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Highlights 

 

⚫ The paper asks the question whether more recently developed “new” 

measurements of systemic risk add valuable incremental information on future 

macroeconomic performance.  

⚫ More specifically, we ask whether aggregating those new measurements into 

existing aggregate index of systemic risk, which are constructed using “old” 

systemic risk measurements, leads to an improvement in forecasting ability on the 

future macroeconomic activities. 

⚫ The composite index aggregated using both the “new” and “old” measurements 

significantly outperform the aggregate index constructed using only the “old” 

measurements. The performance improvement is sizable, ranging from 44.40% to 

180.57%. 

 

Abstract 

 

Previous studies have shown that the buildup of systemic risk in the financial sector 

could predict real economic activities in the US. This article collects and summarizes 

the systemic risk measures developed in recent years to investigate whether the 

inclusion of these “new” measures could improve the out-of-sample forecasting ability 

of existing aggregate index of systemic risk. We employ quantile regression and 

different dimension reduction methods to predict the economic downturns in the US 

and demonstrate that the “new” measurements could provide additional information 

about the future real macroeconomy and lead to an improvement in forecasting ability. 
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1 Introduction 

The recent financial crisis of 2007-2009 has generated extensive interest in systemic 

risk, a term which is defined by the IMF as the risk of disruptions in the provision of 

key financial services that can have serious consequences for the real economy (IMF, 

2009). Systemic events are intrinsically difficult to anticipate (IMF, 2010) and the 

spread of systemic risk would impair the capacity of the whole financial system, even 

the real economy. Extensive literature provided evidence about the large costs of 

implicit government subsidies and real economy welfare losses associated with the 

systemic event (Varotto and Zhao, 2018; Altunbas et al., 2017; Acharya and Yorulmazer, 

2008; Hoggarth et al., 2002; Claessens et al., 1999). Regulators from various countries 

have also been wrestling with the monitoring and measurement of systemic risk. As a 

result, a growing part of the literature focuses on the measurement of systemic risk, 

aimed at providing an early warning signal about the distressed economic condition.  

However, given the endogenous and multidimensional nature of systemic risk, its 

measurement is a complex task (Allen et al., 2012; Morley, 2016; Caporin et al., 2022) 

and many systemic risk measures lack a robust statistical association with 

macroeconomic downside risk individually (Giglio et al., 2016). The measurement 

noise may obscure the useful information contained in the measurement and a given 

systemic risk index may only capture one or several specific aspects of the systemic 

risk. Therefore, Giglio et al., (2016) employ dimension-reduction methods to extract 

the useful content from a large collection of systemic risk measures and find that 

principal component quantile regression (PCQR) and partial quantile regression (PQR) 

method could produce consistent forecasts for the distribution of the macroeconomic 

activity, especially the lower tail of macroeconomic shocks. Caporin et al. (2018) 

employ a more flexible targeted sparse systemic risk index (TASSYRI) method 

aggregating the risk measures to improve the forecasting performance. Compared with 

the individual measurements, the aggregate systemic risk measure could provide a more 

accurate warning signal to alert the regulators about the potential spillover risk to the 



real economy and contribute to the prevention of possible systemic risk events.  

This paper further investigates the relationship between systemic risk measures and the 

distribution of real macroeconomic activities. Since the research of Giglio et al. (2016), 

the recent literature has constructed “new” systemic risk measures to monitor and 

predict the risk build-up in the financial sector in tranquil times. In this paper, we further 

collect and summarize the systemic risk measures developed in recent years and 

investigate whether these “new” systemic risk measures could improve the forecasting 

ability of real economic activities. Although the previous literature confirm that the 

aggregate index could improve the predictability compared with the individual one, it 

doesn’t mean that the predictability would always be improved when we include more 

systemic risk measurements. When the information contained in the different measures 

is repetitive or even conflicting, aggregating more systemic risk measures could even 

worsen the forecasting performance. Thus, only if the new measurements could provide 

additional useful information related to future economic activities, could the predicting 

performance be improved.  

In the first part of the paper, we examine all systemic risk measures individually to 

check whether these indicators could provide significant out-of-sample forecasting 

power individually. In the second part, we construct the composite risk index using 

different dimension-reduction methods and investigate whether the addition of “new” 

systemic risk measures to the composite index could improve the predictability. We 

further adopt the TASSYRI method proposed by Caporin et al. (2018), which excludes 

the possible redundant measures using the sparsity method and allows for a time-

varying subset of the systemic risk measurements. The paper empirically extends that 

of Giglio et al. (2016), since we consider a much wider range of systemic risk indicators 

and a more flexible method to aggregate the composite risk index.  

Our empirical results provide novel evidence. First, consistent with Giglio et al. (2016), 

the individual systemic risk measures lack a robust predicting ability to the 

macroeconomic downside risk. Some indicators such as CatFin, default spread, 



volatility, and turbulence are significantly informative out-of-sample. Some “newly” 

introduced measures, for example, Systemic Expected Shortfall (Acharya et al., 2017), 

CoVaRTENET̂  (Härdle et al., 2016) and Component Expected Shortfall (Banulescu and 

Durnitrescu, 2015), also exhibit significantly stronger forecasting power than the 

unconditional quantile regression. Secondly, we present that the composite index 

constructed using “all” systemic measures by PCQR, PQR, and TASSYRI improves 

the forecasting performance by 44.40%, 87.97%, and 180.57% respectively compared 

to that relies on only the “old” measures in Giglio et al. (2016). These results suggest 

that these “new” measures contain useful information about the distribution of future 

real economic activities additionally. Thirdly, we focus on the forecasting horizon 

varying from 1 to 12 months and find that the predictive ability of the aggregated index 

declines after 8 months but remains positively significant up to 12 months. 

The remainder of the paper proceeds as follows. Section 2 defines and provides a 

quantitative description of the selected systemic risk measures and macroeconomic 

shocks in the US. In Section 3, we introduce the dimension-reduction methods in detail. 

Section 4 examines the predicting performance of both the individual measure and the 

composite index for different quantiles of macroeconomic shocks and presents the 

forecasting ability over a longer horizon of up to 12 months. Section 5 concludes. 

2 Data 

Our research selects and summarizes 33 systemic risk measures. Detailed information 

could be found in Table 1. According to the different aspects these measures specified, 

we group them into the following five groups, institution-specific risk, connectedness 

and spillover, volatility and instability, liquidity and credit, and tail dependence. We 

first calculate the 19 commonly used measures outlined by the previous research. In 

line with Giglio et al., (2016), we construct these 19 measurements using the largest 20 

financial institutions in each period, except for the size concentration index which we 

use 100 financial institutions. Apart from that, we then collect and summarize the 

systemic risk measures developed in the recent literature to the extent that we have 



access to enough time spans and relevant data for the index. In this paper, we call the 

measurements used in Giglio et al., (2016) the old measurements and additional 

measurements in this study as “new” measurements to facilitate discussions. Most risk 

measures are constructed on a daily basis1 based on the 252-day rolling window and 

we compute each measure as the equally weighted average of the financial institutions. 

Detailed information on the measures can be found in the Appendix. We obtained all 

the US return data from CRSP and Yahoo Finance and the accounting data from 

Compustat. The macroeconomic variables are from the Federal Reserve Bank of St. 

Louis, Yahoo Finance, and Bloomberg database. To summarize, the systemic risk 

measures cover various information including stock market information, accounting 

information, bond market yields and the macroeconomic condition. 

3 Systemic Risk Measures 

3.1.1 Institution-specific risk 

The institution-specific risk mainly quantifies the contribution or sensitivity of the 

individual financial institution to the systemic risk. These measures include the CoVaR, 

∆ CoVaR (Adrian and Brunnermeier, 2010), the marginal expected shortfall (MES) 

(Acharya et al, 2010), and MES-BE proposed by Brownlees and Engle (2011). In this 

paper, we further include the SRISK, a conditional capital shortfall measure of systemic 

risk by Brownlees and Engle (2017), the component expected shortfall (CES) proposed 

by Banulescu and Durnitrescu (2015), which measures the firm’s ‘absolute’ 

contribution to the ES of the financial system, and the systemic expected shortfall (SES) 

by Acharya et al. (2017). Apart from these measures, we further construct the State-

Dependent Sensitivity Value-at-Risk (SDSVAR), which is based on the value-at-risk 

(VaR) measure, to obtain the direction and size of spillovers from one set of institutions 

to another (Adam et al. 2016). Härdle et al (2016) construct the CoVaRLASSÔ   and 

CoVaRTENET̂ , the semi-parametric measures to estimate systemic interconnectedness 

 
1 Following Härdle et al. (2016), we calculate the CoVaRLASSÔ  and CoVaRTENET̂  based on the weekly data. 

Following Antonakakis et al. (2020) and Geraci and Gnabo (2018), we calculate TVP-VAR based on the monthly 

data. 



across financial institutions based on tail-driven spillover effects in a high dimensional 

framework (Härdle et al. 2016). White et al. (2015) apply the multivariate, multi-

quantile models to analyze the spillover effect in the values-at-risk (VaR). 

3.1.2 Comovement and Contagion 

The comovement and contagion capture the common risk exposure across the financial 

intuitions, which may be due to asset commonality, credit inter-linkages, etc. We first 

consider the Absorption Ratio and ∆Abs from Kritzman and Li (2010), the DCI from 

Billio et al. (2012), and the international spillover index from Diebold and Yilmaz 

(2009). Diebold and Yilmaz (2012) use a generalized vector autoregressive framework 

to characterize daily volatility spillovers across US stock, bond, foreign exchange, and 

commodities markets. We further take the connectedness index proposed by Diebold 

and Yilmaz among the sovereign bond markets into consideration, despite the relatively 

short time horizon. Following Geraci and Gnabo (2018), Gabauer and Gupta (2018), 

and Antonakakis et al. (2020), we measure the dynamic connectedness between 

financial institutions based on time-varying parameter vector autoregressions (TVP-

VAR). Das (2016) and Chen (2018) propose the systemic risk score to quantify the 

aggregate risk in a network comprised of related entities based on the compromise level.  

3.1.3 Volatility and instability 

Volatility and instability represent the fluctuations and vulnerability of the financial 

system. We first construct the traditional volatility of the financial institutions’ equity 

returns. The Turbulence index proposed by Kritzman and Li (2010) measures the long-

term equity return volatility. Besides, the CatFin of Allen et al. (2012), the size 

concentration based on the Herfindal index in the financial sector, and the aggregate 

book leverage and market leverage are included in our analysis. All these metrics except 

the size concentration are calculated based on the largest 20 financial institutions during 

the given period. Mihoci et al. (2020) construct the Financial Risk Meter (FRM) based 

on the penalization parameters of the lasso regression to capture the potential changes 

in volatility.  



Table 1. 

Description of systemic risk measures and the sample start dates. 

Indicator 2.1.1 Institution-specific risk 

“old” 

CoVaR, ∆CoVaR Adrian and Brunnermeier (2010) 

MES Acharya et al. (2010) 

MES-BE Brownlees and Engle (2012) 

“new” 

SRISK Brownlees and Engle (2017) 

Component Expected Shortfall (CES) Banulescu and Durnitrescu (2015) 

Systemic Expected Shortfall (SES) Acharya et al. (2017) 

𝐂𝐨𝐕𝐚𝐑𝐋𝐀𝐒𝐒𝐎̂  Härdle et al. (2016) 

𝐂𝐨𝐕𝐚𝐑𝐓𝐄𝐍𝐄𝐓̂  Härdle et al. (2016) 

SDSVAR Adam et al. (2014) 

CAViaR White et al. (2015) 

   

 2.1.2 Comovement and Contagion 

“old” 

Absorption ratio; ∆Abs Kritzman and Li (2010) 

DCI Billio et al. (2012) 

Intl. spillover Diebold and Yilmaz (2009) 

“new” 

Systemic risk score Das (2016); Chen (2018) 

TVP-VAR Geraci and Gnabo (2018) 

Gabauer and Gupta (2018) 

Antonakakis et al. (2020)  

Overall Connectedness Diebold and Yilmaz (2012) 

Sovereign bond Connectedness Diebold and Yilmaz (2012) 

   

 2.1.3 Volatility and instability 

“old” 

Volatility  

Turbulence Kritzman and Li (2010) 

CatFin Allen et al. (2012) 

Size conc.  

Book leverage  

Market leverage  

“new” Financial Risk Meter (FRM) Mihoci et al. (2020) 

   

 2.1.4 Liquidity and credit 

“old” 

AIM Amihud (2002) 

Ted spread  

Term spread  

GZ spread Gilchrist and Zakrajsek (2012) 

Default spread  

   

 2.1.5 Tail dependence 

“new” Asymptotic Dependence Rate (ADR) Balla et al. (2014) 

Average Chi (ACHI) Balla et al. (2014) 



3.1.4 Liquidity and credit 

To measure the illiquidity across the financial institutions, we first calculate the AIM 

index developed by Amihud (2002). Besides, we construct the representative interest 

spreads, which are the Gilchrist and Zakrajsek (2012) credit spread measure (GZ), the 

default spread (BAA bond yield minus AAA bond yield), Term spread (10Y 

government rate minus 3M government bond rate) and Ted spread (3M LIBOR minus 

3M government bond rate) to measure the credit conditions. 

3.1.5 Tail dependence 

Tail dependence is designed to capture the probability of extreme crisis coincidence. 

Balla et al. (2014) propose the Average Chi (ACHI) and Asymptotic Dependence Rate 

(ADR) to measure the prevalence and the strength of the asymptotic dependence among 

the US banking system. 

3.2 Macroeconomic data 

Following Giglio et al. (2016), we focus on the real macroeconomic shocks measured 

by innovations to industrial production growth (IP) from January 1980 to December 

2023. We obtain macroeconomic data from the Federal Reserve Board. We carry out 

the following autoregressive method for the growth rate of real industrial production 

growth (𝑌𝑡), we select the autoregressive order according to the Akaike Information 

Criterion (AIC). The macroeconomic shock is defined as the residual term of the 

following autoregressive model: 

𝑌𝑡 = 𝑐 + ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝

𝑖=1
+ 𝑈𝑡 = 𝑐 + 𝛼𝑝(𝐿)𝑌𝑡 + 𝑈𝑡 (1)  

where c and 𝛼𝑖 are parameters, 𝑈𝑡 is the error term. 

3.3 Summary of comovement among systemic risk measures 

Figure 1 plots the dynamic variations of selected measures in the US from 1980 to 2023. 

All the measures are standardized over the full sample. We could find significant spikes 

around 1990 and 2008, which corresponds to the oil crisis and global financial crisis. 

Many metrics also present unusual trends around 2020, which indicates that the COVID-

19 pandemic impairs economic development significantly in the US. 



Figure 1. 

Dynamics of systemic risk measures. The figure plots the selected systemic risk measures2. All 

measures have been standardized to have equal variance for comparison. 

 

The discrepancies between these indicators could be partly explained by the noise or 

the false signals and the multi-dimensional nature of the systemic risk. A single 

measurement may reflect one or several specific dimensions of systemic risk. Thus, it 

is necessary to extract useful information from those measurements to mitigate the 

impact of noises. 

4 Methodology 

The buildup of systemic risks in the financial sector has the potential spillover risk to 

the real economy. Thus, a useful systemic risk measure should provide regulators with 

an early warning signal of the possible downside risks of the real economy. We now 

focus on the out-of-sample predictive ability of the systemic risk measures on the left 

tail of macroeconomic activities. Following Giglio et al. (2016), we use the recursive 

quantile regression model given the nonlinear relationship between financial instability 

 
2 We only show a subset of the measures for readability and we could provide the descriptive statistics for all the 

measures if needed. 



and the macroeconomy. The advantage of the quantile regression is that it is more 

flexible, with the coefficients varying across different quantiles.  

4.1 Quantile Regression 

The out-of-sample analysis is conducted based on the following quantiles regression. 

𝑄𝜏(𝑦𝑡+ℎ|𝐈𝑡) = 𝛽𝜏,0 + 𝜷𝝉
′ 𝒙𝒕 (2) 

where 𝑄𝜏(𝑦𝑡+ℎ|𝐈𝑡)  is the conditional 𝜏 -quantile of the monthly shocks in the 

macroeconomic proxy, with horizon h ranging from 1 to 12 months, 𝑥𝑡 is the monthly 

average of the daily systemic risk measures. We set 𝜏 equals to 20%, 50% and 80% 

following Giglio et al. (2016), where 𝜏    20% represents the left-tail of the 

macroeconomic shock, 50% is the median and 80% is the upper quantile. 

 

The criteria used to judge the accuracy of the out-of-sample prediction is the 𝑅2 based 

on the loss function 𝜌𝜏. If the information contained in 𝑋𝑡 could predict 𝑦𝑡+ℎ more 

accurately than the unconditional quantile regression, the 𝑅2  will be significantly 

positive and negative otherwise. The greater the 𝑅2, the higher the predictive accuracy. 

𝑅2 can be expressed using the following equation. 

𝑅2 = 1 −

1
𝑇

∑ [𝜌𝜏(𝑦𝑡+ℎ − �̂� − �̂�𝑋𝑡)]𝑡

1
𝑇

∑ [𝜌𝜏(𝑦𝑡+ℎ − 𝑞�̂�)]𝑡

 (3)  

where 𝑞�̂� is the unconditional quantile of the regression. Following Clark and West 

(2007), we use the adjusted MSPE statistics to estimate the significance of the 𝑅2. 

𝑓𝑡+1 = (𝑦𝑡+ℎ − 𝑞�̂�)2 − [(𝑦𝑡+ℎ − �̂�𝜏,0 − �̂�𝜏,1𝑥𝑡)
2

− (𝑞�̂� − �̂�𝜏,0 − �̂�𝜏,1𝑥𝑡)
2

] (4)  

4.2 Dimension-reduction Methodology 

In this section, we briefly introduce the methodologies adopted by the paper to extract 

latent factors, which could effectively aggregate useful information from a set of 

systemic risk measures. 

 

We suppose that the macroeconomic shock 𝑦𝑡+ℎ is a linear function of the unobserved 

latent factors 𝑓𝑡, conditional on the information set 𝐈𝑡 and is expressed as a function 

of 𝑓𝑡. 



𝑄𝜏(𝑦𝑡+ℎ|𝐈𝑡) = 𝛼𝑓𝑡  (5)  

The 𝑦𝑡+ℎ is expressed as follows. 

𝑦𝑡+ℎ = 𝛼𝑓𝑡 + 𝜂𝑡+ℎ (6)  

where 𝑓𝑡  is the unobserved latent factors and 𝜂𝑡+ℎ  is the residual of the quantile 

regression.  

 

We use vector 𝒙𝒕 to represent the systemic risk measures which is a function of the 

latent factor 𝑓𝑡. 

𝒙𝒕 = Λ𝐹𝑡 + 𝜀𝑡 ≡ 𝜑𝑓𝑡 + ψ𝑔𝑡 + 𝜀𝑡 (7)  

where 𝜀𝑡 refers to the idiosyncratic measurement errors. The vector 𝒙𝒕 is comprised 

of the two parts, one is the latent factor 𝑓𝑡 which contains the useful content about the 

macroeconomy h months later, the other is the irrelevant information 𝑔𝑡, uncorrelated 

to the macroeconomic distribution. 𝐹𝑡 represents the first K principal components and 

Λ is the eigenvectors of first K eigenvalues of ∑ 𝒙𝒕𝒙𝒕
′𝑇

𝑡=1 . 

4.2.1 Principal components quantile regression (PCQR) 

The PCQR estimator mainly consists of two parts. In the first stage, we extract the 

common factor 𝐹𝑡 from the systemic risk measures 𝒙𝒕.  

�̂�𝑡 = (Λ′Λ)−1Λ′𝒙𝒕(8)  

In the second stage, we forecast the macroeconomy by quantile regression of 𝑦𝑡+ℎ on 

the �̂�𝑡 and a constant. 

𝑄𝜏(𝑦𝑡+ℎ|𝐈𝑡) = 𝛼′�̂�𝑡(9)  

When the number of the predictors and the time length become large, the PCQR could 

get the consistent estimation through the quantile regression of 𝑦𝑡+ℎ (Giglio et al.，

2016). 

∀𝑡, 𝑤ℎ𝑒𝑛 𝑁, 𝑇 → ∞, 𝛼′�̂�𝑡 −  𝛼′𝑓𝑡

𝑝
→ 0(10)  

4.2.2 Partial quantile regression (PQR) 

The second estimator is the partial quantile regression (PQR) following Giglio et al. 

(2016). Different from PCQR which condenses the cross-section according to 

covariance within the predictors, PQR condenses each predictor’s covariance on the 



cross-sectional level, which typically uses fewer factors than PCQR.  

 

In the first stage, we regress 𝑦𝑡+ℎ  on each 𝑥𝑖,𝑡  and a constant to get the slope 

coefficient �̂�𝑖, then calculate the cross-sectional covariance between �̂�𝑖 and 𝑥𝑖,𝑡 at 

each time to get the common factor 𝑓�̂� , the latent factor determined by the slope 

coefficient �̂�𝑖. Then in the prediction stage, we obtain the macroeconomic forecast by 

quantile regression of 𝑦𝑡+ℎ on the 𝑓�̂� and a constant. The PQR predictor is a consistent 

estimation by choosing a linear combination of the measures. 

∀𝑡, 𝑤ℎ𝑒𝑛 𝑁, 𝑇 → ∞, �̂�𝑓𝑡 −  𝛼𝑓𝑡

𝑝
→ 0 (11)  

4.2.3 Targeted Sparse Systemic Risk Index (TASSYRI) 

Following Caporin et al. (2018) and Shen and Huang (2008), we adopt the TASSYRI 

as our third estimator to forecast the macroeconomy. We briefly introduce the TASSYRI 

below and refer readers to Shen and Huang (2008) for additional details. The SPCA 

method proposed by Shen and Huang (2008) is based on the close connection between 

PCA and singular value decomposition (SVD). The SVD of the matrix M is as follows,  

𝑀 = 𝑈𝐷𝑉′ (12)  

where 𝑈 = [𝑢1 … 𝑢𝑟   is the left singular vector of 𝑀 , 𝑉 = [𝑣1 … 𝑣𝑟    

contains the right singular vectors and 𝐷 = 𝑑𝑖𝑎𝑔{𝑑1 … 𝑑𝑟} is the diagonal matrix. 

The matrix 𝑍 = 𝑈𝐷 are the Principal Components (PCs) and the columns of 𝑉 is the 

corresponding loadings. 

 

Shen and Huang (2008) mainly focus on the following minimization problem, 

𝑚𝑖𝑛�̃�∈ℝ𝑝 [||𝑀 − �̃��̃�′||
𝐹

2
+ 𝜆𝑃(�̃�)] (13)  

where �̃� = [𝑢1 … 𝑢𝑙]  and �̃� = [𝑣1 … 𝑣𝑙]  with 𝑙 ≤ 𝑝  representing the first 

rank 𝑙  approximations of the 𝑈  and 𝑉 . 𝜆  is a tuning parameter, and 𝑃(�̃�)  is the 

penalty function defined over the loadings. ||𝑀 − �̃�𝑣 ′̃||
𝐹

2

= 𝑡𝑟{(𝑀 − �̃��̃�′)(𝑀 −

�̃��̃�′)} = ∑ ∑ (𝑥𝑖𝑗 −𝑝
𝑗=1

𝑛
𝑖=1 �̃�𝑖�̃�𝑖)2 represents the squared Frobenius norm. 

 



The optimal solution is chosen by a LASSO penalty as follows, 

�̃�𝑠 = 𝑠𝑖𝑔𝑛(𝑋′𝑢)(|𝑋′𝑢| − 𝜆)
+

 (14)  

Then we could obtain the first 𝑙 sparse principal components as �̂� = 𝑀�̂�𝑠, where �̂�𝑠 

is the standardized optimal parameter’s vectors in the above function.  

5 Systemic risk measures and the macroeconomy 

5.1 Empirical evaluation of the individual systemic risk index 

Table 2 presents the recursive out-of-sample results for the 20th percentile of the IP 

shocks. The out-of-sample forecasting starts in January 1990 and January 2000 3 . 

Following Giglio et al. (2016), we choose January 1990 as our first out-of-sample start 

date and we also choose January 2000 as our second out-of-sample start date as the 

robustness test of our results because we want to expand our training sample and test 

the performance of our composite index during the dot-com crisis and financial crisis. 

The result is consistent with that of Giglio et al. (2016). Some systemic risk measures 

demonstrate significant forecasting power compared to the unconditional quantile 

regression. CatFin, default spread, volatility, and turbulence are significantly predictive 

concerning different split dates. Among the “new” measures, CoVaRTENET̂ , component 

expected shortfall and systemic expected shortfall provide significant out-of-sample 

predictability for the lower tail of the IP shocks. Some indicators perform worse than 

the unconditional quantile regression, with negative 𝑅2. However, this doesn’t mean 

that the information contained in the measures are useless. The index may only reflect 

one or several dimensions of the systemic risk, which may not result in a full-blown 

financial crisis. However, the results are not that robust in every specification. 

 

As shown by Table 3 and Table 4, the systemic risk measures present relatively weaker 

forecasting power in the median and 80th percentiles shock, with few measures 

performing well. Only CatFin, default spread, CAViaR and CoVaRTENET̂   exhibits 

significantly positive 𝑅2 for the prediction of the median IP shock. 

 
3 We adopt the recursive out-of-sample method, which means that the independent variable for T  t+1 is estimated 

based on the training sample T 1 to T t. 



 

 

Figure 2. 

IP growth shocks and predicted 20th percentiles. Fitted values for the 20th percentile of one-

quarter-ahead IP growth shocks. “historical” is the in-sample (1980–2023) 20th percentile of IP 

growth shocks shown as black dots. “PCQR” is the out-of-sample 20th percentile forecast based on 

PCQR. 



Table 2. 

Monthly 20th Percentile Quantile Regression Results 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. “-” Indicates insufficient data for estimation in a given sample. 

Systemic risk measures and the macroeconomy 

(Individual Systemic Risk Measurement) 

 US 

Out-of-sample start 1990 2000 

Absorption_ratio -0.0100*** -0.0265*** 

AIM -0.0282*** -0.0150*** 

Book_leverage -0.0078*** -0.0206 

CatFin 0.0493** 0.0575** 

CoVaR 0.0017 0.0033 

DCI -0.0059*** -0.0265*** 

Def_sprs 0.0648*** 0.0470*** 

Delta_Absorption -0.0017*** -0.0170*** 

Delta_CoVaR -0.0081 -0.0090 

gz 0.1884 0.2223 

intl_spillover 0.1030 0.0717 

MES -0.0057 -0.0101 

MES-BE 0.0447 0.0666 

Market_ leverage 0.0152*** -0.0254* 

Vol 0.0545* 0.0674* 

Size_con -0.0408*** -0.0389*** 

Ted_spr 0.0072*** -0.0215*** 

Term_spr 0.0032*** -0.0122*** 

Turbulence 0.0793*** 0.0820* 

CAViaR 0.0401 0.0617 

Systemic_risk_score -0.0074 -0.0104 

SDSVAR 0.0186 0.0177 

ACHI -0.0336*** -0.0156*** 

ADR -0.0161 -0.0178 

TVP-VAR -0.0044*** -0.0084*** 

SRISK -0.0213 -0.0043 

SES 0.0365*** 0.0389*** 

CoVaRTENET̂  - 0.0210*** 

CoVaRLASSÔ  - -0.0220*** 

CES 0.0673*** 0.0628* 

FRM - -0.0336 



Table 3. 

Monthly 50th Percentile Quantile Regression Results 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. “-” Indicates insufficient data for estimation in a given sample. 

 

 

 

Systemic risk measures and the macroeconomy 

(Individual Systemic Risk Measurement) 

 US 

Out-of-sample start 1990 2000 

Absorption_ratio -0.0029 -0.0034 

AIM -0.0041 -0.0018 

Book_leverage -0.0051 -0.0115 

CatFin 0.0105* 0.0146* 

CoVaR -0.0064 -0.0052 

DCI 0.0000 -0.0005 

Def_sprs 0.0276*** 0.0298** 

Delta_Absorption -0.0050 -0.0017 

Delta_CoVaR -0.0062 -0.0070 

gz 0.1874*** 0.2225*** 

intl_spillover 0.0790 0.0238* 

MES -0.0083 -0.0093 

MES-BE 0.0162 0.0216* 

Market_ leverage -0.0022*** -0.0133** 

Vol 0.0072 0.0157 

Size_con -0.0145 0.0005 

Ted_spr -0.0123* -0.0229* 

Term_spr 0.0078 0.0126 

Turbulence 0.0164 0.0278 

CAViaR 0.0102* 0.0175* 

Systemic_risk_score -0.0055* -0.0053* 

SDSVAR 0.0157 0.0207 

ACHI -0.0106 -0.0027* 

ADR -0.0082 -0.0071 

TVP-VAR -0.0088 -0.0044 

SRISK -0.0186*** -0.0049** 

SES 0.0292* 0.0411* 

CoVaRTENET̂  - 0.0066* 

CoVaRLASSÔ  - -0.0128 

CES 0.0176 0.0222 

FRM - -0.0039 



Table 4. 

Monthly 80th Percentile Quantile Regression Results 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. “-” Indicates insufficient data for estimation in a given sample. 

 

 

Systemic risk measures and the macroeconomy 

(Individual Systemic Risk Measurement) 

 US 

Out-of-sample start 1990 2000 

Absorption_ratio -0.0062** -0.0054*** 

AIM -0.0047*** 0.0015*** 

Book_leverage -0.0055*** -0.0100*** 

CatFin 0.0019 0.0018 

CoVaR -0.0046*** -0.0063*** 

DCI -0.0025** -0.0021 

Def_sprs 0.0030 0.0007 

Delta_Absorption -0.0042 -0.0014 

Delta_CoVaR -0.0019*** -0.0033*** 

gz 0.1780*** 0.1931*** 

intl_spillover 0.1570** 0.1552** 

MES 0.0005*** 0.0018*** 

MES-BE -0.0036** -0.0029** 

Market_ leverage -0.0075* -0.0033* 

Vol -0.0004* -0.0012* 

Size_con -0.0102 -0.0084*** 

Ted_spr -0.0027*** -0.0171* 

Term_spr 0.0023* 0.0055** 

Turbulence -0.0151* -0.0163* 

CAViaR -0.0043** -0.0048** 

Systemic_risk_score 0.0055*** 0.0072*** 

SDSVAR 0.0002** 0.0007** 

ACHI -0.0055 -0.0107 

ADR -0.0033 -0.0066 

TVP-VAR -0.0075*** -0.0141*** 

SRISK -0.0358*** -0.0300*** 

SES 0.0348 0.0380* 

CoVaRTENET̂  - -0.0169** 

CoVaRLASSÔ  - -0.0098*** 

CES 0.0015 -0.0001 

FRM - -0.0055*** 



5.2 Empirical evaluation of the aggregate systemic risk index  

Table 5 shows that the composite index provides robust out-of-sample predictive 

information for future macroeconomic shock prediction in the 20th percentile and 

report results for out-of-sample start dates of 1990 and 2000. The 𝑅2 reaches around 

7% for the PCQR method, which is much higher than that of the individual index. Apart 

from that, The PCQR estimator constructed by all the measures is 44.40% significantly 

higher than that constructed using only the “old” ones, indicating that our “new” 

measures could provide useful content related to the future macroeconomy. Also, the 

PQR estimator aggregated by all the measures exhibits stronger forecasting power than 

that of the “old” measures, which further confirms the informativeness of the “new” 

measures. The overall predictive performance of the PCQR estimator is better than that 

of the PQR. 

 

Figure 2 plots the out-of-sample fitted values of the quantile regression since 1980. The 

dots represent the real macroeconomic shocks, and the solid line is the PCQR predicted 

value of the 20th percentile regression. The dotted line is the unconditional 20th 

percentile of economic shocks. We could find obvious downshifts around 1990, 2008, 

and 2020, corresponding to the oil crisis, global financial crisis, and the COVID-19 

pandemic. Also, we could observe that the quantile regression fitted values shift down 

a bit earlier than that of the macroeconomic shocks around the three crises, which could 

be viewed as an early warning signal to the real economy. 

 

The classical PCA approach serves as a special case of the sparse PCA we introduced 

in section 3 for the classical one always takes all the systemic risk measures into 

consideration. In case the classical PCA may include conflicting or even wrong 

information contained in the measures to obscure our results, we further apply the 

TASSTRI method proposed by Caporin et al. (2018) to exclude the redundant and 

useless information. Also, the TASSTRI method is much more flexible because of the 

time-varying components. The results demonstrate that the “new” measures are 

informative about the future economic activities and the aggregate index could be 



viewed as a robust out-of-sample predictor of the left tail of the macroeconomy.



Table 5. 

Aggregate systemic risk measures and the macroeconomy (20th percentile) 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. 

 

 

Table 6. 

Aggregate systemic risk measures and the macroeconomy (50th percentile) 

 US 

Out-of-sample start 1990 2000 

PCQR2-all index 0.0620*** 0.0750** 

PCQR2-old index 0.0071* 0.0080* 

PQR-all index 0.0339*** 0.0428** 

PQR-old index -0.0039* 0.0155* 

TASSTRI2-all index 0.0509** 0.0602** 

TASSTRI2-old index -0.0027** -0.0065** 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. 

 

 

Table 7. 

Aggregate systemic risk measures and the macroeconomy (80th percentile) 

 US 

Out-of-sample start 1990 2000 

PCQR2-all index 0.0072** 0.0051** 

PCQR2-old index -0.0016** -0.0041** 

PQR-all index -0.0087* -0.0110* 

PQR-old index -0.0212 -0.0230 

TASSTRI2-all index 0.0052*** 0.0050*** 

TASSTRI2-old index -0.0109*** -0.0106*** 

Note: Table reports out-of-sample quantile prediction 𝑅2  for the regression horizons h   1 for the 

 US 

Out-of-sample start 1990 2000 

PCQR2-all index 0.0699*** 0.0787** 

PCQR2-old index 0.0564*** 0.0545** 

PQR-all index 0.0434*** 0.0297** 

PQR-old index 0.0197*** 0.0158* 

TASSTRI2-all index 0.0633*** 0.0592*** 

TASSTRI2-old index 0.0425*** 0.0211*** 



corresponding quantiles of IP shock. Out-of-sample start date is noted for each column. Statistical 

significance at 10%, 5%, and 1% levels are denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly 

from January 1980 to December 2023. 

 

As for the central tendency of macroeconomic shocks shown in Table 6, it is apparent 

that the forecasting ability of the aggregated index using “all” measures improves a lot, 

which means that our composite index is also informative on the median of the 

macroeconomic shocks. The predictability of the upward movements of the 

macroeconomic shocks shown in Table 7 is not evident in contrast to the 20th percentile 

and the median. 

5.3 Further Analysis  

In this section, we further examine the predictability of our composite index comprised 

of all the measures over a longer term, with the forecasting horizon ranging from 1 to 

12 months. As presented in Table 8, the aggregated index exhibits strong predictive 

power for up to 8 months in the left tail of the macroeconomic shocks, with 𝑅2 

decreasing afterward. The results indicate that our composite index contains useful 

information for future macroeconomic activities over a longer horizon. Apart from that, 

it is notable that the composite index using all the systemic risk information provides 

much more accurate forecast up to 10 months, which confirms the previous evidence. 

The results also demonstrate that the “new” systemic risk measures could provide 

additional useful information over a longer forecasting horizon. 

Table 8. 

Aggregate systemic risk measures and the macroeconomy  

 Aggregate systemic risk measures (PCQR) 

 all index old index 

 20th 50th 80th 20th 50th 8th 

h=2 0.0958*** 0.0710*** -0.0105*** 0.0800*** 0.0242** 0.0009** 

h=3 0.0814*** 0.0739*** 0.0032*** 0.0750*** 0.0263*** 0.0010** 

h=4 0.0695*** 0.0707*** -0.0010** 0.0580*** 0.0101** -0.0054 

h=5 0.0772*** 0.0795*** -0.0010** 0.0451*** 0.0126** -0.0015 

h=6 0.0494*** 0.0623*** -0.0197 0.0312*** 0.0058* -0.0141 

h=7 0.0607*** 0.0699*** -0.0280 0.0551*** 0.0123** -0.0090 

h=8 0.0626*** 0.0550*** -0.0334 0.0551*** 0.0123** -0.0090 

h=9 0.0552*** 0.0590*** 0.0018 0.0501*** 0.0286*** 0.0033* 

h=10 0.0351*** 0.0659*** -0.0081** 0.0329*** 0.0237** -0.0059 



h=11 0.0542*** 0.0682*** -0.0059*** 0.0622*** 0.0438*** 0.0006*** 

h=12 0.0546*** 0.0434*** -0.0110** 0.0549*** 0.0180** -0.0053*** 

Note: Table reports out-of-sample quantile prediction 𝑅2 for the regression horizons h   2 to 12 months 

for the corresponding quantiles of IP shock. Statistical significance at 10%, 5%, and 1% levels are 

denoted by ⁎, ⁎⁎, and ⁎⁎⁎, respectively. Samples are monthly from January 1980 to December 2023. 

Out-of-sample forecasts start in January 1990. 

6 Conclusion 

This article collects and summarizes the systemic risk measurements developed after 

Giglio et al. (2016) and examines the forecasting ability of the 

individual index and the composite index on the distribution of economic 

activities. Our paper complements and extends the literature on the relationship 

between systemic risk measurements and macroeconomy since we consider a 

much wider set of systemic risk measurements. Our findings show that the composite 

measure of systemic risk provide a much more accurate prediction after including the 

“new” measures, indicating that these newly introduced measures are informative on 

future economic activities. The composite index could serve as an early warning signal 

for future economic downturns since it exhibits significant forecasting ability over a 

relatively long horizon.  

Acknowledgements 

We would like to thank Zeno Adams, Jun Ma, Jennie Bai, Tommaso Belluzzo and David 

Gabauer for providing the relevant codes. 

 

 

 

 

 

 

 

 



Appendix 

This appendix briefly describes the technical details of the systemic risk measures. We 

do not include those measures used in Giglio et al. (2016) since readers could refer to 

that paper for the details. 

Systemic Risk Measures 

SRISK (Brownlees and Engle (2017)) SRISK is defined as the expected capital 

shortfall conditional on a systemic event.  

𝑆𝑅𝐼𝑆𝐾𝑖𝑡 = 𝐸𝑡(𝐶𝑆𝑖 𝑡+ℎ|𝑅𝑚 𝑡+1:𝑡+ℎ < 𝐶) (A1)  

where 𝑅𝑚 𝑡+1:𝑡+ℎ  is the multi-period arithmetic market equity return between 

period 𝑡 + 1 and 𝑡 + ℎ  and the systemic event is defined as {𝑅𝑚 𝑡+1:𝑡+ℎ < 𝐶}. In this 

paper, we set the threshold 𝐶 to be -10%. 

 

SRISK is a function of the size of the firm, its degree of leverage, and its expected 

equity devaluation conditional on a market decline. 

𝑆𝑅𝐼𝑆𝐾𝑖𝑡 = 𝑘𝐷𝑖 𝑡 − (1 − 𝑘)𝑊𝑖 𝑡(1 − 𝐿𝑅𝑀𝐸𝑆𝑖 𝑡) 

= 𝑊𝑖 𝑡[𝑘𝐿𝑉𝐺𝑖 𝑡 + (1 − 𝑘)𝐿𝑅𝑀𝐸𝑆𝑖 𝑡 − 1] (A2)  

where 𝐿𝑉𝐺𝑖 𝑡  denotes the quasi-leverage ratio (𝐷𝑖 𝑡 + 𝑊𝑖 𝑡)/𝑊𝑖 𝑡  and 𝐿𝑅𝑀𝐸𝑆𝑖 𝑡  is 

Long Run MES, the expectation of the firm equity multi-period arithmetic return 

conditional on the systemic event, that is, 

𝐿𝑅𝑀𝐸𝑆𝑖 𝑡 = −𝐸𝑡((𝑅𝑖 𝑡+1:𝑡+ℎ|𝑅𝑚 𝑡+1:𝑡+ℎ < 𝐶)) (A3)  

where 𝑅𝑖 𝑡+1:𝑡+ℎ is the multiperiod arithmetic firm equity return between period 𝑡 + 1 

and 𝑡 + ℎ. In estimating SRISK, the LRMES prediction is constructed using a DCC-

GARCH model by Engle (2002, 2009). 

 

Systemic Expected Shortfall (Acharya et al. (2017)) The measure represents the 

expected amount a bank is undercapitalized in a future systemic event in which the 

overall financial system is under-capitalized. 

𝑆𝐸𝑆𝑖 ≡ 𝐸[𝑧𝑎𝑖 − 𝑤1
𝑖|𝑊1 < 𝑧𝐴] (A4)  



where 𝑤1
𝑖   is the bank 𝑖 ’s equity, 𝑊1  represents the aggregate banking capital, 𝑧 

represents the required level of assets 𝑎𝑖 and aggregate assets 𝐴. 

 

Component Expected Shortfall (Banulescu and Durnitresc，2015) The Component 

Expected Shortfall (CES) of a financial institution measures the firm’s ‘absolute’ 

contribution to the Expected Shortfall (ES) of the financial system. Formally, CES 

corresponds to the product of Marginal Expected Shortfall (MES) and the weight of the 

institution in the financial system. 

𝐶𝐸𝑆𝑖𝑡 = 𝑤𝑖𝑡

𝜕𝐸𝑆𝑚,𝑡−1(𝐶)

𝜕𝑤𝑖𝑡
= −𝑤𝑖𝑡𝐸𝑡−1(𝑟𝑖𝑡|𝑟𝑚𝑡 < 𝐶) (A5)  

𝐶𝐸𝑆𝑖𝑡(𝐶) = −𝑤𝑖𝑡[𝜎𝑖𝑡𝜌𝑖𝑡𝐸𝑡−1 (𝜀𝑚𝑡|𝜀𝑚𝑡 <
𝐶

𝜎𝑚𝑡
) + 𝜎𝑖𝑡√1 − 𝜌𝑖𝑡

2𝐸𝑡−1 (𝜉𝑖𝑡|𝜀𝑚𝑡 <
𝐶

𝜎𝑚𝑡
) 

(A6)  

where 𝜀𝑚𝑡 are market return shocks, 𝜉𝑖𝑡 is the individual firm return and 𝐶 is set to 

2 following Brownlees and Engle (2011). 

 

SDSVAR (Adam et al., 2014) The State-Dependent Sensitivity Value-at-Risk 

(SDSVAR) captures the response of institutions to shocks in another institution changes 

with the state of the market (tranquil, normal, and volatile). SDSVAR is based on the 

fitted values 𝑉𝑎�̂� of four major financial institutions as commercial bank, insurance 

company, investment bank and hedge fund. 

𝑉𝑎𝑅�̂� = �̂�𝑚,𝑡 + 𝑧�̂�𝑚,𝑡 (A7)  

𝑆𝐷𝑆𝑉𝐴𝑅̂
{𝑖|𝑗, 𝑘, 𝑙},𝑡,𝜃 = �̂�𝜃 + �̂�1,𝜃𝑉𝑎𝑅𝑗,𝑡

̂ + �̂�2,𝜃𝑉𝑎𝑅𝑘,𝑡
̂ + �̂�3,𝜃𝑉𝑎𝑅𝑙,𝑡

̂ + �̂�4,𝜃𝑉𝑎𝑅𝑖,𝑡−1
̂  

(A8)  

 

where �̂�𝑚,𝑡  is the mean of institution 𝑚  at time 𝑡  and �̂�𝑚,𝑡  is the conditional 

standard deviation extracted from the GARCH model. 

 

CAViaR (VAR for VaR) (White et al. (2015)) VAR for VaR denotes the Value at risk 

(VaR) estimated by a vector autoregressive (VAR) model. The dependent variables are 



the VaR of the financial institutions, which are dependent on (lagged) VaR and past 

shocks. For each of equity return series, we estimate a bivariate VAR for VaR where 

one variable is the market return and the other variable is the return on the single 

financial institution. For a given level of confidence 𝜃 ∈ (0,1) , the quantile 𝑞𝑖𝑡  at 

time t for random variables 𝑌𝑖𝑡 𝑖 = 1,2 conditional on ℱ𝑡−1 is 

Pr[𝑌𝑖𝑡 < 𝑞𝑖𝑡|ℱ𝑡−1 ] = 𝜃,   𝑖 = 1,2 (A9)  

𝑞1𝑡 = 𝑋𝑡
′𝛽1 + 𝑏11𝑞1𝑡−1 + 𝑏12𝑞2𝑡−1 (A10)  

𝑞2𝑡 = 𝑋𝑡
′𝛽2 + 𝑏21𝑞1𝑡−1 + 𝑏22𝑞2𝑡−1 (A11)  

where 𝑋𝑡  represents predictors belonging to ℱ𝑡−1  and typically includes lagged 

values of 𝑌𝑖𝑡. 

 

𝑪𝒐𝑽𝒂𝑹𝑳𝑨𝑺𝑺𝑶̂  and 𝑪𝒐𝑽𝒂𝑹𝑻𝑬𝑵𝑬𝑻̂  (Härdle et al. (2016)) The 𝐶𝑜𝑉𝑎𝑅𝑇𝐸𝑁𝐸𝑇̂  builds up 

a risk interdependence network based on nonlinear Single Index Model (SIM) for 

quantile regression with variable selection. Compared with 𝐶𝑜𝑉𝑎𝑅  by Adrian and 

Brunnermeier (2016), 𝐶𝑜𝑉𝑎𝑅𝑇𝐸𝑁𝐸𝑇̂  could not only include the asset returns of other 

firms estimated and the macro variables, but the company specific characteristics like 

leverage, maturity mismatch, market-to-book and size included in the paper. Following 

Härdle et al. (2016), we use the weekly historical data and choose 𝑛 = 48  as the 

rolling window. 

𝑋𝑗,𝑡 = 𝑔 (𝛽𝑗|𝑅𝑗

Τ 𝑅𝑗,𝑡) + 𝜀𝑗,𝑡 (A12)  

𝐶𝑜𝑉𝑎𝑅𝑇𝐸𝑁𝐸𝑇̂ ≝ �̂� (�̂�𝑗|�̃�𝑗

Τ �̃�𝑗,𝑡) (A13)  

Where 𝑅𝑗,𝑡 ≝ {𝑋−𝑗,𝑡, 𝑀𝑡−1, 𝐵𝑗,𝑡−1} , 𝑋−𝑗,𝑡  are the returns of all financial institutions 

except for a financial institution 𝑗, 𝐵𝑗,𝑡−1 are the firm characteristics calculated from 

their balance sheet information. 𝑀𝑡−1 is a vector of macro state variables. 

 

The 𝐶𝑜𝑉𝑎𝑅𝐿𝐴𝑆𝑆𝑂̂  is based on the linear quantile LASSO models. 𝛽𝑗|𝑅𝑗

Τ  and �̂�𝑗|�̃�𝑗

Τ  are 

estimated by using linear quantile regression with variable selection. 

𝑋𝑗,𝑡 = 𝛼𝑗|𝑅𝑗
+ 𝛽𝑗|𝑅𝑗

Τ 𝑅𝑗,𝑡 + 𝜀𝑗,𝑡 (A14)  



𝐶𝑜𝑉𝑎𝑅𝐿̂ ≝ �̂�𝑗|�̃�𝑗
+ �̂�𝑗|�̃�𝑗

Τ �̃�𝑗,𝑡 (A15)  

 

Systemic Risk Score (Das, 2016) Systemic risk score for the aggregate system 

accounts for the connections between institutions and the level of individual 

compromise at each node in the network. 

𝑆(𝐂, 𝐄) = √𝐂𝚻𝐄𝐂 (A16)  

Scalar 𝑆  is a function of the compromise level vector 𝐂  for all nodes and the 

connections between nodes, given by adjacency matrix 𝐄 . The individual risk 

contributions sum up to the total systemic score 𝑆 . In this paper, we choose the 

expected loss measure for a financial institution as the measure of compromise used by 

Acharya et.al (2011). 

𝑆 = ∑ 𝑆𝑖 =
𝜕𝑆

𝜕𝐶1
𝐶1 +

𝜕𝑆

𝜕𝐶2
𝐶3 + ⋯ +

𝜕𝑆

𝜕𝐶𝑁
𝐶𝑁

𝑁

𝑖=1

 (A17)  

 

TVP-VAR (Geraci and Gnabo (2018) and Antonakakis et al. (2020)) In this paper, 

we enhance the dynamic connectedness measures originally introduced by Diebold and 

Yilmaz (2012, 2014) with a time-varying parameter vector autoregressive model to 

estimate the dynamic network of financial spillover effects. Following Diebold and 

Yilmaz (2014), the total connectedness index is constructed as follows, 

𝐶𝑡(𝐻) =
∑ �̃�𝑖𝑗,𝑡(𝐻)𝑚

𝑖,𝑗=1,𝑖≠𝑗

∑ �̃�𝑖𝑗,𝑡(𝐻)𝑚
𝑖,𝑗=1

∗ 100 =
∑ �̃�𝑖𝑗,𝑡(𝐻)𝑚

𝑖,𝑗=1,𝑖≠𝑗

𝑚
∗ 100 (A18)  

where �̃�𝑖𝑗,𝑡(𝐻)  represents the pairwise directional connectedness from j to i and 

illustrates the influence variable j has on variable i in terms of its forecast error variance 

share. 

 

Asymptotic Dependence Rate and Average Chi (Balla et al.，2014) Asymptotic 

Dependence Rate (ADR) is defined as the proportion of asymptotically dependent 

financial institution pairs to the total number of financial institution pairs in our sample, 



thus measuring the prevalence of asymptotic dependence between financial institutions 

based on the extremal dependence measure 𝜒. 

𝜒 = lim
𝑞→1

Pr(𝐿1 > 𝐿1,𝑞|𝐿2 > 𝐿2,𝑞) (A19)  

where 𝐿1 , 𝐿2  stand for two loss variables and 𝐿1,𝑞 , 𝐿2,𝑞  stand for their respective 

marginal 𝑞 th quantiles. If 𝜒    0, 𝐿1  and 𝐿2  are said to be asymptotically 

independent. If 𝜒  > 0, 𝐿1  and 𝐿2  are said to be asymptotically dependent and 𝜒 

measures the strength of the asymptotic dependence. 

𝐴𝑠𝑦𝑚𝑝𝐷𝑒𝑝𝑖𝑗,𝑡 = {
 1    𝑖𝑓 𝜒𝑖𝑗,𝑡 > 0  

0    𝑖𝑓 𝜒𝑖𝑗,𝑡 = 0
(A20)  

 

𝐴𝑠𝑦𝑚𝑝𝐷𝑒𝑝𝑅𝑎𝑡𝑒𝑡 =
∑ ∑ 𝐴𝑠𝑦𝑚𝑝𝐷𝑒𝑝𝑖𝑗,𝑡𝑗≠𝑖𝑖

𝑁 × (𝑁 − 1)
 (A21)  

Average Chi (ACHI) is defined as the average strength of asymptotic dependence across 

all pairs of financial institutions. This measure can provide insights regarding the 

strength of extremal dependence in the financial system. 

𝐴𝑣𝑔𝐶ℎ𝑖𝑡 =
∑ ∑ 𝜒𝑖𝑗,𝑡𝑗≠𝑖𝑖

𝑁 × (𝑁 − 1)
 (A22)  

 

Financial Risk Meter (Mihoci et al., 2020) Financial Risk Meter (FRM) is defined as 

the average over the series of selected penalization term 𝜆𝑗
∗  of the quantile lasso 

regression model of the companies under consideration. The Linear Quantile Lasso 

Regression Model is defined as below, 

𝑋𝑗,𝑡
𝑠 = 𝛼𝑗

𝑠 + 𝐴𝑗,𝑡
𝑠 Τ

𝛽𝑗
𝑠 + 𝜀𝑗,𝑡

𝑠  (A23)  

where 𝐴𝑗,𝑡
𝑠 = [

𝑀𝑡−1
𝑠

𝑋−𝑗,𝑡
𝑠 ], 𝑀𝑡−1

𝑠  represents the 𝑚 dimensional vector of macro variables, 

𝑋−𝑗,𝑡
𝑠  is the 𝑝 − 𝑚 dimensional vector of the returns of all other firms except firm 𝑗 

at time 𝑡, and 𝛼𝑗
𝑠 is a constant term. The moving window 𝑠 is chosen to be 252 days. 

 

The regression is performed using 𝐿1-norm quantile regression proposed by Li and Zhu 

(2008), which is defined as: 



min
𝛼𝑗

𝑠,𝛽𝑗
𝑠

{𝑛−1 ∑ 𝜌𝜏

𝑠+(𝑛−1)

𝑡=𝑠

(𝑋𝑗,𝑡
𝑠 − 𝛼𝑗

𝑠 − 𝐴𝑗,𝑡
𝑠 Τ

𝛽𝑗
𝑠) + 𝜆𝑗

𝑠 ∥ 𝛽𝑗
𝑠 ∥1} (A24)  

where 𝜆𝑗
𝑠 is the penalization parameter. The FRM is defined as the average lambdas 

over the set of 𝑘 firms for all windows. 

𝐹𝑅𝑀 ≝
1

𝑘
∑ 𝜆𝑗

∗

𝑘

𝑗=1

 (A25)
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