as the mean of

the forecast made by each analyst for firm i in year t prior to the client’s earnings announcement

date. We then deflate the absolute differences between the earnings consensus forecast and

actual earnings by the latest available stock price. A smaller forecast error in the measurement

represents a greater forecast accuracy (Accuracyi,t). Institutional holding (InstoHoldi,t) is mea-

sured as the percentage of outstanding shares held by institutional investors. It is commonly

acknowledged that institutional investors are informed traders in markets responsible for

impounding information in prices and contribute to market efficiency through their trading

(Boehmer and Kelley 2009). It is expected that firms under greater external monitoring effect

provide higher quality firm specific information to enable better model goodness-of-fit and

smaller forecast errors. We adopt two additional board structure variables to measure effective

corporate governance. Following Linck et al. (2008), we use board independence measured

by the proportion of outside independent directors (Independenti,t), and board leadership by a

dummy variable of one if the CEO is the chair of the board (Dualityi,t).

Table 5 presents the results of mean differences for model performance when compar-

ing firms with different levels of external monitoring and corporate governance. For model

goodness-of-fit, all three methods perform significantly better for firms with higher analyst
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coverage (Coveragei,t) and greater analyst forecast accuracy (Accuracyi,t). This is consistent

with studies that find that firms with greater analyst following produce more transparent firm-

specific information, which improves price efficiency. In addition, the three functional methods

provide greater R2 for firms with a lower proportion of independent directors, while no differ-

ence is observed for the traditional CAPM method. For in-sample estimation, all four methods

provide significantly smaller estimation errors for stocks with higher analyst forecast accuracy,

and the three functional methods perform better for firms with higher institutional holding

(InstoHoldi,t). For out-of-sample prediction, when using the functional methods, RMSPE is

significantly smaller for firms with better analyst forecast accuracy (Accuracyi,t) and higher

institutional holding (InstoHoldi,t). Consistent with prior findings, the three functional methods

produce much smaller RMSE than the traditional CAPM method for in-sample estimation and

out-of-sample prediction.

Table 5: The impact of analyst following and corporate governance on model performance.

Analyst following & R2 RMSE RMSPE

corporate governance CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM

Coveragei,t High 0.259 0.176 0.225 0.270 1.816 1.052 1.021 0.991 1.806 0.964 1.328 0.954

Low 0.170 0.106 0.151 0.188 1.938 1.064 1.037 1.015 2.638 0.928 1.362 0.943

t.statistic 4.185 5.366 5.056 5.393 -0.351 -0.200 -0.275 -0.413 -1.227 0.622 -0.388 0.197

p.value 0.000 0.000 0.000 0.000 0.727 0.842 0.784 0.680 0.225 0.536 0.699 0.844

Sig. *** *** *** ***

Accuracyi,t High 0.185 0.125 0.171 0.211 2.195 1.160 1.131 1.104 2.059 0.976 1.409 0.998

Low 0.210 0.142 0.190 0.233 2.100 1.105 1.074 1.047 2.859 0.966 1.333 0.975

t.statistic -2.690 -3.665 -3.154 -3.604 2.298 5.695 5.649 5.716 2.068 4.484 4.284 4.712

p.value 0.009 0.000 0.002 0.001 0.024 0.000 0.000 0.000 0.041 0.000 0.000 0.000

Sig. ** *** ** *** * *** *** *** * *** *** ***

InstoHoldi,t High 0.188 0.132 0.187 0.223 1.995 1.065 1.030 1.009 2.694 0.908 1.339 0.920

Low 0.167 0.117 0.160 0.201 1.929 1.209 1.182 1.153 2.162 0.998 1.322 1.013

t.statistic 0.502 1.885 0.681 0.844 4.316 6.615 6.471 6.453 2.260 5.939 2.450 5.573

p.value 0.660 0.162 0.559 0.475 0.000 0.000 0.000 0.000 0.029 0.000 0.075 0.000

Sig. *** *** *** *** * *** ***

Independenti,t High 0.196 0.116 0.158 0.202 1.816 1.074 1.049 1.023 1.816 0.890 1.245 0.910

Low 0.210 0.147 0.192 0.229 1.839 1.186 1.157 1.131 2.055 0.990 1.391 1.004

t.statistic -1.067 -2.556 -2.546 -2.806 -1.070 -0.851 -0.755 -0.715 -1.039 -1.702 -1.362 -1.232

Continued on next page
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Analyst following & R2 RMSE RMSPE

corporate governance CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM CAPM FPCR FPLSR PFLM

p.value 0.289 0.013 0.013 0.006 0.288 0.398 0.453 0.477 0.302 0.093 0.177 0.222

Sig. * * **

Dualityi,t High 0.196 0.134 0.181 0.222 1.946 1.080 1.050 1.024 2.306 0.924 1.315 0.935

Low 0.188 0.127 0.173 0.212 1.825 1.102 1.073 1.049 2.178 0.941 1.317 0.958

t.statistic 0.558 0.769 0.837 1.082 0.819 -0.515 -0.543 -0.602 0.397 -0.478 -0.027 -0.613

p.value 0.578 0.443 0.404 0.281 0.414 0.607 0.588 0.549 0.692 0.634 0.978 0.541

Sig.

*** significance at 0.001, ** significance at 0.01, * significance at 0.05

Definitions of firm characteristics: Coveragei,t is the natural logarithm of one plus the average of 12 monthly

numbers of earnings forecasts. Accuracyi,t is measured by the absolute analyst earnings forecast error deflated

by the latest available stock price, where the forecast error is equal to analyst consensus forecast minus actual

earnings. InstoHoldi,t is the percentage of outstanding shares held by institutional investors. Independenti,t is the

proportion of outside independent directors.Dualityi,t is a dummy variable that equals one if the CEO is the chair

of the board.

In summary, this study finds that the PFLM proposed here provide superior performance

in model goodness-of-fit and in-sample fitting than the traditional CAPM, while the FPCR

method produces the best out-of-sample prediction amongst the comparable models. The

results suggest that the functional models have significantly better goodness-of-fit for firms

that are less liquid and with higher bid-ask spread. Similar findings are evident in predictions

that functional methods perform better for firms with lower monthly volume turnover, greater

illiquidity, and greater bid-ask spread. Such firms are usually considered as more information

opaque (Amihud 2002, Brogaard et al. 2022), so that is where we see the use of higher-frequency

data and functional methods as much superior for asset pricing.

6 Conclusion

Given an ever-increasing amount of high-frequency financial data, we propose an extension

of the CAPM in which the predictor and response are function-valued variables. We consider

FPCR, FPLSR and PFLM to estimate the bivariate regression coefficient function in this con-

current function-on-function linear regression. The estimated regression coefficient function
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measures a linear relationship between the functional predictor and response. We can obtain

fitted responses with the estimated regression coefficient function and compare their values

with the holdout ones. Via the intraday and total R2 and RMSE, we evaluate and compare the

goodness-of-fit between a market index and its constituents using the functional CAPM. Via the

RMSPE, we also study its out-of-sample forecast accuracy, which can be divided into various

GICS sectors. The findings in this study suggest that the PFLM, along with high-frequency data,

presents superior in-sample goodness-of-fit, while the FPCR method performs best in terms

of out-of-sample predictions, followed closely by the PFLM. Compared with the traditional

CAPM, the functional CAPM provides better model goodness-of-fit and prediction accuracy for

less price-efficient or information-opaque stocks.

There are at least three ways in which the methodology presented can be extended. First, we

used one-year intraday data, but the analysis can be conducted for a longer period. Second, the

functional CAPM is an example of the concurrent function-on-function linear model. Following

Corsi (2009) and Hollstein et al. (2020), one extension is to add lagged variables of the response

variable Y j
t−1(v), Y

j
t−5(v) and Y j

t−22(v) representing the past daily, weekly, and monthly CIDRs

of the jth stock. Following Qi and Luo (2019), the other extension is to consider a nonlinear

function-on-function regression, where the beta surface can be estimated non-parametrically.

These represent opportunities for further investigation.
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Appendix A Functional principal component regression

Functional principal component analysis extracts latent components based on the largest

variance explained in each predictor and response variable (see, e.g., Shang 2014, Wang et al.

2016). Let us denote

CY j,c(v1, v2) = cov[Y j,c(v1),Y j,c(v2)]

CX c(u1, u2) = cov[X c(u1),X c(u2)]

as the empirical covariance functions of Y j,c(v) and X c(u), respectively. By Mercer’s theorem

(Mercer 1909), we have the following representations for the covariance functions:

CY j,c(v1, v2) = ∑
k≥1

λ̂
j
kϕ̂

j
k(v1)ϕ̂

j
k(v2),

CX c(u1, u2) = ∑
m≥1

δ̂mψ̂m(u1)ψ̂m(u2),

where {ϕ̂
j
k(v) : k = 1, 2, . . .} and {ψ̂m(u) : m = 1, 2, . . .} are the empirical orthonormal eigen-

functions corresponding to the estimated eigenvalues {λ̂
j
1 ≥ λ̂

j
2 ≥ . . . } and {δ̂1 ≥ δ̂2 ≥ . . . }.

In practice, most of the variability in a functional variable can be captured by the first few

eigenfunctions.

There are at least five approaches for selecting the number of retained principal components:

(1) the scree plot or the fraction of variance explained by the first several functional principal

components (Chiou 2012); (2) the pseudo-versions of the Akaike information criterion and

Bayesian information criterion (Yao et al. 2005); (3) the cross-validation with one-curve-leave-out

(Rice and Silverman 1991); (4) the bootstrap technique (Hall and Vial 2006); and (5) the eigen-

value ratio criterion (Li et al. 2020). In this study, we chose the first Kj and M eigenfunctions,

which explain at least 95% of the total variation in the data, to project the functional response

and functional predictor onto orthonormal basis expansions (Beyaztas and Shang 2023).

By Karhunen-Loève expansion (Karhunen 1947, Loève 1978), the realizations of the func-
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tional variables can be approximated by:

Y j,c
t (v) ≈

Kj

∑
k=1

ĉj
t,kϕ̂

j
k(v) = Ĉ

j
t Φ̂

j
(v), (5)

X c
t (u) ≈

M

∑
m=1

d̂t,mψ̂m(u) = D̂tΨ̂(u), (6)

where ĉj
t,k =

∫
I Y

j,c
t (v)ϕ̂j

k(v)dv and d̂t,m =
∫
I X

c
t (u)ψ̂m(u)du are the projections of Y j,c

t (v)

and X c
t (u) onto orthonormal basis functions, respectively. Let Ĉ j

t = (ĉj
t,1, ĉj

t,2, . . . , ĉj
t,Kj

) and

D̂t = (d̂t,1, d̂t,2, . . . , d̂t,M) be two matrices of estimated principal component scores, and let

Φ̂
j
(v) = [ϕ̂

j
1(v), ϕ̂

j
2(v), . . . , ϕ̂

j
Kj
(v)]⊤ and Ψ̂(u) = [ψ̂1(u), ψ̂2(u), . . . , ψ̂M(u)]⊤ be two matrices of

empirical orthonormal basis functions (e.g., functional principal components). In addition, the

error function ε
j
t(v) admits the expansion with the same basis function in Y j,c

t (v) as follows:

ε
j
t(v) ≈

Kj

∑
k=1

êt,kϕ̂
j
k(v) = êtΦ̂

j
(v),

where the random error function êt,k =
∫
I ε̂

j
t(v)ϕ̂

j
k(v)dv is i.i.d., and denote êt = (êt,1, êt,2, . . . , êt,Kj)

and Φ̂
j
(v) = [ϕ̂

j
1(v), ϕ̂

j
2(v), . . . , ϕ̂

j
Kj
(v)]⊤.

The bivariate coefficient function can be represented by:

β̂j(u, v) =
M

∑
m=1

Kj

∑
k=1

β̂m,kψ̂m(u)ϕ̂
j
k(v)

= Ψ̂
⊤
(u)β̂ jΦ̂

j
(v), (7)

where β̂m,k =
∫
I
∫
I β̂j(u, v)ψ̂m(u)ϕ̂

j
k(v)dudv and β̂ j is a (M × Kj) real-valued matrix.

By substituting the basis expansion forms of the functional variables in (5), (6) and (7) into

the functional CAPM, we have the following representation:

Ĉ
j
t Φ̂

j
(v) =

∫
I
D̂tΨ̂(u)Ψ̂

⊤
(u)β̂ jΦ̂

j
(v)du + êtΦ̂

j
(v),

= D̂tβ̂
jΦ̂

j
(v)

∫
I

Ψ̂(u)Ψ̂
⊤
(u)du + êtΦ̂

j
(v). (8)

Due to the orthonormality property of bases Φ̂
j
(v) and Ψ̂(u), we have =

∫
I Ψ̂(u)Ψ̂

⊤
(u)du = 1.
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By dividing Φ̂
j
(v) from both sides, (8) reduces to

Ĉ
j
t = D̂tβ̂

j + êt, t = 1, 2, . . . , n.

Let D̂ = (D̂1, D̂2, . . . , D̂n) and Ĉ j = (Ĉ
j
1, Ĉ j

2, . . . , Ĉ j
n), β̂ j can be estimated via ordinary least

squares

β̂ j = (D̂⊤D̂)−1D̂⊤Ĉ j.

The estimate of the bivariate coefficient function is obtained as

β̂j(u, v) = Ψ̂
⊤
(u)β̂ jΦ̂

j
(v). (9)

Appendix B Functional partial least squares regression

From (2) and (3), the functional CAPM can also be expressed as:

Ẑ
j
t Π̂

j
(v) =

∫
I
ÂtΓ̂(u)β̂j(u, v)du + ej

t(v) (10)

We multiple (10) by Π̂
j
(v) on both sides, and integrating with respect to v, we obtain

∫
I
Ẑ

j
t Π̂

j
(v)Π̂

j
(v)dv =

∫
I

∫
I
ÂtΓ̂(u)β̂j(u, v)Π̂

j
(v)dudv +

∫
I

ej
t(v)Π̂

j
(v)dv

Denote by Π̂
j
=

∫
I Π̂

j
(v)[Π̂

j
(v)]⊤dv and Γ̂ =

∫
I Γ̂(u)Γ̂

⊤
(u)du the symmetric matrices of the

inner products of the B-spline basis functions. Let ϵ
j
t =

∫
I ej

t(v)Π̂
j
(v)dv. From (9), we observe

β̂j(u, v) = Γ̂
⊤
(u)β̂ jΠ̂

j
(v), then

Ẑ
j
t Π̂

j
= Âtβ̂

jΠ̂
j
Γ̂ + ϵ

j
t

Ẑ
j
t(Π̂

1
2 )j[(Π̂

1
2 )j]⊤ = Âtβ̂

j(Π̂
1
2 )j[(Π̂

1
2 )j]⊤(Γ̂

1
2 )[(Γ̂

1
2 )]⊤ + ϵ

j
t. (11)
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By multiplying both sides of (11) by [(Π− 1
2 )j]⊤, we obtain

Ẑ
j
t(Π̂

1
2 )j = Âtβ̂

j(Π̂
1
2 )j(Γ̂

1
2 )(Γ̂

1
2 )⊤ + ϵ

j
t × [(Π− 1

2 )j]⊤

= ÂtΓ̂
1
2 β̂ j(Π̂

1
2 )j(Γ̂

1
2 )⊤ + ϵ̃

j
t.

Denote by Ẑ j = (Ẑj
1, Ẑj

2, . . . , Ẑj
n), Â = (Â1, Â2, . . . , Ân) and ϵ̃j = (ϵ̃

j
1, ϵ̃

j
2, . . . , ϵ̃

j
n). Using a

multivariate partial least squares, we obtain

(Ẑ j)⊤(Π̂
1
2 )j = Â⊤Γ̂

1
2 Ωj + ϵ̃j , (12)

where

Ωj = β̂ j(Π̂
1
2 )j(Γ̂

1
2 )⊤, (13)

and ϵ̃j represent the coefficient and residual matrices, respectively. From (12), we apply the

multivariate partial least-squares method of Beyaztas and Shang (2020) to estimate the coefficient

matrix Ωj. From (13), we obtain the estimated β̂ j,

β̂ j = Γ̂
− 1

2 Ωj(Π̂
− 1

2 )j. (14)

The bivariate regression coefficient function β(u, v) in the functional CAPM can be estimated

from (9) and (14) as follows:

β̂j(u, v) = Γ̂
⊤
(u)

[
Γ̂
− 1

2 Ωj(Π̂
− 1

2 )j
]

Π̂
j
(v).

Appendix C Penalized function-on-function regression

A penalized function-on-function (PFLM) regression methodology is adopted to estimate the

bivariate regression coefficient function βj(u, v). In this approach, the regularized estimate of

βj(u, v) can be obtained by minimizing the objective function:

arg min
βj(u,b)

∑
j

[
Y j,c

t (v)−
∫
I

βj(u, v)X c
t (u)du

]2

+
κ

2
J (β),
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where J represents a roughness penalty on βj(u, v), and κ serves as the smoothing parameter

controlling the degree of shrinkage in βj(u, v).

As outlined in Section 3.1, we make the assumption that Y j,c
t (v) and X c

t (u) are densely

observed, such that Y j,c
t (vi) = Y j,c

t (vj) and X c
t (ui) = X c

t (uj) for i = 1, . . . , 78. The regression

coefficient function is assumed to be represented by tensor product B-spline basis functions

{π̂
j
k(v), k = 1, . . . , 20} and {γ̂m(u), m = 1, . . . , 20}, given by:

βj(u, v) =
20

∑
k=1

20

∑
m=1

b̂kmπ̂
j
k(v)γ̂m(u),

where b̂km represents the B-spline basis expansion coefficients. Let ∆r denote the length of the

rth interval in I , such that ∆r = ir+1 − ir. Following a similar approach to Ivanescu et al. (2015),

we employ numerical integration to approximate
∫
I βj(u, s)X c

t (u)du as follows:

∫
I

βj(u, v)X c
t (u)du ≈

19

∑
i=1

∆rβj(ui, v)X c
t (ui)

=
19

∑
r=1

∆r

20

∑
k=1

20

∑
m=1

b̂kmπ̂
j
k(v)γ̂m(ui)Xc

t (ui)

=
20

∑
k=1

20

∑
m=1

b̂kmπ̂
j
k(v)

˜̂γm, (15)

where ˜̂γm = ∑19
r=1 ∆rγ̂m(ui)Xc

t (ui). Then, the functional CAPM model is approximated as

follows:

Y j,c
t (v) =

20

∑
k=1

20

∑
m=1

b̂kmπ̂
j
k(v)

˜̂γm + ε
j,c
t (v).

Consider a 20 × 20 dimensional matrix of basis expansion coefficients denoted by b̂ =

(b̂km)km. The penalty functional J (β) is approximated in the following manner:

J̃ (β) =
∫
I

∫
I

[
∂2

∂v2 β(u, v)
]2

dudv +
∫
I

∫
I

[
∂2

∂u2 β(u, v)
]2

dudv

= b̂⊤(Γ̂ ⊗Py +Px ⊗ Π̂
j
)b̂, (16)

where Π̂
j
=

∫
I Π̂

j
(v)(Π̂

j
)⊤(v)dv, Γ̂ =

∫
I Γ̂(u)(Γ̂)⊤(u)du, and Py and Px are the penalty

matrices, with (kk′)th and (mm′)th entries; Py,kk′ =
∫
I(π̂

j
k)

(2)(v)(π̂ j
k′)

(2)(v)dv and Px,mm′ =∫
I γ̂

(2)
m (u)γ̂(2)

m′ (u)du for k, k′, m, m′ = 1, . . . , 20.
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By employing the estimated integral in (15) and the approximated penalty functional de-

scribed in equation (16), the estimation of b̂ can be achieved by minimizing:

arg min
b̂

∑
j

78

∑
i=1

[
Y j,c

t (vi)− (˜̂γ⊤ ⊗ (Π̂
j
)⊤(vi))b̂

]2
+

κ

2
J̃ (β), (17)

where ˜̂γ = [˜̂γ1, . . . , ˜̂γ20]
T. Accordingly, the regularized estimate of βj(u, v) is obtained as

follows:

β̂j(u, v) = (Γ̂(u)⊗ (Π̂
j
)⊤(v))b̂∗,

where b̂∗ is the estimates of b̂ obtained by minimizing (17).

The estimation of b̂ is achieved through a penalized least squares approach. In this method,

determining the optimal value of κ is crucial for efficient estimation results. Various information

criteria, including the Bayesian information criterion (BIC), generalized cross-validation, and

modified Akaike information criterion, are available for this purpose. We propose using BIC to

identify the optimal smoothing parameter due to its simplicity and computational efficiency.

The BIC for determining the optimal smoothing parameter can be computed as follows:

BIC(κ) = N × ln
∥∥∥∥∑

j

[
Y j,c

t (v)− Ŷ j,c
t,κ(v)

] ∥∥∥∥2

2
+ ln(N),

where Ŷ j,c
t,κ(v) represents the estimate of Y j,c

t (v) with the smoothing parameter κ. It’s important

to note that the optimal value of the penalty parameter κ is determined using a standard

grid-search approach with a predefined set of candidate values for κ.
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Loève, M. (1978), Probability Theory, Vol. II of Graduate Texts in Mathematics, 4th edn, Springer-

Verlag, New York.

Lyons, R. (2001), The Microstructure Approach to Exchange Rates, MIT Press, Cambridge, Mas-

sachusetts.

Mercer, J. (1909), ‘Functions of positive and negative type, and their connection with the theory

of integral equations’, Philosophical Transactions of the Royal Society A 209(441-458), 415–446.

35



Papavassiliou, V. G. (2013), ‘A new method for estimating liquidity risk: Insights from a

liquidity-adjusted CAPM framework’, Journal of International Financial Markets, Institutions &

Money 24, 184–197.

Payne, J. (2008), ‘The influence of audit firm specialization on analysts’ forecast errors’, Auditing:

A Journal of Practice & Theory 27(2), 109–136.

Peña, D. and Rsay, R. S. (2021), Statistical Learning for Big Dependent Data, Wiley, Hoboken, New

Jersey.

Pedersen, J. (2022), Functional data analysis: Estimating beta in the capital asset pricing model

for high-frequency U.S. stock data, Technical report, University of Copenhagen.

URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4310423

Qi, X. and Luo, R. (2019), ‘Nonlinear function-on-function additive model with multiple predic-

tor curves’, Statistica Sinica 29(2), 719–739.

Ramsay, J. O. and Dalzell, C. J. (1991), ‘Some tools for functional data analysis’, Journal of the

Royal Statistical Society, Series B 53(3), 539–572.

Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis, 2nd edn, Springer, New

York.

Rice, G., Wirjanto, T. and Zhao, Y. (2020), ‘Tests for conditional heteroscedasticity of functional

data’, Journal of Time Series Analysis 41, 733–758.

Rice, J. A. and Silverman, B. W. (1991), ‘Estimating the mean and covariance structure non-

parametrically when the data are curves’, Journal of the Royal Statistical Society: Series B

53(1), 233–243.

Saricam, S., Beyaztas, U., Asikgil, B. and Shang, H. L. (2022), ‘On partial least-squares estimation

in scalar-on-function regression models’, Journal of Chemometrics 36(12), e3452.

Shang, H. L. (2014), ‘A survey of functional principal component analysis’, AStA Advances in

Statistical Analysis 98, 121–142.

36

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4310423


Shang, H. L. (2017), ‘Forecasting intraday S&P 500 index returns: A functional time series

approach’, Journal of Forecasting 36(7), 741–755.

Shang, H. L., Cao, J. and Sang, P. (2022), ‘Stopping time detection of wood panel compression: A

functional time-series approach’, Journal of the Royal Statistical Society: Series C 71(5), 1205–1224.

Shang, H. L., Yang, Y. and Kearney, F. (2019), ‘Intraday forecasts of a volatility index: Functional

time series methods with dynamic updating’, Annals of Operations Research 282(1-2), 331–354.

Sharpe, W. F. (1964), ‘Capital asset prices: A theory of market equilibrium under conditions of

risk’, Journal of Finance 19, 425–442.

Tsay, R. S. (2010), Analysis of Financial Time Series, 3rd edn, John Wiley & Sons, Inc, Hoboken,

New Jersey.

Wang, H. and Cao, J. (2023), ‘Nonlinear prediction of functional time series’, Environmetrics

34(5), e2792.

Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016), ‘Functional data analysis’, Annual Review of

Statistics and Its Application 3, 257–295.

Wang, K. Q. (2003), ‘Asset pricing with conditioning information: A new test’, Journal of Finance

58, 161–196.

Wang, S., Jank, W. and Shmueli, G. (2008), ‘Explaining and forecasting online auction prices

and their dynamics using functional data analysis’, Journal of Business and Economic Statistics

26(2), 144–160.

Wiggins, J. B. (1992), ‘Betas in up and down markets’, The Financial Review 27(1), 107–123.

Wood, R. A. (2000), ‘Market microstructure research databases: History and projections’, Journal

of Business and Economic Statistics 18(2), 140–145.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005), ‘Functional data analysis for sparse longitudinal

data’, Journal of the American Statistical Association: Theory & Methods 100(470), 577–590.

Zhou, J. and Paseka, A. (2017), ‘Unconditional tests of linear asset pricing models with time-

varying betas’, The Financial Review 52(3), 373–404.

37


	Introduction
	Empirical data analysis
	Data and sample selection
	Cumulative intraday returns of S&P 500

	Functional Capital Asset Pricing Model (CAPM)
	From discrete data points to curves
	Functional CAPM
	Estimation of regression coefficient function

	Illustration of the functional CAPM
	Estimation accuracy of the response
	In-sample goodness-of-fit
	Out-of-sample prediction accuracy
	Firm characteristics and model performance

	Conclusion
	Functional principal component regression
	Functional partial least squares regression
	Penalized function-on-function regression

