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Abstract

This study introduces an innovative methodology for predicting systemic risk by leveraging multi-layer

network characteristics. We select the daily closing price of financial companies listed in the S&P500 index

as our dataset and analyze various dimensions of risk channels, incorporating Correlation, Euclidean, ARIMA

model distances, and variance decomposition layers. We focus on introducing Influence as a novel network

centrality measure. Unlike traditional centrality measures, Influence incorporates time-varying probabilities

for connections, offering flexibility across diverse scenarios. The results show a robust positive relation

between centrality measures and systemic risk, with the Influence measure demonstrating a more pronounced

effect on future systemic risk. Recognizing the need for practical tools for regulators and investors, this work

proposes an effective method for systemic risk monitoring. We introduce a new version of the Influence

Maximization model that identifies influential companies with the largest possible loss, aiding targeted risk-

based monitoring of the network. This comprehensive approach advances our understanding of systemic risk

and equips stakeholders with actionable insights for informed decision-making and risk management.

Keywords: Systemic Risk, Network analysis, Influence Maximization, Value at Risk, Conditional Value at

Risk, Shock propagation, Centrality Network analysis

1. Introduction

Systemic risk is a commonly used concept, but its definition is often ambiguous. Identifying such risks

is complex and tied to various triggers rather than a clear-cut definition. According to Minsky (1977)

and Adrian and Brunnermeier (2016), systemic risk refers to the possibility of many market participants

experiencing significant losses simultaneously, posing a threat to the entire financial system. Recent research

has increasingly focused on the connections among firms in the market due to the profound consequences

of global systemic crises (Acemoglu et al., 2015; He, 2020; Gong et al., 2022). However, there is an ongoing

debate about the accurate understanding of the complexity of these relationships and the role of firms in
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the network. This debate stems from limitations in single-layer approaches that may not capture sufficient

connections in real financial networks Cao (2021) and the shortcomings of current tools in explaining the

role of firms in systemic risk. Classical centrality measures are inadequate in showing the comprehensive

impact of firms in transmitting and absorbing risk, and they cannot identify the most probable path of a

crisis.

Some crises develop gradually, while others emerge suddenly. When a crisis occurs gradually, the impact can

spread through interconnections (Langfield et al., 2014; Baumöhl et al., 2022). Researchers have introduced

various definitions for interconnections to establish a network between firms see Bostanci (2020); Cheng et al.

(2022); He (2022); Gong (2019); Keilbar and Wang (2022). For instance, Tafakori et al. (2022) show that

defaults in contracts among financial institutions increase the likelihood of transmitting negative shocks to

others through liability linkages. Yu et al. (2024) show the connection between industries as the volume of

purchase and sales transactions within every pair of industries. Additionally, Huang et al. (2013) develop

the cascading failure model to illustrate the process of domino effects. This study introduces risk measures

to quantify systemic risk and assesses the effectiveness of dynamic centrality in predicting systemic risk.

Modelling a financial system as a network (the stocks as nodes and their relations as connections) offers a

clearer understanding of systemic risk. However, a single-layer network may not be sufficient as stakeholders

such as regulators and investors often lack comprehensive information, leading to a biased understanding

of the market structure. Various types of interactions among firms, including return correlations Hale

(2019); Nguyen et al. (2019); Cheng et al. (2022), obligations Cao (2021); Tafakori et al. (2022); Le (2022),

shareholdings Barberis and Shleifer (2003); Qian et al. (2010); Anton and Polk (2014); Faias and Ferreira

(2017), and causality in returns Wang (2018); Gong (2019); Zareei (2019); Bostanci (2020) and the inter-

relations among these layers, emphasizing the need for a multilayer network structure. In a multilayer

network, different layers connect the same set of firms. Through these layers, shock in one layer can propagate

to other layers, highlighting the inadequacy of viewing risks from a single-layer network with only one type

of relationship between firms.

Multi-layer networks analysis has appeared recently to consider different aspects of relations between firms,

Xie (2022) and Gong et al. (2023) study connections in daily/even hourly returns and idiosyncratic risk in

the equity market. They both study 3-layer networks, where Xie (2022) considers linear, non-linear, and tail

dependency, and Gong et al. (2023) proposes implied volatility, realized volatility, and variance risk premium

as the layers. Cao (2021) consider two layers that one layer represents liability relation between banks and

another layer for cross-holding of shares. Gong et al. (2022) propose a 2-layer network which contains stock

volatility and investor sentiment. They also use the Tail-Event driven Network risk (TENET) approach to

include more information about shock propagation. These studies offer a comprehensive overview of the

multilayer network but face certain challenges. Firstly, they rely on multiple unique databases and often

examine each layer in isolation, resulting in a biased estimation of systemic risk. Secondly, they tend to use
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traditional centrality measures like Closeness, Betweenness, Eigenvector, and node degree to analyze the role

of firms in risk transmission. While these centrality measures shed light on certain aspects of firms’ roles,

they are insufficient to assume the probability of risk transmission, identify potential crisis pathways, and

provide a tool to control systemic risk via network structure.

This paper addresses these gaps by presenting a multilayer network designed to analyze the impact of

network structure on systemic risk. In this analysis, we examine a sample of financial companies listed in

the S&P500 index from 2007 to 2023, creating quarterly dynamic multi-layer networks using Euclidean,

Correlation, ARIMA model distances, and Variance decomposition layers. Each layer highlights different

structures that capture various aspects of firm relations. The multi-layer network demonstrates that a node

has different neighbours in each layer with different transmission probabilities, highlighting the insufficiency

of a single layer for understanding the financial system.

Another contribution of our paper is introducing the Influence measure with time-dependent probability as

a new centrality measure. We introduce the Influence measure as a centrality measure for evaluating the

influence of firm positions in risk propagation within the network. The proposed centrality measure aims to

identify the most influential companies in the market based on their contributions to systemic risk. While

centrality measures in the current literature remain static and rely solely on network topology, we introduce

Influence as a dynamic measure with flexible probability for the connection to capture the evolving nature of

risks. Leveraging this concept from network theory, we aim to develop a novel centrality measure to quantify

systemic risk. By incorporating time-dependent probabilities for connections, we enhance the prediction of

systemic risk by introducing flexible Influence in our approach. We find that our proposed measure suggests

that the companies in the central positions are more exposed to systemic risk. This can provide insights into

the key points of vulnerability within the network.

Finally, we use the Influence Maximization model to identify sets of influential companies. This model

goes beyond traditional centrality measures and risk rankings, focusing on identifying vulnerable companies

that play a vital role in transmitting risk. Following Mirzasoleiman et al. (2012) we can effectively monitor

network dynamics using our proposed Influence Maximization model to maximize joint influence and joint

loss among potential crisis-involved companies. The research aims to uncover companies that, when affected

by risk, can have far-reaching ripple effects. This understanding can help in comprehending risk propagation

dynamics and enable regulators to control risk by placing these companies on a watch list.

We propose a new approach that provides a framework for understanding and addressing various crises

resulting from different sources of shock. Our proposed centrality measure helps in identifying the role

of firms and the transmission of risk across the network. Our model suggests that traditional centrality

measures focusing on one type of relations are inadequate for effective market regulation. Crises, being

rare events, can have substantial impacts on the economy, leading to significant losses. Identifying crucial

sets of companies and predicting crisis paths in a network equips policymakers and regulators with effective
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tools to manage systemic risk from a new perspective. Investors can also use our findings to optimise their

portfolios and mitigate risks associated with rare events. Ultimately, this work contributes to enhancing the

understanding and management of systemic risk in financial networks, bolstering the resilience of the global

financial network.

The rest of this work is organized as follows: section 2 is an overview of the data and methodology applied

in this study, which covers stock similarity, sample and data,centrality measures, Influence Maximization,

and risk estimation. Additionally, the results and relationship between centrality measures and firm charac-

teristics is discussed in Section 3. Lastly, Section 4 provides a summary of the findings.

2. Data and methodology

2.1. Sample and data

Our sample includes the financial companies in the S&P500 index between 2006 and 2023. The selected

companies are with code 40 in the Global Industry Classification Standard in Banks, Insurance, and Financial

Services industries. The sample covers the most important financial companies in the US market, making

it a reliable representation of the US market. Our study period also includes three major crisis events: the

US crisis of 2007-2009, the debt crisis in the EU (2010), and the COVID-19 pandemic (2020), making it an

excellent sample for analyzing the relationship between systemic risk and network structure. For statistical

reliability, we have set criteria to process our dataset. First, we removed stocks with trading suspensions

lasting over one consecutive quarter. Second, we excluded stocks not listed at the beginning of the study

period. Third, we eliminate any stocks that delisted before the period ended. As a result, we are left with

69 companies in S&P500 to analyze. All data utilized in this study is sourced from Compustat and Factset.

2.2. Stock similarity measurement

When measuring similarity across stocks, one approach involves calculating the distance between the stocks’

time series. Different aspects of their relations can be determined through these distances. According to

Maharaj et al. (2019), there are various approaches to calculate distance, including raw-data-based, feature-

based, and model-based methods. For instance, raw data can show dissimilarities in temporal data, par-

ticularly when time series have different lengths, with the Euclidean distance being commonly used in this

category. Another approach involves computing distance based on correlations (Mantegna, 1999; Tumminello

et al., 2010); auto-correlation models (D’Urso and Maharaj, 2009), periodograms(Caiado et al., 2020), and

Hurst exponents (Cerqueti and Mattera, 2023; Lahmiri, 2016). Additionally, a model-based approach cal-

culates dissimilarity across time series according to estimated parameters from forecasting models such as

ARIMA (Piccolo, 1990), GARCH, (Otranto, 2008; D’Urso et al., 2016), measuring connectedness by variance

decomposition models (Diebold and Yılmaz, 2014), or log-ARCH approach (Mattera and Otto, 2024).

In this study, four distances were employed to show dissimilarity across stocks: the Euclidean distance,
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the correlation approach introduced by Mantegna (1999), for the model-based approach we employ the log-

ARCH estimation approach (Mattera and Otto, 2024), and the Generalized Variance Decomposition (GVD)

approach (Diebold and Yılmaz, 2014) to quantify the extent of variations in one stock’s time series can induce

fluctuations in another stock’s time series. In the first approach the distance across time series calculated as

follows:

dij =

√√√√ T∑
t=1

(xit − xjt)2, (1)

where xit is the daily log return of stock i in time t, dij is the standard Euclidean distance between time

series of stock i and j. For the second approach, ρij as the correlation between stock i and j over time

t = 1, . . . , T is estimated:

dij =
√
2(1− ρij). (2)

We determine a connection between two stocks if they have high correlation. For the model-based approch,

we define dissimilarity between stocks i and j by considering log-ARCH model. The distance between time

series can define as follow (Piccolo, 1990):

dij =

√√√√ ∞∑
p=1

(γip − γjp)2, (3)

where γip is the autoregressive coefficient of AR(∞) of order p of stock i. To avoid infinite sum in Equation 3

it is truncated at order p according to the Akaike or Bayesian information criterion. If the orders are different

for stock i and j, we consider p = max(p1, p2) and γip = 0 for p > p1 and γjp = 0 for p > p2(Piccolo, 1990).

These three distances convert to similarity with computing inverse of distances:

sij =
1

dij
for all i, j = 1,. . . n, (4)

where n is number of stocks and sij is similarity between stock i and j. Matrix S is dense and symmetric,

which is directed with equal similarity in each direction. We choose the upper 90 percent of the highest values

in the matrix to focus on important connections. Finally, according to the method introduced by Diebold

and Yılmaz (2014), we build an adjacency matrix. This method uses the variance decomposition approach

to describe the future values of the h-step ahead variance effect of stock i on stock j. The asymmetry

of variance decomposition matrix allows us to construct directed links between stocks, enabling separate

measurements of stock impact and vulnerability. The generalized variance decomposition matrix for H-step

ahead D(gH) = [dgHij ] has entries (Diebold and Yılmaz, 2014):

dgHij =
σ−1
jj

∑H−1
h=0 (e

′
iΘhΣej)

2∑H−1
h=0 (e

′
iΘhΣΘ′

hei)
, (5)
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where ej is a selection vector with jth element unity and zeros elsewhere, and e′i is the transpose of ei, Θh

is the coefficient matrix multiplying the h-lagged shock vector in the infinite moving-average representation

of the non-orthogonalized Vector Auto Regressive (VAR) model. Σ is the covariance matrix of the shock

vector in the non-orthogonalized VAR, and σ−1
jj is the jth diagonal element of Σ. Sums of forecast error

variance contributions are not necessarily unity. Hence, they base generalized connectedness indexes on

D̃gH = [d̃gHij ], where d̃gHij =
dgH
ij∑N

j=1 dgH
ij

. By construction,
∑N

j=1 d̃
gH
ij = 1 and

∑N
i,j=1 d̃

gH
ij = N . Using D̃gH ,

generalized connectedness measures will calculate . The modified matrix D̃gH ensures that each row sums

up to 1 and the sum of all entries in the matrix is equal to N(number of companies). Using D̃gH , we can

obtain generalized connectedness measures. From provided information, it can be inferred that this approach

comprises directed weighted networks.

By integrating these diverse layers of interdependence, our multiplex network captures the richness of fi-

nancial interactions and offers a framework for analysis. This approach enables us to capture cross-layer

connections, providing a deeper understanding of relationships within financial network. Lastly, we measure

systemic risk spillovers (∆CoV aR) that can describe the spillover risk on the entire market. Given this

information, we construct a dynamic network model to estimate systemic risk of financial companies listed

in S&P500 . In the following subsections, we present the Sample and network centralities.

2.3. Network centrality measures

To examine the interaction between the constructed multiplex network and risk spillovers, we employ cen-

trality measures as variables to present their impact on the extent and pathways of risk contagion. Our study

adopts various centrality measures, including Eigenvector centrality, Closeness centrality, and the Influence,

to comprehensively assess the network’s structural effects.The closeness centrality quantifies the proximity of

each node to others in the network by determining the shortest path between a stock and all other accessible

stocks. The equation is as follows:

CCi =
n− 1∑n

j=1 d(i, j)
, (6)

where
∑n

j=1 d(i, j) is the sum of all distances between stock i and other stocks. The importance of a stock in a

network is quantified by the eigenvector centrality, which assesses its connections to other stocks. According

to Billio et al. (2012) the equation is as follows:

ECi =
1

λ

n∑
j=1

ajiECj , (7)

where λ is the largest eigenvector of the adjacency matrix and aji is indicator of connection between stock

j and i.

To estimate the Influence of each company in the network, we use the Independent Cascade Model which is

used to model influence propagation for networks. It is a probabilistic model, assumes that each company

has a threshold for activation and that once activated, it can activate its neighbors with a certain probability
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(Easley et al., 2010). In the Independent Cascade Model:

P (At|At−1) = 1−
∏

v∈At−1

(1− pvu), (8)

where At is the set of active companies at time t, At−1 is the set of active companies at time t − 1, and

pvu is the probability that company v activates company u. To calculate the Influence of each company

in the Independent Cascade Model, one possible method is to use Monte Carlo simulation. This method

involves running multiple simulations of the diffusion process, starting from a given seed set of companies and

recording the number of companies that are activated for each simulation. The average number of activated

companies across all simulations is then the Influence score for the seed set (Kempe et al., 2003). Our

research find that while the flexible probability approach has advantages over other centrality measures, it

can be limited by the fixed nature of the probability during different time periods. To address this limitation,

we propose a time-varying probability approach that is based on the strength of the connection between each

pair of companies. Under this approach, the higher the strength of the relationship between two companies,

the higher the probability of risk transmission. Unlike the former approach that assumes equal probability

for all edges in all quarters (puv = psw) (Easley et al., 2010), we consider different probabilities for each

edge base on intensity of the connection, with puv(t) ̸= psw(t). In the proposed approach, the Independent

Cascade model can be written as:

P (At|At−1) = 1−
∏

v∈At−1

(1− pvu(t)). (9)

From a regulatory standpoint, monitoring all companies within a network to avoid substantial losses is a

challenge. To address this issue, an appropriate approach involves identifying Influential sets using the

Influence Maximization method, which will be discussed in the sub-section 2.4.

2.4. Influence maximization

Adopting a risk-based approach to effective supervision within the financial market becomes sensible. This

strategy involves examining the key elements, like stocks, clusters, or sectors. As we will discuss subsequently,

it’s worth noting that the most vital stocks aren’t solely those with the highest individual risk or those that

have the most significant centrality across the network. Instead, we introduce a new approach by using the

Influence Maximization approach that finds the set of stocks that have high systemic risk and simultaneously

can transmit it to the largest portion of the network. This implies that if these key stocks were to encounter

distress, they could impact a substantial number of companies (Chen et al., 2009).

The pioneering study by Domingos and Richardson (2001) marked one of the initial attempts to deep In-

fluence Maximization is an algorithmic problem, utilizing probabilistic approaches. Following that, Kempe

et al. (2003) framed the problem as a discrete optimization challenge, for subsequent research in this field.
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They explore three cascade models: the independent, and the weight cascade models, and the linear threshold

model. They explain that this problem is NP-hard. To tackle this challenge, they propose a greedy approx-

imation algorithm for all three cascade models. The algorithm ensure that the Influence spread achieved is

within a factor of (1− 1/e− ϵ) of the optimal influence spread (where e is the base of the natural logarithm

and ϵ is any positive real number). They also show that their algorithm outperforms classic degree and

centrality-based heuristics in terms of influence spread. Let n be the number of companies, m be the number

of connections, and S be the subset of companies selected to initiate the influence propagation, which is

called the seed set. Let R number of rounds of simulations. The process of influence cascade from the seed

set S is denoted as RanCas(S), which results in a random set of companies being influenced by S. The

goal is to take the input graph G and a number k and obtain a seed set S of size k. The primary objective

is to maximize the expected number of companies activated by the seed set S. In summary, the algorithm

aims to find an optimal seed set that maximizes the influence by selecting k companies from the graph G to

initiate the influence cascade process.

The process of RanCas(S) in the independent cascade (IC) model is as follows: consider Ai is the set of

active companies in the ith round, with A0 initially set to the seed set S. For the connection uv ∈ E, where

u is in Ai and v has not yet been activated, v is activated by u in the (i+ 1)th round with an independent

probability p. This is considered as the propagation probability. In other words, if there are neighbors of v

that are already activated in Ai, v is added to Ai+1 with a probability of 1 − (1 − p)l (l is the number of

neighbors of v in Ai). This algorithm continues until Ai+1 = ∅. It should be mentioned that in the random

process RanCas(S), each connection ūv is determined once, either from u to v or from v to u, on whether

the influence is propagated through this connection, but we consider two-way propagation and test it in both

directions.

While this approach identifies the stocks that are vital for transmitting information within the network, it

disregards the potential loss associated with these stocks. We propose an updated version of the Influence

Maximization model that identifies the stocks that maximize potential loss (based on cumulative sum of

firms’ size) and influence simultaneously based on network topology.

In this new approach, the set of stocks that maximizes the interaction between the potential loss of each

stock and its influence is chosen. This innovative method aims to optimize the selection process.

2.5. Risk estimation

To assign risk to each company dynamically, we estimate CoVaR based on the method proposed in Adrian

and Brunnermeier (2016) and calculate ∆CoV aR to measure systemic risk and contribution of each company

in the crisis in the market. Here, we calculate CoVaR of the market using V aRα, α = 95% of market index

or system (sys) and desired equity i.

Assuming stock i is distressed, its distress leads to a change in the VaR of the market. The CoVaR of system

(sys) related to firm i is defined as:
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Pr(Rs ≤ CoV aR(sys|i) | Ri = V aRi) = q, (10)

where Rs is the return of the market or system. Further, if a company falls into crisis, its risk spillover to

the system is as follows:

∆CoV aR(sys|i)
α = CoV aR

(sys|V aRi
α)

α − CoV aR
(sys|V aRi

50%)
α . (11)

3. Result and discussion

3.1. Summary statistics

We present the summary statistics in Table 1. The dependent variable, ∆CoV aR, measures systemic risk,

while the independent variables explain the network structure and control variables. The table also includes

definitions, summary statistics, and sources of all the variables used in the analysis. The firms we studied

exhibited an average systemic risk contribution, as measured by ∆CoV aR, of 1.26. Regarding network

centrality for the Euclidean layer, the average Closeness Centrality (CC) and Eigenvector Centrality EG are

0.24 and 0.07, respectively. The average Influence of fixed and time-varying probability were from 1.08 to

1.03. Moreover, the average firm had a market capitalization natural logarithm of 9.86, a return on assets of

2.71, a β of 1.29, a debt-to-equity ratio of 1.23, and a VaR of 3.34. Table 2 presents the correlation matrix

for the firm-level variables and centrality measures of the correlation layer utilized in our analysis. A notable

correlation of 0.62 between the systemic risk measure ∆CoV aRt and VaR, suggests that companies with

higher risk profiles may exert a more substantial impact on the market. Additionally, the network centrality

measures exhibit significant correlations, averaging around 0.71. This indicates that these measures are

not perfectly correlated, capturing distinct aspects of connections. The systemic risk measure ∆CoV aRt

exhibits positive correlations with CCt−1, EGt−1, and Influenct−1. This implies that firms with higher scores

in centrality metrics are likely to contribute more to future systemic risk.

3.2. Network construction

For capturing the stocks’ interdependency, we create 64 quarterly directed weighted networks for each layer

using Euclidean, Correlation, and ARIMA distances, as well as Variance Decomposition. To identify the

stationarity of the time series of stocks the ADF test is performed. Subsequently, networks of connections

were constructed, where stocks serve as nodes and their similarity (inverse of the distance of each pair of

stocks) serves as the weight of the edge between them. It is crucial to select the optimal number of edges

to eliminate redundant connections in order to establish the network. This paper emphasizes the use of the

90% percentile as a criterion to consider the most similar stocks and to avoid less reliable edges.

The significant and increase in the number of edges can be a clear signal for systemic risk (Billio et al.,

2012). To capture similarity between stocks, we employ lines connecting two stocks, color-coded based on
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the intensity of the edge weights between two stocks in quarter t signifying substantial similarity to another

stock’s log return series. We plot the fluctuation in the number of connections within ARIMA and Variance

Decomposition layers throughout our sample period, providing a visual depiction of connection dynamics

during pre-crisis (2007Q1, 2019Q2), post-crisis (2009Q3, 2020Q3) periods and two recession periods (2008Q4,

2020Q1) identified by NBER in the sample. The data clearly shows a substantial increase in the number

of edges and the intensity of connections during crisis periods as compared to other periods, indicating a

significant rise in network co-movement during crises (Figures 2, 3). It is evident from the figures that each

layer responds differently to crises, with some reacting more stronger than others. For instance, the Variance

Decomposition layer experiences a significant increase in the number and intensity of connections during

the 2008 financial crisis, but the ARIMA layer has a smother response to this crisis while, in Covid-19, the

ARIMA layer has more significant changes during the crisis compared to Variance Decomposition Layer.

These findings highlight the dynamics of each layer and their ability to shed light on different aspects of

the impact of crises on company relations. It can be concluded that an increase in connections is a clear

indicator of market crises. The dynamic topological features of the network effectively capture the time-

varying interactions among stocks, prominently highlighting the peaks during significant financial crises.

These outcomes align with the observations in Billio et al. (2012); Huang et al. (2023) supporting the notion

that financial market interconnectedness experiences a substantial surge during periods of crisis.

Our analysis involves the creation of a multi-layer network at quarterly intervals, capturing the dynamic

nature of interactions among entities. Within each quarter, we compute key centrality measures: Influence,

Closeness, and Eigenvector. These centrality metrics serve as tools for gauging companies’ significance and

their evolving roles across distinct quarters.

The relationship between network centralities and systemic risk is previewed in Figure 1, which displays

∆CoV aR against network centralities in each of the four layers. The weighted average of systemic risk

indicator and centrality measures was computed based on market cap values, and the average values were

plotted against quarters. The Euclidean layer, Correlation layer, ARIMA layer, and Variance decomposition

layer are described in (a) to (d) of Figure 1, each with its own unique structure and dynamics. Clear jumps

coinciding with the increase in systemic risk are observed in the layers. It is observed that ”Influence” cen-

trality aligns significantly with changes in ∆CoVaR across all layers, indicating its effectiveness in predicting

systemic risk. In the ARIMA layer, Closeness centrality not only correlates with ∆CoVaR but also displays

a notable response to the COVID-19 pandemic, more so than to other crises. Additionally, the study em-

phasizes how Eigenvector centrality demonstrates significant fluctuations during crises. These four layers

have two distinct surges corresponding to the 2008 crisis and the COVID-19 crisis. Overall, these figures

highlight a strong relationship between network centrality measures and systemic risk. Multiplex networks

holds the potential to provide a greater amount of information compared to the single-layer networks. Each

layer is unique in its relationship between network centrality and systemic risk, suggesting that each layer
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can aid in predicting systemic risk with greater precision. Variations observed in the topological structures

serve as indicators that the phenomenon of risk spillover among companies is not static; it evolves over time.

3.3. Network centrality and risk spillover

During periods of company crisis, there is a possibility of creating a ripple effect that spreads through different

layers of interconnected entities. This could potentially lead to a chain reaction of crises or shocks throughout

the network. To determine the risk of spillover through risk contagion and shock transmission channels,

we analyze the relationship between individual risks and the network topology using panel regression, as

expressed in the Equation 12:

∆CoV aRα
i,t = γCMi,t−1 + νV aRα

i,t−1 +ΣkζkXi,t−1 + µi + ϵi,t, (12)

where CMi,t−1 identifies a network centrality measure, includes EGi,t−1, CCi,t−1, Infi,t−1, Inf
D
i,t−1 are

Eigenvector, Closness, Influence with fix contagion probability and Influence with Dynamic contagion prob-

ability as multiplex network centrality indicators respectively. Additionally, V aRα
i,t−1 denotes Value at Risk

for company i and α = 0.95, Xi,t−1 is firm-specific variables includes Size, ROA, β, Debt to equity and EPS

growth, µi is firm fixed effects and ϵi,t is an error term, β0 is a constant. In addition, as a result of the

quarterly report of financial ratios, we calculate ∆CoV aRα
i,t based on average daily of ∆CoV aRα

i,t in each

quarter. The results of the panel regressions, spanning the period from 2007 to 2023, are reported in Table

3.

Table 3 presents the regression results for the Euclidean layer in columns 1 to 4 and the Correlation layer in

columns 5 to 8. The Variance decomposition layer is presented in the latter half of the table, in columns 1

to 4, and the ARIMA layer results in columns 5 to 8. ∆CoV aR is the dependent variable in all tables.

As Table 3 highlights a significant link between centrality measures and systemic risk, suggesting stocks in

more central positions could play a larger role in spreading risk through the network in the next quarter.

Considering the correlation between Influence centrality and ∆CoV aR, both suggested measures of Influence

(Dynamic and Static) are remarkably significant across all layers. Additionally, the coefficients of Dynamic

Influence exceed those of the static measure, suggesting improved predictive abilities for this centrality

measure. While the Closeness centrality has main role in Correlation and Euclidean layers reflected by

adjusted R2 values of to 25% and 21% respectively, its impact diminishes in the ARIMA layer, where the

adjusted R2 drops to 13%. In the Variance Decomposition layer, this centrality measure is not significant.

This can be attributed to the different structure of this layer compared to the others, as it is computed based

on the VAR model rather than the distance of the log return series. Like the Closeness centrality, Eigenvector

centrality plays an important role in the Correlation and Euclidean layers, with adjusted R2 equal to 21%

and 14% respectively. This indicates that firms are connected through many centrally positioned firms. Such

firms can transmit their firm-specific risk to more firms and are more likely to play a role in future systemic
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events. However, this centrality measure is not significant in other layers.

The number of edges in the correlation layer being higher than in other layers means that the centrality

measure coefficients are also more significant in this layer compared to others. This extensive network of

connections is linked to an increase in ∆CoV aR. The more interconnected the network is, the greater the

chance of spreading financial distress and the higher the systemic risk vulnerability. Conversely, elevated

∆CoV aR levels could encourage a more interconnected network. Firms facing increased risks might transmit

these to the network, thus potentially seeking to establish more connections with partners. This strategy

may aim at risk diversification, securing more funding, or enhancing overall resilience. This finding is align

with the research of Billio et al. (2012).

Based on Table 3, when it comes to crisis, the larger the size of the firm, the more contribution in transmitting

system risk, due to Table 2, the correlation between centrality measures and size shows that larger firms have

more connections and they have more tendency to join domino effect in crisis. The increase in idiosyncratic

risk of the firms (Value at Risk) leads to more possibility of triggering systemic risk or playing a major role

in transmitting it to the network. According to our analysis, this variable is the most important parameter

in predicting upcoming systemic risk situations. When the financial performance, notably ROA (Return on

Assets) and EPS (Earnings Per Share) growth, of firms shows improvement, their contribution to systemic

risk tends to decrease. This correlation may be attributed to a stronger financial structure within these

companies, which reduces their inclination to accumulate debt. Firms burdened with higher levels of debt

are more susceptible to being part of a cascading failure, a domino effect where the financial distress of one

firm can lead to the downfall of others.

Furthermore, β, a parameter that describes the relationship between a stock’s return and the market index,

emerges as a significant predictor of risk. A higher dependency on the market index signals a greater

potential for a firm to be involved in a network crash. The more a firm’s stock return is influenced by market

movements, the more likely it is to contribute to systemic instability. These results highlight the role of

central firms in the network that can absorb and transmit risk to the whole market.

To better understand the relationships between firms in a multiplex network, we consider all aspects of their

relations simultaneously. The results obtained for analyzing a single layer network are appropriate, but

not sufficient. Following the approach suggested by Hmimida and Kanawati (2015), we can aggregate the

centrality measures of our layers by using an entropy-like aggregation function as follows:

CMmulti
i = −ΣM

m=1

CMm
i

CMT
i

ln(
CMm

i

CMT
i

). (13)

The index of multilayer centrality for firm i after aggregation is represented by CMmulti
i in this Equation.

CMm
i indicates the centrality measure of layer m for firm i, while CMT

i = ΣM
m=1CMm

i is the sum of centrality

measures in all layers for firm i, T stands for Total. The CMmulti
i will reach its maximum value if a firm
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is equally connected in each layer, and it will be null if it is only connected in one layer. Hence, the more

connected a firm is in different layers, the more impactful it becomes. To further analyze the relation between

centrality measures and systemic risk, the panel regression is conducted as follows:

∆CoV aRα
i,t = γCMmulti

i,t−1 + νV aRα
i,t−1 +ΣkζkXi,t−1 + µi + ϵi,t. (14)

Table 4 presents the results of the regression analysis based on Equation 14. The findings from the table

underscore the significant impact of centrality measures on ∆CoVaR within an aggregated network frame-

work. Notably, a unit change in both Dynamic and Static Influence measures, with coefficients of 0.421

and 0.413 respectively, triggers more pronounced alterations in ∆CoVaR compared to similar changes in

Closeness and Eigenvector centralities, which have coefficients of 0.276 and 0.203 respectively. A key ad-

vantage of leveraging Influence centrality is its foundation on the contagion probabilistic model, lending it

heightened sensitivity to network structure and enabling it to account for varying scenarios of propagation

with dynamic probability through simulations in the Independent Cascade model. Parallel to observations

made in single-layer networks, both Return on Assets (ROA) and the Growth of EPS manifest a reducing

impact on systemic risk. Furthermore, the aggregated data analysis is inline with findings from single-layer

panel regressions regarding firm size, idiosyncratic risk, the β coefficient, and the debt-to-equity ratio, all

of which are identified as factors contributing positively to systemic risk. Taken together, by integrating

different layers, our approach capture various dimensions of stock interrelations to construct a predictive

model for systemic risk, tailored to address crises originating from diverse sources. This model leverages

aggregated centrality measures to enhance informational depth for more accurately predicting ∆CoVaR.

To assess the robustness of our main results, we conducted a test using panel regression analysis in two

periods: during recession and during normal times. The results, which are presented in Table 5, show that

the coefficients of centrality variables mostly remained unchanged between the two periods, indicating that

the multi-layer network structure has a stable and long-term effect on systemic risk. During the Recession

period, the estimated coefficients of centrality measures are larger (about two times and more) than those in

the normal period, suggesting that the centrality measures play a more important role during crises. Similar

to the whole sample period, the increase in VaR and β and firm’s size impact the systemic risk positively.

3.4. Influence adjusted loss

An important application of Influence Centrality through the Influence Maximization method is the ability

to compute the joint influence of a set of stocks. This capability is unique to Influence Maximization and

is not achievable with other centrality measures such as Closeness or Eigenvector centrality. we employ

an Influence Maximization algorithm to identify sets of influential stocks within a network. These stocks

possess the capacity to initiate shocks, and if they become distressed simultaneously, they have the potential

to propagate risk across a substantial portion of the network, potentially resulting in significant losses.
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Traditionally, Influence Maximization focuses on identifying the most influential nodes based on their ability

to disseminate information. We extend this approach to uncover the most dangerous sets of nodes—those

capable of transmitting risk to the highest number of nodes and causing the greatest total cumulative loss,

considering the size of the companies involved. By identifying these nodes, regulators can effectively immunize

the network by targeting these critical nodes for enhanced monitoring and risk management. Ensuring the

financial health of these key nodes enables regulators to manage systemic risk more effectively. Within each

time period, we select five companies through this algorithm, assigning a distinct level of importance to

each company in a specific order. The foremost company, seed 1, holds the highest importance, followed

by the sequentially less important companies up to seed 5. Figure 4a illustrates the nodes selected through

our revised Influence Maximization algorithm 2020Q1 in Euclidean layer. In this figure, the size of the

nodes corresponds to their market value, with the selected stocks highlighted in orange. The companies

selected include JP Morgan (bank), CME Group (financial services), Prologis (real estate), Ventas (real

estate), and Black Rock (financial services). These selected stocks belong to diverse sectors and vary in size,

demonstrating the algorithm’s ability to identify influential nodes across different industry groups. Figure 4b

describes the influential set of stocks in the correlation layer for the same period (2020Q1). Here, the selected

stocks highlighted in orange are JP Morgan (bank), CME Group (financial services), Prologis (real estate),

Ventas (real estate), and Equifax (financial services). Notably, four companies—JP Morgan, Prologis,CME

Group and Ventas—are present in both layers, underscoring their significance from multiple perspectives.

The consistent selection of JP Morgan, Prologis, and Ventas across different layers highlights their critical

positions within the network. This finding emphasizes the importance of these companies in maintaining

systemic stability. By immunizing these key stocks, the risk originating from any other stock can be contained

within local neighborhoods, preventing its propagation to other parts of the network.

As depicted in these figures, our approach selects stocks based on a combination of their central position

within the network and the cumulative summation of companies’ market size that will involve a domino

effect. This dual criterion ensures that the chosen nodes are not only well-positioned to transmit risk but also

represent significant economic entities. This comprehensive strategy enables a more effective identification

of critical nodes, enhancing the ability to manage and mitigate systemic risks.

When compared to alternative approaches, such as selecting stocks based on their network position (e.g.,

nodes with the highest centrality measures like Closeness and Eigenvector centrality), our proposed method

offers a more comprehensive solution.

In Table 6, it is evident that in the Euclidean layer, four nodes—JPM, BAC, PNC, and USB—appear in

both Closeness and Eigenvector centrality measures. These nodes are close neighbors (see Figure 4a), and

immunizing them would only protect a portion of the network rather than the entire network. This pattern

repeats in the correlation layer, where Closeness and Eigenvector centralities have four common stocks—C,

BAC, JPM, and AMP—with three of them (C, BAC, JPM) being close neighbors (see Figure 4b). As a
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result, immunizing these nodes would again only mitigate risk for a portion of the network. By integrating

both Influence centrality and firm sizes, our approach identifies stocks that are critical both in terms of their

potential to propagate risk and the magnitude of the impact they could have if distressed.

Our analysis across different quarters confirms the effectiveness of this approach. It consistently selects

nodes that play a pivotal role in the network, thereby providing regulators with targeted insights into which

companies to monitor closely. This strategic focus on the most dangerous nodes allows for more efficient and

effective risk management, ultimately contributing to greater systemic stability.

4. Conclusion

In conclusion, our study develops a multi-layer network designed to capture various facets of risk contagion.

This complex network encompasses distinct risk channels, including Correlation, Euclidean and ARIMA

distances, and variance decomposition layers. A notable feature introduced is the Influence measure, which

serves as a centrality metric that is able to utilize the probability of contagion for each connecting edge to

estimate how a single stock might affect others on average. This Influence measure is adaptable to changing

probabilities of contagion based on the intensity of the connection, enhancing the ability to predict systemic

risk. In an effort to gauge the predictive capability of this centrality in relation to systemic risk, the study

establishes a network comprising four layers, setting the scene for a comparison between Closeness, Eigen-

vector, and Influence centrality measures. Aggregating these centrality measures, lead to obtain different

aspects of connections across stocks. By calculating centrality and estimating ∆CoV aR for each company,

utilizing panel regression, yielding compelling evidence that our innovative multi-layer network possesses

a remarkable predictive power for ∆CoV aR. Evidently, Influence emerges as the most pivotal centrality

measure within this predictive framework. We undertake an analysis to ascertain whether influential com-

panies propagate risk to neighboring counterparts. Our findings demonstrate that strategically positioned

influential companies have the ability to both propagate and alleviate risk.

Aiming to deliver practical tools for regulators and investors, we formulate a new version of Influence Max-

imization model. This model systematically identifies companies with major Influence with the largest

possible loss, capable of transmitting risk or information extensively across the network. The results of our

model demonstrate its significant utility in identifying and mitigating systemic risks within financial net-

works. By focusing regulatory efforts on the healthiness of the top five most critical stocks, we can greatly

enhance the robustness and resilience of the entire network. This proactive approach not only helps in avert-

ing potential crises but also in ensuring sustained economic stability. By incorporating these companies,

regulators can adopt a risk-based approach strategy that avoids exhaustive scrutiny of all companies of the

network.
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Algorithm 1 Influence Maximization in Financial Networks

G← Financial network graph

K ← Number of seed nodes

Iterations← Number of simulations in IC model

p← Propagation probability

S ← ∅ ▷ Initialize the seed set

Size← Normalized firm’s size

while |S| < K do

M ← [] ▷ For storing node scores

for u ∈ S do

for v ∈ G and v /∈ S do

S′ ← S ∪ {v}

influence← avgSize(G,S′, p, Iterations)

loss←
∑

u∈S′ Size(u)

score← influence× loss

append (v, score) to M

end

M ← Sort M by score in descending order

v ← Node with highest score in M

append v to S

end

end

Output: S ▷ Final set of seed nodes
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Algorithm 2 Influence Maximization Functions

avgSize function:

Input: G← Graph, S ← Seed set, p← Propagation probability, iterations← Number of iterations

avg ← 0

for i← 1 to iterations do

result← runIC(G,S, p)

avg ← avg + length(result)
iterations

end

Output: avg ▷ Average number of influenced nodes

runIC function

Input: G← Graph, S ← Seed set, p← Propagation probability

T ← Deep copy of S ▷ Copy already selected nodes

i← 0

while i < length(T ) do

for v ∈ neighbors of T [i] do

if v /∈ T then
▷ If v wasn’t selected yet

w ← G.number of edges(T [i], v) ▷ Count the number of edges between two nodes if

random.uniform(0, 1) < 1− (1− p)w then
▷ If at least one edge propagates influence

append v to T

end

end

end

i← i+ 1

end

Output: T ▷ Set of influenced nodes
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Table 1: Summary statistics and variable definitions

Variables Definition # obs Mean 25 50 75 S.d. Source
Dependent Variable:
∆CoVaR Systemic risk measure 4322 1.26 0.74 1.08 1.57 0.76 Author calculations
Network centralities:
CC Closeness centrality 4322 0.24 0.020 0.29 0.36 0.16 Author calculations
EG Eigenvector centrality 4322 0.07 0.000 0.013 0.15 0.09 Author calculations
Influence Influence with fix probability 4322 1.08 1.01 1.05 1.13 0.08 Author calculations
InfluenceD Influence with dynamic probability 4322 1.03 1.00 1.02 1.05 0.03 Author calculations
Control variables:
Size Natural logarithm of firm size 4322 9.86 9.15 9.79 10.48 1.04 Compustat database
ROA Return on Asset 4322 2.71 0.62 1.30 3.32 4.41 Compustat database
β Systematic risk using S&P500 index 4322 1.29 0.75 1.09 1.42 0.56 Compustat database
D2E Debt to Equity ratio 4322 1.23 0.36 0.84 1.51 2.969 Compustat database
VaR Value at Risk at 5% 4322 3.34 1.99 2.60 3.70 2.40 Author calculations
GEPS Growth rate of Earning Per Share 4322 0.67 -33.66 -1.54 22.22 624.15 Compustat database
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Table 2: Correlation matrix of variables used in the regression

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
∆CoV aRt 1
Sizet−1 0.187 1
ROAt−1 -0.071 0.008 1
βt−1 0.226 -0.043 -0.161 1
D2Et−1 0.041 0.117 -0.132 0.021 1
V aRt−1 0.619 -0.290 -0.180 0.383 0.041 1
GEPSt−1 -0.010 0.011 0.032 -0.006 -0.001 -0.023 1
CCt−1 0.111 0.193 0.0793 -0.184 0.012 0.20 -0.0184 1
EGt−1 0.066 0.109 0.084 -0.115 -0.002 0.113 -0.015 0.655 1
Influencet−1 0.062 0.115 0.041 -0.19 0.005 0.153 -0.025 0.695 0.796 1
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Table 3: The impact of network structure on systemic risk

Euclidean layer Correlation layer
Independent variables CCt−1 EGt−1 INFt−1 INFD

t−1 CCt−1 EGt−1 INFt−1 INFD
t−1

CMt−1 0.5078*** 0.3824*** 0.5407*** 1.3052*** 0.6499*** 0.7660*** 0.7851*** 1.9172***
(20.88) (9.89) (11.78) (10.94) (26.92) (21.20) (19.30) (16.77)

Sizet−1 0.0142*** 0.0239*** 0.0229*** 0.0226*** 0.0148*** 0.0248 *** 0.0227*** 0.0228***
(3.90) (6.39) (6.16) (6.07) (4.22) (6.94) (6.28) (6.23)

ROAt−1 -0.4526*** -0.2887*** -0.2824*** -0.2781*** -0.5546*** -0.4878*** -0.4415*** -0.3940***
(-5.72) (-3.54) (-3.49) (-3.42) (-7.21) (-6.16) (-5.54) (-4.92)

Betat−1 0.1808*** 0.1798*** 0.1846*** 0.1826*** 0.1415*** 0.1472*** 0.1554*** 0.1590***
(24.92) (23.88) (24.59) (24.29) (19.70) (19.88) (20.97) (21.25)

V aRt−1 0.0242*** 0.0452*** 0.0423*** 0.0455*** 0.0552*** 0.0542*** 0.0542*** 0.0542***
(6.35) (11.96) (11.17) (12.19) (16.17) (15.40) (15.28) (15.14)

D2Et−1 0.003** 0.0045*** 0.0044*** 0.0043*** 0.0038*** 0.0038** 0.0043*** 0.0042***
(2.96) (3.70) (3.64) (3.56) (3.36) (3.27) (3.70) (0.0003)

GEPS -0.0011* -0.0012* -0.0011* -0.0012* -0.0012* -0.0013* -0.0011* -0.0012*
(-2.04) (-2.24) (-2.10) (-2.14) (-2.18) (-2.49) (-2.06) (-2.15)

R2 21% 14% 15% 15% 25% 21% 19% 18%
# of obs 4322 4322 4322 4322 4322 4322 4322 4322

VAR layer AR layer
Independent variables CCt−1 EGt−1 INFt−1 INFD

t−1 CCt−1 EGt−1 INFt−1 INFD
t−1

CMt−1 -0.1260 -0.0083 0.3094*** 0.3190*** 0.1321*** 0.0427 0.1360** 0.1562**
(-2.02) (-0.15) (13.30) (13.40) (3.59) (1.17) (2.61) (2.81)

Sizet−1 0.0265*** 0.0265*** 0.0206*** 0.0205*** 0.0268*** 0.0270*** 0.0268*** 0.0269***
(6.90) (6.89) (5.43) (5.40) (7.13) (7.17) (7.13) (7.16)

ROAt−1 -0.2231** -0.2180** -0.3406*** -0.3434*** -0.1785* -0.1812* -0.1804* -0.1764*
(-2.65) (-2.59) (-4.11) (-4.14) (-2.18) (-2.21) (-2.20) (-2.16)

Betat−1 0.1755*** 0.1757*** 0.1599*** 0.1597*** 0.1783*** 0.1796*** 0.1794*** 0.1789***
(22.71) (22.72) (20.88) (20.86) (23.41) (23.57) (23.57) (23.48)

V aRt−1 0.0539*** 0.0538*** 0.0550*** 0.0550*** 0.0544*** 0.0546*** 0.0547*** 0.0545***
(14.48) (14.43) (15.08) (15.09) (14.73) (14.76) (14.81) (14.76)

D2Et−1 0.0036** 0.0036** 0.0030* 0.0030* 0.0047*** 0.0047*** 0.0047*** 0.0047***
(2.60) (2.62) (2.22) (2.22) (3.86) (3.87) (3.88) (3.89)

GEPS -0.0016** -0.0016** -0.0015** -0.0015** -0.0013* -0.0013* -0.0013* -0.0013*
(-2.71) (-2.69) (-2.64) (-2.67) (-2.36) (-2.39) (-2.38) (-2.40)

R2 12% 12% 16% 16% 13% 12% 13% 14%
# of obs 4158 4158 4158 4158 4322 4322 4322 4322
Note: This table shows the panel regression results for an unbalanced panel of financial companies listed in S&P500 over the period
of 2007–2023. The t-statistics of the parameters are reported in parentheses. Firm fixed effects are included in all regressions. The
∗, ∗∗, and ∗ ∗∗ indicate significance at the levels of 0.1, 0.05, and 0.01, respectively.
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Table 4: The impact of aggregated network structure on systemic risk

Independent variables CCt−1 EGt−1 INFt−1 INFD
t−1

CMmulti
t−1 0.2757*** 0.2033*** 0.4130*** 0.4208***

(19.09) (18.73) (5.79) (5.91)
Sizet−1 0.0213*** 0.0210*** 0.0268*** 0.0269***

(5.89) (5.77) (7.16) (7.16)
ROAt−1 -0.4134*** -0.3923*** -0.1997* -0.2005*

(-5.20) (-4.94) (-2.44) (-2.46)
Betat−1 0.1713*** 0.1564*** 0.1777*** 0.1776***

(23.38) (21.06) (23.39) (23.39)
V aRt−1 0.0456*** 0.0462*** 0.0546*** 0.0545***

(12.73) (12.89) (14.81) (14.81)
D2Et−1 0.0041*** 0.0033** 0.0045*** 0.0045***

(3.51) (2.75) (3.70) (3.69)
GEPSt−1 -0.0011* -0.0013* -0.0014* -0.0014*

(-2.06) (-2.38) (-2.41) (-2.40)
R2 19% 19% 14% 14%
# of obs 4322 4322 4322 4322
Note: This table shows the panel regression results of aggregated centrality measures
for an unbalanced panel of financial companies listed in S&P500 over the period of
2007–2023. The t-statistics of the parameters are reported in parentheses. Firm fixed
effects are included in all regressions. The ∗, ∗∗, and ∗ ∗∗ indicate significance at the
levels of 0.1, 0.05, and 0.01, respectively.
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Table 5: The impact of network structure on systemic risk

Normal Recession
Independent variables CCt−1 EGt−1 INFt−1 INFD

t−1 CCt−1 EGt−1 INFt−1 INFD
t−1

CMmulti
t−1 0.2524*** 0.1894*** 0.3524*** 0.3583*** 0.4948*** 0.4*** 1.2123** 1.2645**

(18.62) (18.98) (5.39) (5.49) (7.32) (6.46) (2.69) (2.82)
Sizet−1 0.0203*** 0.0192*** 0.0255*** 0.0255*** 0.0294* 0.034* 0.0342* 0.0345*

(5.77) (5.46) (6.96) (6.96) (2.21) (2.54) (2.48) (2.50)
ROAt−1 -0.3439*** -0.3324*** -0.1220 -0.1225 -0.6421* -0.5928* -0.4653 -0.4699

(-4.33) (-4.20) (-1.49) (-1.50) (-2.49) (-2.28) (-1.74) (-1.76)
Betat−1 0.1594*** 0.1466*** 0.1679*** 0.1679*** 0.2639*** 0.2230*** 0.2362*** 0.2356***

(22.78) (20.75) (23.07) (23.08) (8.64) (7.26) (7.50) (7.49)
V aRt−1 0.0369*** 0.0378*** 0.0455*** 0.0455*** 0.0752*** 0.0708*** 0.0840*** 0.0839***

(10.08) (10.36) (12.03) (12.02) (6.75) (6.23) (7.31) (7.31)
D2Et−1 0.0032** 0.0022 0.0035** 0.0035** 0.0068 0.0068 0.0076 0.0075

(2.83) (1.93) (2.95) (2.94) (1.61) (0.11) (1.75) (1.72)
GEPS -0.0014** -0.0017** -0.0017** -0.0017** 0.0004 0.0007 0.0007 0.0007

(-2.72) (-3.15) (-3.14) (-3.13) (0.21) (0.35) (0.32) (0.35)
R2 21% 22% 15% 15% 18% 17% 12% 12%
# of obs 3713 3713 3713 3713 609 609 609 609
Note: This table shows the panel regression results for an unbalanced panel of financial companies listed in S&P500 over the period
of 2007–2023. The t-statistics of the parameters are reported in parentheses. Firm fixed effects are included in all regressions. The
∗, ∗∗, and ∗ ∗∗ indicate significance at the levels of 0.1, 0.05, and 0.01, respectively.
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Table 6: The Most Central Nodes

Euclidean layer Correlation layer
Node InfMax CC EG InfMax CC EG
1 JPM BAC PNC JPM AMP C
2 CME JPM BAC CME LNC BAC
3 PLD PNC JPM PLD JPM JPM
4 VTR GS USB VTR C PNC
5 BLK USB HBAN EFX BAC AMP

Note: This table shows the set of 5 nodes (Ticker ID) selected by the Influence
Maximization (InfMax) and the most central nodes according to Closeness
(CC), and Eigenvector Centralities (EG)) for Euclidean and Correlation layers
in 2020Q1
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(a) Euclidean Layer (b) ARIMA Layer

(c) Correlation Layer (d) Variance Decomposition Layer

Figure 1: Centrality measures and Systemic Risk. This figure plots the ∆CoVaR, Influence, Eigenvector and Closeness from
top to down, for financial companies listed in S&P500 from 2007Q1-2022Q4. (a) Risk and Centrality measures for Euclidean
Layer, (b) ARIMA Layer, (c) Correlation Layer and (d) Variance Decomposition Layer
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(a) (b) (c)

(d) (e) (f)

Figure 2: ARIMA networks in 2007Q1, 2008Q4, 2009Q3, 2019Q2, 2020Q1 and 2020Q3. (a) The netwotk in 2007Q1, (b) The
netwotk in 2008Q4, (c) The netwotk in 2009Q3 (d) The netwotk in 2019Q2, (e) The netwotk in 2020Q1, The netwotk in 2020Q3.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Variance Decomposition networks in 2007Q1, 2008Q4, 2009Q3, 2019Q2, 2020Q1 and 2020Q3. (a) The netwotk in
2007Q1, (b) The netwotk in 2008Q4, (c) The netwotk in 2009Q3 (d) The netwotk in 2019Q2, (e) The netwotk in 2020Q1, The
netwotk in 2020Q3.
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(a) This figure shows the network of the Euclidean Layer in 2020Q1. The stocks selected by the Influence Maximization method are
highlighted in orange

(b) This figure shows the network of the Correlation Layer in 2020Q1. The stocks selected by the Influence Maximization method
are highlighted in orange
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