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Abstract 

This paper explores the intersection of climate transition risk and credit risk, leveraging a 
distinctive dataset from an undisclosed Czech bank containing financial and carbon footprint 
data of Small and Medium Enterprises during and before the 2022 European energy crisis. 
Utilizing logistic regression, we first develop a conventional credit scoring model based on 
client-level financial data, identifying 4 key financial predictors of credit default. We then enrich 
the model by incorporating 11 carbon footprint variables. Our contribution is four-fold. First, we 
provide empirical evidence showing that Scope 1 emitters are less prone to credit default, while 
Scope 2 and Scope 3 emitters are more likely to default. These findings align with the economic 
context of 2022, where the Czech Republic experienced soaring electricity and gas prices due 
to post-COVID demand and geopolitical tensions. Scope 1 emitters were less affected by these 
price hikes, either selling these commodities or having fixed prices. Second, we demonstrate 
that including Scope 2 carbon footprint improves the credit scoring model's accuracy. Third, 
we identify four significant financial predictors of credit default, supporting previous research. 
Our approach offers a more robust framework for assessing credit risk in the context of climate 
change, highlighting the importance of environmental factors in financial risk management. 
Finally, we leverage newly available climate risk disclosures to show how they can enhance 
both climate risk mitigation and banks' credit risk analysis, emphasizing the crucial role of 
energy use. 
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1. Introduction 

Climate risk represents a significant potential loss arising either from extreme natural events 
or the transition towards a carbon-neutral economy. The transition to a low-carbon economy 
can involve either gradual interventions (Nordhaus, 2007) or more restrictive policies (Stern, 
2009). The European Green Deal is a landmark agreement among European Union member 
states, setting ambitious targets to reduce carbon emissions by 55% by 2030 and achieve 
carbon neutrality by 2050 (European Commission, 2019). To meet these goals, high carbon 
emitters are subject to financial constraints, underscoring the critical role of financial incentives 
in driving environmental conservation efforts. 

Financial institutions, although not direct contributors to carbon emissions, play a crucial role 
by financing carbon-intensive firms, thereby becoming indirect polluters. In 2018, the European 
Commission hinted at increasing capital requirements for banks that finance high-carbon 
industries, highlighting the financial sector's indirect impact on climate change (Dombrovskis, 
2018). In the broader business sector, non-financial carbon-intensive firms are already facing 
regulatory measures such as carbon taxes and emission trading systems, which impose a cost 
per ton of CO2 emitted (World Bank, 2020). These climate policies indirectly influence credit 
default risk, posing a direct impact on financial institutions. Several academic studies have 
explored the relationship between credit and climate risk, suggesting that carbon pollution 
levels can be a significant driver of corporate client defaults (Battiston et al., 2017; Capasso et 
al., 2020). Utilizing a unique dataset from an anonymous Czech bank (the Bank), which 
includes detailed client-level financial and carbon footprint data (transition risk variables), this 
study examines how carbon emissions impact the probability of default (PD). The analysis 
involves a climate-stress test of a standard credit scoring model, integrating transition risk 
variables to assess their influence on credit risk.  

Empirical findings indicate a significant relationship between carbon emissions and credit risk 
in banking, with various studies highlighting different aspects of this dynamic. Ivanov et al. 
(2023) show that carbon pricing policies lead to shorter loan maturities, reduced access to 
permanent bank financing, higher interest rates, and increased participation of shadow banks 
for high-emission firms, particularly private ones, indicating a swift banking response to 
transition risks. Mohd & Hishamuddin (2024) suggest that green financing in ASEAN countries 
can mediate the relationship between climate change and bank stability, implying that 
sustainable banking practices can help maintain financial stability even as climate risks rise. 
Bruno & Lombini's (2023) investigation into the global syndicated loan market post-2015 Paris 
Agreement reveals non-linear relationships between lending variables and CO2 emissions, 
with significant policy events like the Paris Agreement amplifying banks' perception of climate 
transition risk. Thornton et al.'s (2023) analysis of Italian firms further supports these findings, 
showing that higher default rates on loans are associated with increased GHG emissions, and 
the Paris Climate Agreement has led to a threshold increase in default rates across almost all 
sectors, reflecting the adverse impact of transitioning to a lower carbon economy on firm 
performance. Xinyu et al.'s (2023) results imply that banks may consider a company's carbon 
footprint as a factor when assessing credit risk. Collectively, these studies underscore that 
banks are increasingly factoring in carbon emissions and climate policies when assessing 
credit risk, with significant implications for both financial stability and the broader economy. 
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We contribute to the literature in four ways. First, this paper provides empirical evidence on 
the relationship between climate transition risk and credit risk. It uses a stress test of a standard 
credit scoring model by adding transition risk variables separately, with logistic regression 
applied for the climate-stress test. The results show that Scope 1 emitters are generally less 
prone to default, while Scope 2 and Scope 3 emitters tend to default more, consistent with 
Capasso et al. (2020), Carbone et al. (2021), Thornton et al. (2023) and Xinyu et al. (2023). 
Second, the study demonstrates that including Scope 2 carbon footprint improves the model's 
discriminatory power and default prediction accuracy. Integrating Scope 2 and Scope 3 carbon 
intensity per sales unit also enhances the model's ability to predict non-defaults, aligning with 
Battiston et al. (2017) and Monasterolo et al. (2017). Third, the paper identifies four significant 
financial predictors of credit default, supporting the findings of Jakubík & Teplý (2011). It also 
provides a comprehensive summary of the academic literature on climate transition risk in 
financial markets, highlighting significant research gaps and suggesting future research 
directions, as noted by Dunz et al. (2019) and Dafermos & Nikolaidi (2021). Finally, we also 
contribute by making more extensive use of the disclosures now becoming available on climate 
risk exposures, and illustrate how these can not only advance objectives relating to climate 
risk mitigation, but also their usefulness in improving banks’ credit risk analysis. We also see 
how important energy use is in this context. 

The remainder of the paper is structured as follows: In Section 2, we discuss key terminology 
used throughout the paper. Section 3 reviews existing academic literature and identifies gaps 
that form research hypotheses. Section 4 details the methodology for testing these 
hypotheses. Section 5 discusses data adjustments and presents descriptive statistics. Against 
this backdrop, Section 6 introduces our credit risk model and Section 7 discusses its empirical 
results and compares them with findings from other researchers. Section 8 concludes the 
paper.  

2. Climate and credit risks 

This section clarifies the key terminology used in this paper. Section 2.1 introduces the two 
primary types of climate risk: physical risk and transition risk. Section 2.2 discusses credit risk, 
which is the main topic of this paper. 

2.1 Climate risks 

In the context of financial markets, climate risk is driven by two main factors: physical risk and 
transition risk. This section defines these risks and explains their relevance to the financial 
system. Although the focus of this research is on transition risk, physical risk is included for 
completeness. Unless otherwise specified, the definitions of climate risk used in this section 
are based on those provided by the European Central Bank (ECB, 2020) and the Basel 
Committee on Banking Supervision (BCBS, 2021). 

2.1.1 Physical risk 

Physical risk refers to the financial losses resulting from physical damage caused by extreme 
climate events. The Intergovernmental Panel on Climate Change (IPCC, 2021) identifies two 
types of events that contribute to physical risk: acute and chronic events. Acute events are 
sudden extreme weather occurrences such as heatwaves, floods, droughts, storms, and 
wildfires. Chronic events involve long-term shifts in climate patterns, such as rising sea levels, 
melting glaciers, and changing temperature patterns. Both acute and chronic events can 
destabilize the financial system. 
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The ECB (2020) acknowledges the financial impact of physical risk across four main risk 
categories: credit risk, market risk, operational risk, and liquidity risk. In terms of credit risk, 
financial institutions face increased default risk due to higher PD and lower recovery rates. For 
instance, severe flood events can damage residential properties, leading to mortgage defaults 
and the destruction of physical collateral. Physical risks are often concentrated in specific 
geographical areas, meaning that banks operating within these areas may experience 
significant distress from a single extreme natural event. 

2.1.2 Transition risk 

Transition risk refers to the financial loss associated with the shift towards a low-carbon 
economy. This transition can involve policies like carbon pricing or market adjustments. For 
carbon-intensive industries, transition risk often translates to increased operational or financing 
costs. Two key concepts define the carbon emissions of a firm. Carbon Footprint is defined as 
the total amount of carbon emissions directly or indirectly associated with a firm, measured in 
units of mass of carbon dioxide. Carbon Intensity means the amount of carbon emissions 
produced per unit of economic output. Countries typically use GDP-based carbon intensity, 
while firms may use revenue-based or production-based carbon intensity. 

According to ECB (2020), carbon emissions are categorized into three scopes: Scope 1 (direct 
carbon emissions from sources owned or controlled by the firm, such as fuel combustion in 
company-owned facilities or vehicles), Scope 2 (indirect emissions from the firm’s operations, 
including purchased electricity, steam, heating, or cooling used in production), and Scope 3 
(all other indirect emissions occurring in the firm's value chain). Financial institutions fall under 
Scope 3 as they finance direct and indirect polluters. 

2.2 Credit risk 

Credit risk refers to the potential financial loss a lender faces when a counterparty is unwilling 
or unable to meet their contractual obligations (Jorion et al., 2010). It is the most significant 
financial risk for the banking sector, as loans constitute the majority of banks' assets. In the 
context of credit risk, the distribution of returns is typically asymmetrical and left-skewed, 
meaning the lender's potential upside is capped by the contract, while there is a higher 
probability of extreme losses than extreme gains (Stepankova & Teply, 2023). 

A key measure of credit risk is Expected Loss (EL), which estimates the potential loss to the 
lender over a specific time horizon. EL is calculated as the product of three components: the 
probability of default (PD), loss given default (LGD), and exposure at default (EAD). This 
calculation provides a comprehensive assessment of the credit risk associated with lending 
activities. 

 

 

(2.1) 

 

PD is a statistical measure that indicates the likelihood of a borrower failing to meet their debt 
obligations within a specified timeframe. PD is estimated using statistical models that 
incorporate various quantitative and qualitative factors, such as financial ratios, credit histories, 
and economic indicators, to assess the creditworthiness of individuals, companies, or entities. 
Common methodologies for estimating PD include logistic regression and advanced machine 
learning algorithms (Dumitrescu et al., 2022). 

LGD represents the financial loss a lender is likely to incur if a borrower defaults, expressed 
as (1−recovery rate). The recovery rate is the proportion of the debt that can be recovered. 
Estimating the recovery rate typically involves analyzing historical data on past defaults to 
calculate the average or median recovery rate for a specific business segment or type of 
exposure. For more precise estimations, a discounted cash flow model may be used. 
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3. Literature Review and Research Hypotheses 

This section discusses the literature relevant to the paper. The academic research can be 
classified into two main strands. First, Section 3.1 explores the impact of climate risk on the 
resilience of the financial system. Second, Section 3.2 addresses the implications of climate 
risk for credit risk management. Finally, Section 3.3 formulates the hypotheses after identifying 
the literature gap. Given the research design of this paper, the focus is placed solely on studies 
addressing climate transition risk. 

3.1 Climate risk impact on financial system 

Research on the effect of transition risk on the economy gained prominence mostly after the 
Paris Agreement in December 2015 (United Nations, 2015), when global economies 
committed to coordinated efforts to mitigate carbon emissions. The agreement signaled 
forthcoming climate policies aimed at financially restraining polluting firms and industries. 
Transition risk is often proxied by the carbon footprint or carbon intensity of the studied subject. 

Quantifying transition risk is challenging due to inconsistent reporting of carbon emissions 
across business sectors (Battiston et al., 2021). Battiston et al. (2017) provided a 
methodological foundation for conducting climate stress tests on the financial system using 
data on shareholders of all EU and US publicly listed companies and the loan portfolios of the 
50 largest EU banks. Their study revealed that investment and pension funds have the largest 
holdings of brown assets. Approximately 11.4% of bank assets were exposed to transition risk, 
suggesting that while the banking sector is currently resilient, this exposure is expected to 
increase as climate policies intensify (Battiston et al., 2017). Monasterolo et al. (2017) 
extended this model, examining the weight of each entity's exposure to transition risk on the 
overall resilience of the financial system. Their findings indicate that government and individual 
investors are the most vulnerable to transition risk, though their portfolio structures are not 
systematically significant. In contrast, industry companies and investment funds are the most 
exposed and crucial. Banks occupy a middle ground in terms of both exposure and importance 
(Monasterolo et al., 2017). 

Studies evaluating individual climate policies assess both their impact on the financial system 
and their contribution to fostering a green economy transition. Dunz et al. (2019) explored the 
implications of the Green Supporting Factor (GSF) and carbon tax on the economy. Their study 
suggests that GSF might have a short-term effect on increasing green lending but may 
introduce potential trade-offs for financial stability. Furthermore, Dunz et al. (2019) argue that 
a carbon tax should be complemented with welfare measures to prevent unintended effects 
on non-performing loans and household budgets. Dafermos and Nikolaidi (2021) also found 
that GSF and the Brown Penalty (BP) have only a limited effect on increasing green lending. 
Nevertheless, both studies underline the transition risk stemming from these policies. 

3.2 Climate risk implications for credit risk management 

Academic studies suggest various approaches for modeling the relationship between credit 
risk and climate risk, particularly in approximating transition risk. Earlier studies recommended 
using Environmental, Social, and Governance (ESG) ratings as a proxy for transition risk due 
to a lack of disclosed data on borrower emissions. However, the direct impact of climate policy 
on a firm is best determined by its carbon footprint and carbon intensity, making these metrics 
more accurate determinants of transition risk. 
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Several studies have utilized ESG ratings to observe climate risk impacts. Oikonomou et al. 
(2014) examined the effect of ESG ratings on credit spreads and bond ratings, finding that 
better sustainability ratings can materially reduce the risk premium associated with corporate 
bonds, thus lowering the cost of corporate debt. These findings are consistent across various 
sectors. Subsequent studies have found that a higher ESG score correlates with better credit 
ratings (Devalle, 2017), lower CDS spreads (Blasberg et al., 2021), and lower bond risk 
premiums (Kotró & Márkus, 2020). Höck et al. (2020) suggested that for firms with high 
creditworthiness, a higher environmental score is associated with lower leverage and higher 
market capitalization. Conversely, Chava (2014) argued that firms with multiple environmental 
concerns tend to incur higher costs on their bank loans. 

More recent studies have used direct carbon emissions as an observed variable. Jung et al. 
(2018), using panel regression analysis, found that the cost of bank debt for Australian firms 
increases with a higher carbon footprint. Wang et al. (2021), employing the Generalized 
Method of Moments, discovered that firms with higher carbon footprints face stricter loan 
covenants and tighter repayment schedules. Zhang et al. (2023), using pooled OLS 
regression, indicated that higher Scope 1 emissions lead to increased CDS spreads, while 
Scope 2 and 3 emissions are not yet priced by the credit market. 

Several recent academic papers focus on direct drivers of credit risk, such as PD, DD or EDF, 
and their dependence on the borrower's carbon footprint. Capasso et al. (2020) demonstrated 
that DD is negatively correlated with a firm's carbon footprint and carbon intensity, implying 
that firms with higher carbon footprints have a lower distance to default and are more likely to 
default. They used market data on 458 companies from 2007 to 2017 and identified COP21 
as an exogenous policy shock, with significantly lower DD for carbon-intensive firms post-2015.  

Carbone et al. (2021) performed a similar analysis using stock data on 558 large US and EU 
companies from 2010 to 2019, concluding that high emissions are associated with higher credit 
risk. However, disclosing emissions and setting forward-looking environmental commitments 
can mitigate this effect. Kabir et al. (2021) extended this research to over 2,700 firms from 42 
economies, finding a similar causal relationship between firm DD and emissions, with ROA 
and cash flow volatility serving as potential channels through which a firm's carbon footprint 
affects DD. Faralli & Ruggiero (2022) employed EDF as a measure of credit risk along with 
carbon footprint to investigate their causal relationship. Using data from 1,841 firms from 2008 
to 2019 in fixed-effect panel regression, they observed that emission levels are relevant to PD, 
primarily through the asset volatility channel. They also identified an effect of COP21 on the 
riskiness of polluter firms. Nguyen et al. (2023) followed up on Capasso et al. (2020), studying 
S&P 500 firms from 2010 to 2019, and found that the negative effect of transition risk on firms' 
distance to default is stronger for firms headquartered in states with carbon pricing. Lastly, Bell 
& van Vuuren (2022) simulated corporate equity price projections using Geometric Brownian 
Motion to approximate the effects of climate policy shocks. These inputs were used to estimate 
a climate-stressed PD, revealing negligible increases in PDs for highly rated credit, but a 
significant impact of policy shocks on lower-quality credit. 

3.3 Formulation of the hypotheses 

Based on the literature review, there is substantial evidence suggesting a potential relationship 
between transition risk and credit risk. Leveraging the unique dataset provided by the Bank, 
which includes data on Small and Medium Enterprise (SME) loans as well as client-level 
financial and carbon footprint information, this paper will investigate the impact of client carbon 
emissions on the probability of loan default. This paper builds upon the research conducted by 
Ivančová (2024), formulating hypotheses and drawing relevant conclusions from them. The 
hypotheses guiding this examination are as follows: 

• Client's carbon footprint increases the odds of defaulting on a SME loan from the Bank. 

• Client's financed carbon footprint increases the odds of defaulting on a SME loan from 
the Bank. 
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• Client's carbon intensity increases the odds of defaulting on a SME loan from the Bank. 

• Client’s carbon intensity per earning asset increases the odds of default on a SME loan 
from the Bank. 
 

4. Methodology 

This section details the method chosen for the empirical analysis. First, Section 4.1 introduces 
the concept of logistic regression. Second, Section 4.2 focuses on the estimation and 
evaluation of logistic regression models. 

4.1 Logistic regression 

Logistic regression is a statistical method used to estimate the probability of a binary outcome. 
It is widely used in bank credit risk management for several reasons, primarily due to its 
simplicity, interpretability, and effectiveness in binary classification tasks such as determining 
creditworthiness (Hand & Henley, 1997; Cramer, 2003; Nithi et al. 2021; Dumitrescu et al., 
2022; Kočenda and Iwasaki, 2022). The linear form of logistic regression with 𝑛 features can 
be expressed as the natural logarithm of the odds ratio (Mays, 2001): 

 

where: 

•  represents the probability of default of the firm at the one-year forecast horizon 

• 
P

1−𝑃
  expresses the odds of an observed event occurring, 

• βi denotes a vector of coefficients of the model, 

• Xi represents a vector of independent variables. 

If the coefficient estimate for a predictor is negative, an increase in that predictor decreases 
the odds of the event occurring, and vice versa. Logistic regression requires several 
assumptions to be met. The dependent variable must have a binary outcome, either 1 or 0, 
with mutually exclusive classes—no observation can belong to both. The classes should be 
balanced to avoid bias towards the majority class. The relationship between the dependent 
and independent variables must be linear. There should be no perfect separation of the 
classes, meaning the odds estimates should not be exactly 1 or 0. Additionally, logistic 
regression assumes no multicollinearity, which means predictors should not be highly 
correlated. Multicollinearity can be identified using a correlation matrix or by calculating the 
Variance Inflation Factor (VIF) for each predictor. VIF is the ratio of the variance of a coefficient 
when fitting the full model to the variance of a coefficient when fitting a single-variable model. 
A VIF value between 5 and 10 indicates moderate correlation, while a value above 10 suggests 
severe correlation with another predictor (Greene, 2003). 



 

8 

Logistic regression is a standard method for assessing the credit risk of potential clients 
(Jakubík & Teplý, 2011). Compared to more sophisticated machine learning models like neural 
networks or decision trees, logistic regression is preferred for its simplicity and interpretability 
(Rosenberg & Gleit, 1994; Dumitrescu et al., 2022). A trained logistic model represents a set 
of parameters on selected financial inputs, estimated using historical data. Financial 
information on a new potential client is input into the model, which then returns a PD, i.e., a 
credit score, which is used to decide whether to grant a loan. 

4.2 Evaluation of the logistic regression 

When the model is specified, its predictive power is tested on an unobserved testing set. The 
odds returned by the model are translated into binary predictions based on a threshold 
probability value. If this threshold is set to 0.5, estimates of 0.5 or higher are considered 
positive, predicting the event will occur, while estimates below 0.5 are considered negative, 
predicting the event will not occur. These binary predictions are then compared to the actual 
outcomes in the testing data, and the model's performance is evaluated based on the number 
of correct matches. 

A true positive (TP) prediction means the model correctly predicted the occurrence of an event. 
A true negative (TN) prediction means the model correctly identified an event not happening. 
A false positive (FP) prediction, or Type 1 error, occurs when the model predicts an event to 
happen when it does not. A false negative (FN) prediction, or Type 2 error, occurs when the 
model fails to predict an event that does occur. A more sensitive model tends to have fewer 
Type 2 errors, while a more specific model aims to minimize Type 1 errors. In the context of 
credit risk, a Type 1 error results in the denial of credit to creditworthy clients, whereas a Type 
2 error leads to classifying high-risk clients as creditworthy. Therefore, a credit scoring model 
aims to achieve high sensitivity while maintaining sufficient specificity. 

To balance specificity and sensitivity, the Receiver Operating Characteristic (ROC) curve is 
used in this paper for model assessment. The ROC curve plots the true positive rate 
(sensitivity) against the false positive rate (1-specificity) for all possible thresholds of the 
model's predicted probabilities. The area under the ROC curve (AUC-ROC), or AUC score, 
indicates the model's discriminatory power. An AUC score of 0.5 suggests the model is no 
better than random guessing, while a score closer to 1 indicates better predictive performance. 
An AUC score above 0.7 suggests reasonably good discriminatory power. However, the AUC 
has a drawback in that it ignores class imbalance. Consequently, even a model that fails to 
detect any defaults can achieve a high AUC score due to the prevalence of correctly identified 
negative events. Therefore, it is essential to consider both true positive and false positive rates 
separately, in addition to achieving a high AUC. 

Given that this paper employs logistic regression, four new hypotheses are formulated, as new 
potential academic contributions are identified from the analysis: 

• Inclusion of the client's carbon footprint improves the performance of the model for 
default prediction. 

• Inclusion of the client's financed carbon footprint improves the performance of the 
model for default prediction. 

• Inclusion of the client's carbon intensity improves the performance of the model for 
default prediction. 

• Inclusion of the client’s carbon intensity per earning asset increases the performance 
of the model for default prediction. 
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5. Data Analysis 

This section discusses the data used in the empirical analysis. First, the original dataset from 
the Bank and the adjustments made are introduced in Section 5.1. Second, descriptive 
statistics of the adjusted data are presented in Section 5.2. Finally, the correlation matrix of all 
variables is interpreted in Section 5.3. 

5.1 Dataset 

5.1.1 Data description 

We were provided with unique data from the Bank, which is part of a banking group supervised 
by the ECB. The dataset consists of three parts. First, the dataset includes all active SME loan 
accounts for the years 2022 and 2023, along with information on defaults in 2023. Second, it 
includes a list of all active SME clients and their financial information from 2017 to 2022. Finally, 
a dataset contains total and loan-financed carbon footprint information for all SME clients. One 
SME client could have several open accounts for different loan products. The Bank noted that 
if a client defaults on one account, all other accounts are flagged as defaulting as well. 
Therefore, specific loan type information does not contribute further to the analysis, as it is 
impossible to confidently determine which account initiated the default. SME clients adhere to 
the EU's definition of an SME, which includes having fewer than 250 employees, an annual 
turnover not exceeding €50 million, and a balance sheet total not exceeding €43 million. In the 
European Union, ESG reporting is governed by the Corporate Sustainability Reporting 
Directive (CSRD), which mandates that large companies and listed SMEs disclose detailed 
information on sustainability risks, opportunities, and impacts. This regulation, which builds on 
the previous Non-Financial Reporting Directive (NFRD), aims to enhance transparency and 
ensure that investors and stakeholders can make informed decisions based on consistent and 
comparable ESG data (European Commission, 2022). The Czech Republic is a member of the 
European Union, which means that Czech companies are subject to EU regulations and 
directives.  

The initial dataset, consisting of 2,329 observations across 69 variables, was created by 
merging data from the three datasets based on the client ID. We retained only the financial 
data for 2022 due to a large number of missing values in earlier years. New predictor variables 
derived from the provided data were added, resulting in an initial dataset of 2,329 observations 
on 39 variables. The dataset includes 31 default observations and 2,298 non-default 
observations. 

Our study is among the first to utilize firm-level carbon emissions data, which were calculated 
by the Bank based on detailed questionnaires completed by its clients. Since not all SMEs in 
the Czech Republic report their carbon footprint, the data include approximations derived from 
sales for firms in specific industries, classified according to NACE codes applied in the EU. 
This unique dataset allows us to empirically analyze the impact of carbon emissions on credit 
risk. The carbon footprint data provided by the Bank includes detailed information on Scope 1, 
Scope 2, and Scope 3 emissions. Highlighting this data source in our discussion underscores 
the novelty and significance of our research. Such disclosures are crucial for understanding 
how environmental factors influence financial stability, as they provide comprehensive insights 
into firms' carbon emissions and their associated risks. 

5.1.2 Adjustments to the dataset 

Three major issues with the initial dataset required adjustments to proceed with the analysis: 
the amount of missing values in the subset of defaulting clients, a large number of extreme 
values, and class imbalance, i.e., the small number of default observations (Jorion et al., 2010). 
These issues were handled using standard empirical research approaches: data imputation, 
data partition, winsorization and oversampling. 
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To address missing values, we used data imputation, replacing missing observations with 
selected sample statistics. This technique helps prevent further loss of default observations. 
We impute only default observations, while missing values of non-default observations are 
omitted. The sample median was chosen as the statistic for imputation due to its robustness 
against outliers (Jorion et al., 2010). For 17 out of 31 default observations missing financial 
data from 2022, we used data from 2021. For the remaining six observations, we imputed the 
medians for every missing value. 

The data were split into a training set for model preparation and a testing set for model 
validation, with a 55:45 ratio favoring the training set. The distributions of the sample and the 
defaulting subgroup were checked to ensure they corresponded between the training and 
testing sets. Random partitioning was repeated until the most corresponding distributions were 
achieved, recognizing the challenge of achieving identical distributions with a small default 
sample. 

Winsorization was applied to handle extreme values by computing the upper and lower 
percentiles of the data distribution and replacing values exceeding these thresholds with the 
respective percentile values. This preserves data while maintaining the original distribution. 
Winsorization was applied separately to the training and testing sets to prevent data leakage. 
The thresholds were derived from the training set and applied to both sets. The lower percentile 
was set at 1% and the upper percentile at 99% (Leone et al., 2019). 

To address class imbalance, we used the Synthetic Minority Over-sampling Technique 
(SMOTE), which generates synthetic samples for the minority class in the training data. This 
prevents bias towards the majority class. Before adjustment, defaults represented 2.25% of 
the training set. We aimed for a default proportion of 10%, reflecting the reality of non-
performing loan ratios in Europe, which ranged from around 2% to over 10% in 2022 (Huljak 
et al., 2022). The SMOTE algorithm creates synthetic examples by selecting k-nearest 
neighbors for each minority class observation and generating samples at randomly selected 
points between the observation and its neighbors (Douzas et al., 2018). Given the small 
number of original observations, the original and oversampled distributions are not perfectly 
identical, but the oversampled distribution of defaults closely mirrors the original data. Table 1 
shows the number of observations after the adjustments were made. 

Table 1: Observation Count After Adjustments 

 

Source: Authors 

Adjustment
Non-defaults 

(0)

Defaults 

(1)

Original Data 2,298 31

Imputation 1,375 31

Partition

- Train Data 757 17

- Test Data 618 14

Winsorization

- Train Data 757 17

- Test Data 618 14

Oversampling

- Train Data 757 85

- Test Data 618 14
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5.2 Descriptive statistics 

This subsection provides a descriptive analysis of the adjusted data as outlined previously. 
Given that the data was divided into training and testing sets to ensure corresponding 
distributions of all predictors, we present the descriptive statistics of the combined training and 
testing sets prior to oversampling, assuming both subsets exhibit similar patterns. 

5.2.1 Dataset  

The default flag for the year 2023 is used as the dependent variable in the analysis. The dataset 
includes two qualitative variables: the NACE (Nomenclature of Economic Activities) code of 
the industry sector and the postal code of the client's headquarters. The potential predictors in 
the dataset are categorized into two main groups: transition risk variables and financial 
predictors. The NACE code is a four-digit code used within the EU to classify business 
activities. The first digit indicates a high-level industry sector of a firm. Table 2 shows the 
number of clients in the dataset per industry sector and the proportion of defaults in each 
sector. Table 3 presents the average emissions per industry sector observed in the dataset. 

Most of the sample belongs to category (4), which is characterized by Scope 3 emissions and 
represents roughly 75% of the total average emissions. Category (2), which has the second 
highest default proportion, reports around 80% of its total average emissions as Scope 3. The 
most polluting categories in terms of total average emissions are categories (3) and (2). The 
least polluting industry sector is category (6), the financial sector. The largest Scope 1 emitters 
(direct emissions from production) belong to categories (3) and (1). The largest Scope 2 
emitters (indirect emissions from purchased energy) are in categories (2) and (8). The largest 
Scope 3 emitters (indirect emissions from the supply chain) are found in categories (2) and (3). 
Across all categories, Scope 3 emissions constitute the majority of the average emissions, with 
Scope 1 emissions usually being the second largest. 

To align with the European Union's regulatory landscape, it's important to note that the EU has 
implemented stringent mandates on corporate ESG reporting, particularly through the above-
mentioned CSRD. Under this directive, firms are required to disclose detailed information on 
their environmental impact, including Scope 1, Scope 2, and Scope 3 emissions. This mandate 
enhances transparency and holds companies accountable for their entire value chain's carbon 
footprint. Consequently, firms in categories with high Scope 3 emissions, like categories (2) 
and (3), face increased scrutiny, as they must comprehensively report their indirect emissions 
and outline strategies for mitigation. 

Table 2: Industry sector of clients Table 3: Average carbon footprint per industry 
sector (mil.m3 C02) 

  

Source: Authors based on the Bank´s database Source: Authors based on the Bank´s database 
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Table 4 presents the descriptive statistics for both total and financed carbon footprints. The 
Bank was unable to provide separate financed carbon footprint data for Scope 1 and Scope 2 
emissions. The largest proportion of emissions is attributed to Scope 3 for both total and 
financed carbon footprints, while Scope 2 carbon emissions represent the smallest portion of 
the emissions in the sample. The distributions of all variables are right-skewed, indicated by 
medians that are significantly lower than the means. 

Table 4: Descriptive statistics of carbon footprint (ths. m3 CO2) 

  

Source: Authors based on the Bank´s database 

Examining the distributions of financed carbon footprints for defaulting and non-defaulting 
subsets reveals that the median financed carbon footprint for defaulters is significantly higher 
than that for non-defaulters. This pattern is evident both in the case of Scope 1 and 2 financed 
footprints, as shown in Figure 1, and in the Scope 3 financed footprint, as shown in Figure 2. 
No other carbon footprint variable exhibited a distinctively higher median in the distribution of 
defaulters. 

Figure 1: Distribution of Scope 1 and 2 financed 
carbon footprint 

Figure 2: Distribution of Scope 3 financed 
carbon footprint 

  

Source: Authors based on the Bank´s database Source: Authors based on the Bank´s database 

5.2.2 Financial predictors 

The Bank provided a set of 13 financial variables: Gross Sales, Total Turnover, Earnings 
Before Interest, Taxes, Depreciation, and Amortization (EBITDA), Pre-tax Earnings, Non-
current Assets, Current Assets, Total Assets, Net Profit, Total Debt, Equity, Total Liabilities, 
Cash, and Operating Cash Flow. Current Liabilities were derived as the difference between 
Total Liabilities and Non-current Liabilities. From the original financial data, 10 financial 
predictors commonly used in credit scoring models were derived, as demonstrated by Jakubík 
and Teplý (2011), who also utilized data reported according to Czech Accounting Standards. 
Table 5 lists these derived financial predictors, their definitions, and optimal values. The ratios 
are categorized based on the aspects of the firm's financial health they represent. Table 6 
provides descriptive statistics for these financial predictors. 

Statistic Mean St. Dev. Min Median Max

Carbon Footprint

Scope 1 1,087,094 2,277,454 6,731 330,17 16,342,336

Scope 2 151,978 306,767 19,881 41,067 1,851,534

Scope 3 2,760,649 3,870,008 13,2 1,309,172 22,101,437

Financed Carbon Footprint

Scope 1 and 2 180,095 377,352 0 52,03 2,285,294

Scope 3 389,81 652,077 0 157,402 3,935,159
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Table 5: List of derived financial predictors 

  

Source: Authors  

When comparing the median or mean values to the optimal values, most of the ratios appear 
to be roughly aligned with the expectations. For liquidity measures, the median Current Ratio 
suggests that the sample firms are generally liquid, while the median Operating Cash Flow 
Ratio falls below the liquidity threshold. In terms of profitability, the sample firms are slightly 
underperforming. Solvency and economic structure indicators are consistent with 
expectations. 

Table 6: Descriptive statistics of financial predictors 

  

Source: Authors  

Comparing the median and mean values to the optimal values, we observe that these values 
generally align with expectations for most ratios. The median Current Ratio indicates that the 
sample firms are liquid, while the median Operating Cash Flow Ratio is below the optimal 
liquidity threshold. Profitability measures show that the sample firms are slightly 
underperforming, but solvency and economic structure indicators are consistent with 
expectations. 

Predictor Description
Healthy 

Value

Current Ratio
Current Assets / Current 

Liabilities
> 1.5

Operating Cash Flow 

Ratio

Operating Cash Flow / Current 

Liabilities
> 0.5

Return on Equity (ROE) Net Profit / Equity > 0.1

Return on Assets 

(ROA)
Net Profit / Total Assets > 0.05

Profit Margin Net Profit / Gross Sales > 0.03

Operating Cash Flow 

Margin

Operating Cash Flow / Gross 

Sales
>  0.1

Debt to Equity Ratio Total Debt / Equity <  2.0

Debt to Assets Ratio Total Debt / Total Assets <  0.4

Equity Ratio Equity / Total Assets >  0.4

Debt to Capital Ratio
Total Debt / (Equity + Total 

Debt)
<  0.5

Economic structure indicators

Liquidity Ratios

Profitability Ratios

Solvency Ratios

Statistic Mean St. Dev. Min Median Max

Current ratio 3.004 2.455 0.185 2.275 12.955

Cash Flow ratio 0.760 0.950 -0.508 0.458 5.181

ROE 0.159 0.336 -1.147 0.122 1.727

ROA 0.057 0.084 -0.182 0.043 0.374

Profit margin 0.049 0.106 -0.400 0.031 0.564

Cash Flow margin 0.127 0.173 -0.164 0.076 0.886

Debt to Equity 1.456 3.375 -11.041 0.644 21.547

Debt to Assets 0.309 0.197 0.002 0.280 0.835

Equity ratio 0.403 0.226 -0.087 0.403 0.873

Debt to Capital 0.442 0.268 0.001 0.41 1.205
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5.3 Correlation matrix 

Figure 3 presents the correlation matrix of all variables included in the dataset. Transition risk 
variables exhibit light to moderate positive correlations with each other, but they are not 
included in the same model simultaneously. There is a moderate to strong correlation between 
the Equity ratio, Debt-to-Capital, Debt-to-Assets, and Debt-to-Capital, indicating potential 
multicollinearity if these variables are included together. Specifically, the correlation coefficient 
between the Equity ratio and Debt-to-Capital is -0.836, between the Equity ratio and Debt-to-
Assets is -0.599, and between Debt-to-Capital and Debt-to-Assets is 0.838. The Debt-to-Equity 
ratio is not strongly correlated with any of these predictors. Additionally, there is a moderate 
correlation between the Profit margin, Operating Cash Flow margin, and Operating Cash Flow 
ratio. Furthermore, a moderate correlation exists between Current Liabilities and the Scope 3 
financed carbon footprint, with a correlation coefficient of 0.642. 

Figure 3: Correlation matrix 

  

Source: Authors  

 

6. The Model 

The final step in preparing for the empirical analysis is constructing a standard model for 
estimating PD. This standard model will be climate-stressed in Section 7 using transition risk 
variables to observe their effects. Thus, the model should capture as much endogeneity in the 
data as possible and be able to correctly identify defaults. 
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6.1 Model specification 

A credit scoring model for SME loans should be built on four key financial dimensions of a firm. 
These dimensions include liquidity, which captures the short-term financial viability of a firm; 
solvency, reflecting the long-term financial health of a firm; profitability, which assesses the 
ability of a firm to generate earnings relative to underlying factors; and economic structure, 
providing insight into the capital structure of a company (Bartual Sanfeliu et al, 2012). 

Based on the literature on credit scoring models (Ohlson, 1980; Sironi & Resti, 2007; Jakubík 
& Teplý, 2011), a set of 10 financial ratios and 4 financial inputs were selected as potential 
predictors in the model. The values of the 4 financial inputs were standardized to avoid bias 
caused by different scales of variables. All potential predictors were estimated in a simple 
model to examine their significance and the sign of the estimator. Table 7 features the 
estimators of these simple models. The effects of the predictors, i.e., the signs of the 
estimators, align with expectations regarding their impact on the odds of default. Surprisingly, 
the debt estimator has a negative sign, suggesting that more debt lowers the chances of 
default. However, this estimate carries low weight and lacks statistical significance. 

The estimate for Current Liabilities is negative and significant, as an increased value implies 
fewer long-term debts and, consequently, lower interest expenses. Both the Operating Cash 
Flow margin and Operating Cash Flow ratio are strongly significant and have the lowest values 
of the Akaike Information Criterion (AIC), indicating that these variables might represent the 
best fit for the data. 

Table 7: Simple models 

  

Source: Authors  

 

The model was trained using incremental feature selection, i.e., by progressively adding 
features one by one and observing their effect on the goodness of fit and model performance. 
Two models were selected as potential standard models for climate-stressing. Table 8 
summarizes the two models. The simpler model (Model 1) includes all pillars except for the 
solvency ratios, which were not significant in any model. Model 2 is a more complex version 
of the first model and includes a solvency indicator.  
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Table 8: Summary of the logistic regression  

  

Source: Authors  

 

The simpler model (Model 1) includes all financial dimensions except for the solvency ratios, 
which were not significant in any model. Model 2 is a more advanced version of Model 1, 
adding a solvency indicator (debt-to-asset ratio). As shown in Table 9, there is no significant 
multicollinearity in the selected models, as the VIF values are well below 5. The estimates of 
the two models are quite similar, with minor differences, and the levels of significance remain 
comparable. The Operating Cash Flow margin has the most significant impact on PD, although 
its statistical significance is the weakest. 

Table 9: Variance inflation factors 

  

Source: Authors  

Table 10 presents the number of correct and false predictions of the models on the testing set, 
along with the specificity and sensitivity rates. As expected, the severe class imbalance caused 
the model estimates to be biased toward the majority class, resulting in no defaults being 
correctly indicated using a threshold of 0.5. Initially, defaults represented only 2.2% of the 
training sample, and this proportion was synthetically balanced to 10% as discussed in Section 
5.1.2. 

Table 10: Evaluation of model performance 

  

Source: Authors  
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To demonstrate the predictive power of the model without the influence of class imbalance bias, we 
replicated all the default observations in the training set eight times to create a more balanced panel. 
This resulted in 680 default observations and 757 non-default observations. The models were then 

estimated using this balanced training data, as shown in Table 11. There were no major changes in the 
values of the estimators, and all estimators now exhibit strong statistical significance. The value of the 
constant increased significantly due to the higher frequency of default occurrences in the balanced 
dataset, which also increased the odds of a default happening. 

Table 11: Summary of the logistic regression (balanced data) 

 

Source: Authors 

Examining the performance of the models estimated on balanced data, Table 12 shows that Model 1 
is more effective at identifying defaults than Model 2, as it has a higher number of TP predictions.  

Table 12: Evaluation of model performance (balanced data) 

 

Source: Authors 

The AUC values, presented in Figure 4, are almost equal for both models, indicating that both have 

moderately good discriminatory power. However, Model 1 is slightly more sensitive, suggesting it may 
be better at avoiding Type 2 errors, which involve failing to predict a default. 
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Figure 4: ROC curve (balanced data) 

 

Source: Authors 

6.2 Robustness check 

The robustness of the models was assessed by applying the models to data adjusted 
using alternative parameters from those described in Subsection 5.1.1. The data was 
randomly partitioned with a 60:40 ratio, and winsorization percentiles were set to 99.5% 
for the upper threshold and 0.5% for the lower threshold. Defaults in the training set 
were oversampled to represent 8% of the training sample. The distributions of key 
predictors were consistent across the training and testing samples. The training data 
were balanced in a similar manner as described in the previous section. 

To conclude, the models were estimated on two different random partitions of the data, 
yielding similar estimators and achieving comparable effectiveness in default detection 
(detail results are not presented in the paper but available on request). Model 1 is 
chosen to be climate-stressed in Section 7, as it correctly predicted more defaults and 
all its variables are statistically significant. 

7. Results 

This section is organized based on the hypotheses set forth in Sections 3.3 (Hypotheses 1, 3, 
5, 7) and Section 4.2 (Hypotheses 2, 4, 6 and 8). The results are summarized in Section 7.9, 
and further research opportunities are presented in Section 7.10. The final list of hypotheses 
is as follows: 

• Hypothesis 1: Client’s carbon footprint increases the odds of default on a SME loan 
from the Bank 

• Hypothesis 2: Inclusion of the client’s carbon footprint increases the performance of the 
model for default prediction. 

• Hypothesis 3: Client’s financed carbon footprint increases the odds of default on a SME 
loan from the Bank. 

• Hypothesis 4: Inclusion of the client’s financed carbon footprint increases the 
performance of the model for default prediction. 

• Hypothesis 5: Client’s carbon intensity per unit of sales increases the odds of default 
on a SME loan from the Bank. 

• Hypothesis 6: Inclusion of the client’s carbon intensity per unit of sales increases the 
performance of the model for default prediction. 
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• Hypothesis 7: Client’s carbon intensity per earning asset increases the odds of default 
on a SME loan from the Bank. 

• Hypothesis 8: Inclusion of the client’s carbon intensity per earning asset increases the 
performance of the model for default prediction. 

To test the hypotheses, the standard model featured in Section 6 was climate-stressed 
separately using all types of transition risk variables. The values of carbon footprint and 
financed carbon footprint were standardized to avoid bias due to different variable scales. For 
robustness, the analysis was repeated using the alternative data also employed in the standard 
model robustness check in Section 6. This subsection presents the models estimated on 
balanced data to compare their ability to correctly estimate defaults. Models estimated on 
imbalanced data generated similar values and significance of parameters (detail results are 
not reported in the paper but are available on request). 

7.1 Hypothesis 1 testing 

7.1.1 Baseline results 

Table 13 summarizes the standard and climate-stressed models. It reveals that several financial 
and environmental factors significantly impact the probability of default for SME clients. Key 
financial predictors such as the Operating Cash Flow margin, Operating Cash Flow ratio, and 
Equity ratio all have highly significant negative coefficients, indicating that better financial 
health reduces default risk. The Current liabilities variable also shows a significant negative 
relationship with default probability. Conversely, environmental factors like Scope 2 and Scope 
3 total emissions are highly significant with positive coefficients, suggesting that higher 
emissions increase the likelihood of default. Scope 1 emissions, however, were not significant. 
Overall, the integration of carbon emissions into the model improves its predictive power, 
highlighting the importance of both financial stability and environmental impact in credit risk 
assessment. 

Table 13: Summary of the logistic regression (Hypothesis 1) 

 

Source: Authors 
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The VIF values, shown in Table 14, are below the multicollinearity threshold for all models. 
The transition risk variables used for Hypothesis 1 testing are the three scopes of carbon 
footprint, referred to as Scope 1, Scope 2, and Scope 3. The addition of transition risk variables 
did not significantly change the estimators of the standard model. 

Table 14: Variance inflation factors (Hypothesis 1) 

 

Source: Authors 

7.1.2 Robustness check 

Applying the climate-stressed models to the alternative data, the values and significance of the 
Scope 2 and Scope 3 estimators are consistent with the baseline results. There are no major 
changes in the values or significance of the standard model estimators, which would suggest 
multicollinearity (detail results are not reported in the paper but are available on request). The 
inclusion of Scope 2 and Scope 3 carbon footprints in the standard model improved its 
goodness of fit and produced robust, positive, and statistically significant estimators. This 
indicates that higher levels of Scope 2 and Scope 3 carbon emissions may drive defaults in 
the Bank. Therefore, Hypothesis 1 “Client’s carbon footprint increases the odds of default on 
a SME loan in the Bank“ cannot be rejected. 

7.2 Hypothesis 2 testing 

7.2.1 Baseline results 

In testing Hypothesis 2, we evaluated the performance of standard and climate-stressed 
models in predicting credit defaults. Figure 5 illustrates that these models are moderately 
effective at ranking instances of default risk. This ranking capability is quantified by AUC score. 
Among the models, only Model (3), which incorporates Scope 2 emissions, achieved a higher 
AUC score compared to the standard model, indicating superior predictive performance. 

Table 15 provides further insights into the models' effectiveness at a classification threshold of 
0.5. At this threshold, all models demonstrated similar capabilities in detecting defaults, as 
evidenced by comparable performance metrics. However, Models (3) and (4) stood out by 
achieving higher sensitivity scores than the standard model. Sensitivity, or recall, measures 
the proportion of actual defaults correctly identified by the model. Higher sensitivity in Models 
(3) and (4) suggests these models are better at identifying potential defaults, making them 
more reliable for early warning systems in credit risk management. 

In summary, while most models perform adequately in ranking and detecting defaults, 
incorporating climate-related variables such as Scope 2 emissions enhances the model's 
ability to identify defaults more accurately, thereby improving its practical utility in managing 
credit risk under climate-stressed conditions. 
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Figure 5: ROC curve (Hypothesis 2) 

 

Table 15: Performance evaluation (Hypothesis 2) 

 

 

Source: Authors Source: Authors 

  

7.2.2 Robustness check 

Upon examining Figure 6, it is evident that all climate-stressed models demonstrated superior 
performance compared to the standard model, as indicated by higher AUC scores. The AUC 
is a critical metric that measures the model's ability to distinguish between default and non-
default instances. Higher AUC scores signify better discriminative power of the climate-
stressed models. Table 16 further supports these findings by showing that, at a threshold of 
0.5, the climate-stressed models not only maintained higher sensitivity but also achieved better 
specificity rates. Sensitivity, or recall, refers to the model’s ability to correctly identify true 
positive cases (defaults), while specificity measures the ability to correctly identify true negative 
cases (non-defaults). 

Figure 6: ROC curve (Robustness check of 
Hypothesis 2) 

 

Table 16: Performance evaluation (Robustness 
check of Hypothesis 2) 

 

Source: Authors Source: Authors 
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Notably, Models (3) and (4) exhibited enhanced performance in both sensitivity and specificity 
compared to the standard model. This indicates that these models are more effective in 
accurately detecting defaults and correctly identifying non-defaults, thereby providing a more 
reliable and robust framework for credit risk assessment under climate-stressed conditions. 

Model 3, stressed by the Scope 2 carbon footprint, achieved a higher AUC score magnitude 
on both data partitions. Additionally, it consistently demonstrated higher sensitivity and 
specificity rates compared to the standard model. The inclusion of the Scope 2 carbon footprint 
enhances the model’s predictive power, and therefore, Hypothesis 2 “Inclusion of the client’s 
carbon footprint increases the performance of the model for default prediction” cannot be 
rejected. 

7.3 Hypothesis 3 testing 

Table A. 2 summarizes the results of both the standard and climate-stressed models. The VIF 
values for all models, shown in Table A. 3, are below the threshold for multicollinearity, 
indicating that the predictor variables are not excessively correlated. For Hypothesis 3 testing, 
the transition risk variables included Scope 1, Scope 2, and Scope 3 financed carbon 
footprints. The inclusion of these transition risk variables did not significantly alter the 
estimators of the standard model, suggesting that the core relationships remain stable even 
after accounting for these additional factors. The estimators for Scope 1, Scope 2, and Scope 
3 financed carbon footprints are both positive and statistically significant. When evaluating the 
models on imbalanced data, the effects of Scope 1 and Scope 2 emissions were slightly lower 
but still significant. These results highlight the significant impact of transition risks associated 
with carbon emissions on the likelihood of default, reinforcing the importance of incorporating 
environmental risk factors into credit risk assessments. 

The robustness check results confirm that the estimators for Scope 1, Scope 2, and Scope 3 
financed carbon footprints remain positive and statistically significant, even though their 
magnitudes have decreased. Additionally, the model does not exhibit multicollinearity issues. 
These findings suggest that higher levels of loan-financed emissions are associated with 
increased odds of default, thereby we cannot reject Hypothesis 3 “Client’s financed carbon 
footprint increases the odds of default on a SME loan in the Bank”. Although the detailed tables 
are not included here, they are available for review by interested readers. This also applies to 
the detailed results for Hypotheses 4-8. 

7.4 Hypothesis 4 testing 

The testing of Hypothesis 4 revealed that both standard and climate-stressed models perform 
moderately well in ranking instances of default risk. However, in terms of AUC, the climate-
stressed models did not surpass the standard model. Additionally, when evaluated at a 
threshold of 0.5, none of the climate-stressed models exceeded the standard model in terms 
of sensitivity rate. This indicates that the standard model remains robust and effective in 
predicting defaults, even when compared to models incorporating climate stress factors.  

The robustness check of the climate-stressed models using alternative data showed that the 
model stressed by the Scope 3 financed carbon footprint achieved a higher AUC than the 
standard model. At a threshold of 0.5, both the standard and climate-stressed models 
demonstrated improved accuracy in predicting defaults. However, when evaluating the 
performance on two differently adjusted data partitions, the climate-stressed models did not 
outperform the standard model in default prediction. This consistency across different data 
sets indicates that the standard model is robust and reliable. As a result, Hypothesis 4, which 
posited that climate-stressed models would perform better, can be rejected.  
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7.5 Hypothesis 5 testing 

The summary of both standard and climate-stressed models indicates that all values of the VIF 
are below the multicollinearity threshold, suggesting no significant multicollinearity issues. The 
transition risk variables for Hypothesis 5 testing include Scope 1, Scope 2, and Scope 3 carbon 
intensities per unit of sales. The signs and significance of the estimators in the standard model 
remained consistent when transition risk variables were included, indicating robust results. All 
transition risk variables were found to be statistically significant. 

The robustness check involved applying logistic regression models to alternative data. The 
results indicated no significant changes in the estimators of the standard predictors, 
maintaining their statistical significance. Both Scope 2 and Scope 3 carbon intensity estimators 
remained positive and statistically significant, closely aligning with the baseline results. The 
analysis confirmed no presence of multicollinearity. Two out of the three carbon intensity per 
unit of sales variables were positive and statistically significant in the climate-stressed models. 
These findings support the consistency and reliability of the baseline results, leading to the 
conclusion that Hypothesis 5 cannot be rejected.  

7.6 Hypothesis 6 testing 

In the testing of Hypothesis 6, both standard and climate-stressed models demonstrated 
moderate effectiveness in ranking instances of default risk. The models stressed by Scope 2 
and Scope 3 carbon intensity per sales unit achieved higher AUC scores compared to the 
standard model, indicating better performance in distinguishing between defaults and non-
defaults. However, when evaluated at a threshold of 0.5, none of the climate-stressed models 
outperformed the standard model in terms of sensitivity. Despite this, models (2) and (3) 
showed higher specificity, meaning they were better at correctly identifying non-default cases. 
These findings support the robustness of the climate-stressed models in certain aspects, 
although they did not surpass the standard model in all metrics. 

The robustness check analysis for Hypothesis 6, using alternative data, revealed that all three 
climate-stressed models outperformed the standard model in terms of the AUC, indicating 
better overall ranking ability. At a threshold of 0.5, all models predicted the same or a higher 
number of defaults compared to the standard model. Notably, Models (3) and (4) achieved 
higher specificity, meaning they were more effective at correctly identifying non-default cases. 
Both Scope 2 and Scope 3 carbon intensity-stressed models consistently demonstrated higher 
AUC scores across different data partitions. Although these climate-stressed models did not 
surpass the standard model in default detection, they maintained the same sensitivity rate 
while achieving better specificity. Therefore, Hypothesis 6 “Inclusion of the client’s carbon 
intensity per unit of sales increases the performance of the model for default prediction” could 
not be rejected.  

7.7 Hypothesis 7 testing 

In the testing of Hypothesis 7, both standard and climate-stressed models were summarized, 
with values of the VIF indicating no multicollinearity issues. Transition risk variables, 
specifically Scope 1, Scope 2, and Scope 3 carbon intensities per asset, were utilized. The 
signs and significance of the estimators in the standard model remained consistent across all 
models. These findings support the relevance of carbon intensity metrics in evaluating default 
risk. 
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The robustness check evaluated the models using alternative data and found that all three 
transition risk variables (Scope 1, Scope 2, and Scope 3 carbon intensities per asset) remained 
statistically significant. Similarly, an increase in Scope 3 emissions per asset led to a 1% 
increase in the odds of default. The analysis indicated no issues with multicollinearity, as 
shown by the VIF. Both Scope 1 and Scope 2 carbon intensity per asset remained statistically 
significant across both balanced and imbalanced data using two different data partitions, with 
Scope 1 estimators being negative and Scope 2 estimators positive. Consequently, Hypothesis 
7 “Client’s carbon intensity per earning asset increases the odds of default on a SME loan in 
the Bank” could not be rejected.  

7.8 Hypothesis 8 testing 

The testing of Hypothesis 8 revealed that both standard and climate-stressed models 
performed moderately well in predicting defaults. Model (3), which was stressed by Scope 2 
carbon intensity per asset, achieved a higher AUC score, indicating better discriminatory ability 
compared to the standard model. Additionally, Model (3) demonstrated higher specificity and 
sensitivity, making it more effective at accurately identifying both defaults and non-defaults. 
These results suggest that incorporating Scope 2 carbon intensity into the model significantly 
enhances its predictive performance. 

In the robustness check for Hypothesis 8, using alternative data, only Model (2), stressed by 
Scope 1 carbon intensity per asset, achieved a higher AUC score than the standard model. 
Model (2) also showed significantly higher sensitivity and specificity rates, indicating better 
performance in correctly identifying both defaults and non-defaults. Despite these results, none 
of the climate-stressed models, including Model (2), managed to consistently achieve a higher 
AUC or predict more defaults correctly across both sets of data. Consequently, these findings 
lead to the rejection of Hypothesis 8 “Inclusion of the client’s carbon intensity per earning asset 
increases the performance of the model for default prediction.” 

7.9 Summary of results 

In total, 8 hypotheses were tested throughout the study. Out of these, two hypotheses were 
rejected, while six could not be rejected. The hypotheses were divided into two main 
categories: those concerning the nature of the relationship between transition risk variables 
and the probability of default (Hypotheses 1, 3, 5 and 7), and those evaluating the contribution 
of transition risk variables to the overall model performance (Hypotheses 2, 4, 6 and 8). This 
bifurcation allowed for a comprehensive assessment of how transition risks influence credit 
risk predictions and the efficacy of incorporating these variables into predictive models. 

Table 17 summarizes the partial hypotheses related to each transition risk variable for 
Hypotheses 1, 3, 5, and 7. When Scope 1 emissions were analyzed independently in climate-
stressed models, the estimator was generally negative and statistically significant. This 
indicates that firms with direct emissions tend to have a lower PD, suggesting that these direct 
polluters are more stable according to the Bank's data. Conversely, increases in Scope 2 and 
Scope 3 carbon footprints typically resulted in a significant increase in the odds of default. The 
impact was particularly pronounced for Scope 2 emissions when considered independently in 
climate-stressed models, implying that firms with higher indirect emissions are more likely to 
default on loans. Additionally, firms utilizing indirect emissions in their production processes 
show a higher propensity to default compared to those accruing a carbon footprint primarily 
through their supply chain. 
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Table 17: Overview of the results (Hypotheses 1,3,5,7) 

 

Source: Authors 

 

These findings align with the economic context of 2022, where the Czech Republic 
experienced soaring electricity and gas prices due to post-COVID demand and geopolitical 
tensions. Direct polluters (Scope 1) were less affected by these price hikes, either selling these 
commodities or having fixed prices. In contrast, Scope 2 polluters, who purchase these 
commodities at market prices, were significantly impacted. Scope 3 emitters may have 
experienced delayed effects as high energy costs took time to permeate through their supply 
chains. 

While this situation might initially seem like a potential bias in the analysis, we interpret it as a 
proxy for a climate policy shock on the economy, which is likely to drive energy prices even 
higher. This interpretation aligns with the expectation of rising energy costs under stringent 
climate policies. The results are consistent with findings in academic literature (Capasso et al., 
2020; Carbone et al., 2021), reinforcing the robustness of our conclusions. 

Table 18 outlines the partial hypotheses related to each transition risk variable for Hypotheses 
2, 4, 6, and 8. While these hypotheses serve a complementary role, several important findings 
emerged. All climate-stressed models demonstrated moderate performance in terms of 
discriminatory power, achieving a specificity rate above 0.5, which indicates that the majority 
of defaults were accurately predicted at a threshold of 0.5. Using two different random data 
partitions, we observed that incorporating the Scope 2 carbon footprint significantly enhanced 
the model's performance in terms of specificity, sensitivity, and the AUC-ROC curve 
magnitude. Additionally, adding Scope 2 and Scope 3 carbon intensity per sale to the standard 
model further improved its specificity rate and AUC-ROC curve magnitude. These results 
highlight the value of including specific climate-related variables to enhance the predictive 
accuracy of credit risk models. 
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Table 18: Overview of the results (Hypotheses 2,4,6,8) 

 

Source: Authors 

 

7.10 Further research opportunities 

We identify three key areas for further research related to this paper. First, using the same 
dataset, a climate stress test for the Bank could be conducted. This would involve analyzing 
and quantifying various future European climate policy scenarios and their direct impacts on 
the Bank's capital requirements. Second, as banks are increasingly pressured to support green 
finance, it is likely that more banks will start collecting similar emissions data from their clients, 
a practice that is becoming mandatory in some jurisdictions around the globe, such as under 
the EU’s CSRD and the Task Force on Climate-related Financial Disclosures (TCFD) in the 
United Kingdom. This would enable researchers to compare the findings of this paper with 
those from different banks, allowing for a broader validation of results. Additionally, the 
availability of time-series data on client carbon footprints could facilitate more complex 
analyses. Third, this paper utilizes logistic regression, a straightforward and commonly used 
method for credit risk estimation. However, probit models or more sophisticated machine 
learning models often provide more precise results. Therefore, applying advanced machine 
learning techniques to address similar research questions could represent a valuable 
opportunity for further investigation. Fourth, building on the associations and causal relations 
identified in existing studies, further research could delve deeper into the underlying reasons 
why firms' carbon risk is positively correlated with their default risk, as highlighted by studies 
like Kabir et al. (2021). Investigating how specific factors such as regulatory changes, 
reputational damage, and carbon risk premiums directly contribute to this relationship, 
particularly for SMEs, could provide valuable insights. Finally, exploring the effectiveness of 
various carbon mitigation strategies in mitigating default risk could offer practical guidance for 
firms navigating the transition to a low-carbon economy. 
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8. Conclusion 

This paper leverages a unique opportunity to analyze internal data collected by the Bank, which 
includes standard financial information as well as carbon footprint data for SME clients. Our 
contribution is four-fold. The primary contribution of this paper is the empirical evidence on the 
relationship between climate transition risk and credit risk. The analysis was structured as a 
stress test of a standard credit scoring model, with a set of transition risk variables added 
separately. Logistic regression was used for the climate-stress test, incorporating three scopes 
of carbon footprint, financed carbon footprint, and carbon intensity of the client. The findings 
reveal that Scope 1 emitters are generally less prone to credit default in the Bank, while Scope 
2 and Scope 3 indirect emitters tend to default more. These findings are consistent with the 
economic conditions of 2022, during which the Czech Republic faced sharply rising electricity 
and gas prices driven by post-COVID demand and geopolitical tensions. Scope 1 emitters 
were relatively insulated from these price increases, as they either sold these commodities 
themselves or operated under fixed-price agreements. The level of Scope 2 and Scope 3 
carbon footprint and carbon intensity was identified as a potential driver of default, consistent 
with the findings of Capasso et al. (2020), Carbone et al. (2021), Thornton et al. (2023) and 
Xinyu et al. (2023). 

The second contribution is methodological, as the performance of the climate-stressed logistic 
regression models was observed and compared to the standard model. The inclusion of the 
Scope 2 carbon footprint in the credit scoring model improved its discriminatory power and 
ability to correctly predict credit defaults. Additionally, integrating Scope 2 and Scope 3 carbon 
intensity per unit of sales enhanced the model's ability to correctly predict non-defaults while 
maintaining the same accuracy in predicting defaults. This aligns with the research by Battiston 
et al. (2017) and Monasterolo et al. (2017), who highlighted the importance of incorporating 
climate risk factors into financial models. We are also demonstrating the value added by 
corporate climate disclosures, in terms of identifying risk. 

The third contribution is the identification of four financial predictors that drive credit default. 
These indicators proved to be statistically significant, forming a standard model capable of 
detecting the majority of defaults in the testing data. The standard model predictors thus serve 
as an empirical cross-check on the data provided by the Bank. This finding supports the work 
of Jakubík &  Teplý (2011) on credit scoring models. Finally, the paper offers a comprehensive 
summary of academic literature on climate transition risk in financial markets, effectively 
identifying a significant literature gap and suggesting further research opportunities, as noted 
by Dunz et al. (2019) and Dafermos & Nikolaidi (2021). 

Finally, we contribute by leveraging the increasingly available disclosures on climate risk 
exposures, demonstrating how these disclosures can advance climate risk mitigation efforts 
while also enhancing banks' credit risk analysis. Additionally, we highlight the critical role of 
energy use in this context. 
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10. Appendix 

Table A. 1: Summary of the logistic regression (balanced data) 

  

Source: Authors 

Table A. 2: Summary of the logistic regression (Hypothesis 3)  

  

Source: Authors 

Table A. 3: Variance inflation factors (Hypothesis 3) 

  

Source: Authors 

 


