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Operator (LASSO) method for variable selection. Our proposed LASSO-HAR model with 
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sample beta forecasts than a variety of alternative models in terms of both statistical and economic 
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1. Introduction 

Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Linter, 1965) is one of the most 

important theoretical models in modern finance, which has a wide range of applications in asset 

pricing, portfolio allocation and risk management. CAPM betas (or factor loadings) are 

interpretable as exposure to systematic risk factors that drive expected returns. However, one of 

the main obstacles to the empirical analysis of factor models is that betas are not directly 

observable. As a result, it is of great theoretical and practical significance to accurately estimating 

and forecasting betas (Tofallis, 2008; Levi and Welch, 2017; Daniel et al., 2020).  

In earlier research, monthly beta estimators constructed using daily asset price data were 

widely used. Although these estimators are consistent under weak regulatory conditions, they fail 

to fully explain the significant long-memory feature that is universally observed in the time series 

of betas (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Ding and Granger, 1996). Andersen 

et al. (2006) firstly proposed the realized beta estimator that is allowed to change over time using 

intra-daily asset prices. With the ever-increasing availability of high-frequency financial data, the 

realized beta provides very accurate estimates and, not surprisingly, has become one of the most 

popular measures for betas in both academia and industry. Wang (2003), Ghysels and Jacquier 

(2006), and many others emphasized the importance of accurate beta forecasts for the successful 

construction of market-neutral portfolios. In this regard, numerous researchers investigated various 

time-series models for forecasting realized betas. For instance, Hooper et al. (2008) forecast 

quarterly realized betas and found that the autoregressive model with two lags far surpassed the 

constant beta model; Reeves and Wu (2013) evaluated the forecasting performance of the constant 

beta model against autoregressive models for time-varying betas; Cenesizoglu et al. (2017) 

forecast realized betas with a variety of autoregressive models over long forecast horizons and 

evaluated the statistical accuracy and economic significance of different forecasting approaches; 

More recently, Drobetz et al. (2021) conducted a comprehensive study of beta forecasting across 

a large number of developed and emerging markets. They found that the forecasting approaches 

with estimators constructed using daily data outperformed those using monthly or quarterly data. 

Most of the forecasting models considered in the aforementioned papers and the references cited 

therein are short-memory models. However, Becker et al. (2021) provided the empirical evidence 

suggesting that monthly realized betas exhibit consistent characteristics of long-run dependence. 
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Therefore, they investigated the true long-memory models and documented superior forecasting 

performance, when compared to short-memory and difference-stationary forecasting models.  

Besides the long-memory feature, the asymmetric risk effects of realized betas have also been 

widely discussed in the extant literature. Ang et al. (2006) indicated that realized betas can be 

divided into upside and downside components. They also showed that the CAPM model with 

downside betas can better account for the cross-sectional variation in U.S. equity returns. Post and 

van Vliet (2004), Lettau et al., (2014) and Zabarankin et al. (2014) reached the same conclusion 

for other asset classes. By contrast, a recent work by Atilgan et al. (2018) called into question the 

ability of downside betas to successfully explain the cross-sectional variation in U.S. and 

international equity returns. In addition, the predictability of different beta components has also 

been studied. For instance, Levi and Welch (2020) suggested that betas contain more relevant 

information for forecasting downside betas because downside betas were more prone to 

measurement errors. Recently, Bollerslev et al. (2021) proposed to decompose realized betas into 

four semi-beta components and explored the explanatory power of these realized semi-betas on 

asset pricing. These estimators, as well as upside and downside betas, that proxy for various 

asymmetric risk effects may provide additional information for forecasting realized betas.   

To account for the empirical features of realized betas (e.g., long memory, asymmetric risk 

effects, and structural breaks), we propose a set of Heterogeneous Autoregressive (HAR) model 

variants. Specifically, the long-memory properties are achieved by the additive beta cascade of 

HAR model (Corsi, 2009); The structural breaks are detected by Iterated Cumulative Sum of 

Square (ICSS) algorithm and the structural break dummies are subsequently added as predictors; 

The asymmetric risk effects are quantified by different beta components, including the four types 

of semi-betas and the upside and downside betas. However, incorporating all these predictors into 

the HAR model may potentially lead to overfitting issues. To keep model parsimony and to identify 

the predictors with significant power, we employ the Least Absolute Shrinkage and Selection 

Operator (LASSO) method for variable selection. Much of the extant literature has showed that 

the LASSO method can lead to lower risk of misidentification for forecasting models and thus 

better out-of-sample forecasting accuracy (Siliverstovs, 2015; Ziel and Liu, 2016; Sagaert et al., 

2018; Liang et al., 2022).  

We contribute to the literature in at least three aspects. First, we focus on the forecasts of daily 
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realized betas estimated by using five-minute high-frequency data. Papageorgiou et al. (2016) 

showed that it was hard to construct market-neutral portfolios with traditional beta forecasts and 

suggested the need of high-frequency data. Second, we propose a set of new models accounting 

for long memory, structural breaks and asymmetric risk effects. Compared with the true long-

memory models employed in Becker et al. (2021), our proposed models are much more 

parsimonious and easier to implement. The empirical results suggest that the forecasting 

performance is substantially improved in term of both statistical and economic criteria. We also 

find that both upside and downside betas are useful for risk management and hedging purposes. 

Third, we further introduce the LASSO method for variable selection and capture the dynamic 

changes of the financial market. The use of LASSO method not only selects the powerful 

predictors but also improves the predictive accuracy and economic value of the HAR-type models.  

The remainder of this paper is organized as follows. Section 2 introduces the high-frequency 

data sets and statistical methods for the construction of various estimators. Section 3 describes the 

forecasting models. Section 4 documents the out-of-sample forecasting results and provides the 

economic value analysis. Section 5 presents further analysis results. Section 6 demonstrates the 

robustness check results. Section 7 concludes. 

 

2. Data and Statistical Methodology 

2.1. Data 

We collect intra-daily price data (Hollstein et al., 2020; Becker et al., 2021) sampled at a five-

minute frequency on 327 constituents of S&P 500 index from the Trade and Quote (TAQ) 

database,2 for the full sample period from January 2007 to December 2019, covering 3066 trading 

days in total. The stocks that are collected in our data set account for 63.21% of the entire market 

capitalization of S&P 500 index in December 2019. Overnight price data are excluded from our 

data set, i.e., we use only data with time stamps between 9:30AM and 4:00PM Eastern Standard 

Time. 

 

 
2 As the constituents of S&P 500 index have been changing over time, only stocks that are present on all trading days from 2007 

to 2019 are kept. In addition, stocks with missing data are dropped. As a result, there are in total 327 stocks in our data set. 
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2.2. Realized beta 

A consistent estimator of beta is required since it is unobservable. Historically, betas were 

estimated by using low-frequency data. However, Andersen et al. (2005) indicated that such an 

approach can yield noisy and thus inaccurate estimates. Taking advantage of high-frequency data, 

Andersen et al. (2006) firstly proposed the realized beta that has been attracting ever-increasing 

attention. On the one hand, the realized beta is theoretically proven to be a consistent estimator of 

the integrated beta. On the other hand, much empirical support has been found for the use of this 

realized measure in the extant literature. For instance, Patton and Verardo (2012) argued that 

detecting variations in betas measured at higher frequencies is crucial to understanding the effect 

of information flows on the covariance structure of stock returns. As a result, the variable of 

primary interest in this paper is chosen as the realized beta that serves as a proxy for the true 

unobservable beta. When constructing realized betas from high-frequency data, the impact of 

microstructure noise may severely deteriorate the accuracy of beta estimates (Bhattacharyya et al., 

2009). Due to such concerns, we adopt the five-minute sampling scheme for the estimation of daily 

realized betas.3 Let 𝑟𝑟𝑖𝑖,𝜏𝜏 and 𝑟𝑟𝑀𝑀,𝜏𝜏 denote, respectively, the intra-daily high-frequency returns on 

asset i and on the aggregate market over the 𝜏𝜏𝑡𝑡ℎ time interval, the daily realized beta of asset i on 

day t can be constructed as follows,  

𝛽𝛽𝑖𝑖,𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖,𝜏𝜏𝑟𝑟𝑀𝑀,𝜏𝜏
𝑂𝑂
𝜏𝜏=1
∑ 𝑟𝑟𝑀𝑀,𝜏𝜏

2𝑂𝑂
𝜏𝜏=1

, (𝑖𝑖 = 1,2, . . . ,𝑁𝑁;  𝑡𝑡 = 1,2, . . . ,𝑇𝑇),                 (1) 

where O is the total number of high-frequency return observations within day t, N is the number 

of individual stocks, and T refers to the full-time span of our data set.  

To validate the choice of sampling frequency, we also rely on the signature plot method of 

Andersen et al. (2000), as illustrated in Figure 1. It can be observed that the average realized betas 

increase steadily from k = 50 (corresponding to a 50-minute return sampling interval) with a value 

of 0.835. When using five-minute returns to construct daily realized betas, the average realized 

beta is 0.832, which is approximately equal to the value at k = 50. Therefore, selecting a five-

minute interval for constructing realized beta estimators strikes a reasonable balance between 

minimizing microstructure noise and reducing estimation bias. 

 
3 As a robustness check, we also constructed daily and monthly realized betas using 30-minute high-frequency data. The empirical 
findings are qualitatively similar to those presented in our paper. 
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Figure 1. Realized betas signature plot. This figure shows the average realized betas for daily realized betas across all 327 

individual stocks, using various k-minute return intervals. 

 

Much empirical evidence has shown that betas consistently exhibit significant long-memory 

properties. To examine this main empirical feature of realized betas, we employ the Geweke and 

Porter‐Hudak (GPH, 1983) method to estimate the fractional differencing parameter d for the time 

series of daily realized betas. The GPH estimator is unbiased for the memory parameter d, which 

can be applied to distinguish short-memory series (-0.5< d < 0), stationary long-memory series (0 

< d < 0.5), nonstationary long-memory series (0.5 < d <1), and difference-stationary series (d = 1). 

We estimate the parameter d for each of the 327 individual stocks. The sample average and 

standard deviation of d values are reported in Table 1. On average, the daily realized beta series 

shows a memory parameter d = 0.451. Figure 2 displays the empirical distribution of all memory 

parameter estimates. It is observed that almost all of the d estimates are between 0 and 1. We also 

conduct a block bootstrap test for the null hypotheses of d = 0 and d = 1 at the 10% significance 

level. For approximately 90.3% and 99.6% of the individual stocks, we reject the null hypotheses 

of d = 0 and d = 1, respectively. In a nutshell, the time series of realized betas should be 

characterized as a long-memory process. Furthermore, a majority of individual stocks have 

stationary long-memory betas with 0 < d < 0.5. 
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Table 1 

Long-memory feature of realized betas. This table reports the average �̅̂�𝑑𝑖𝑖 and the standard deviation 𝑠𝑠𝑑𝑑(�̂�𝑑𝑖𝑖) for daily realized 
betas across all 327 individual stocks. The memory parameter d is estimated using the GPH method. The frequencies at which we 

reject the null hypotheses of 𝑑𝑑𝑖𝑖= 0 and 𝑑𝑑𝑖𝑖 = 1 at the 10% level, based on the block bootstrap method, are also reported. 

 

 �̅̂�𝑑𝑖𝑖 𝑠𝑠𝑑𝑑��̂�𝑑𝑖𝑖� vs. 𝑑𝑑𝑖𝑖= 0 vs. 𝑑𝑑𝑖𝑖= 1 

𝛽𝛽𝑖𝑖 0.451 0.105 0.903 0.996 

 

 
Figure 2. Empirical distribution of d estimates. This figure shows the empirical distribution of the estimated memory parameters 

for daily realized betas across all 327 individual stocks. 

 

2.3. Realized semi-betas, realized upside and downside betas 

Investor's aversion to risk leads to the creation of “betting against beta” investment strategy 

(Frazzini and Pedersen, 2014), particularly averse to downside risk. To exploit the asymmetric 

dependencies between individual stocks and the aggregate market, Bollerslev et al. (2021) 

decomposed the realized beta into four realized semi-beta components as follow, 

𝛽𝛽𝑖𝑖,𝑡𝑡𝑃𝑃 =
∑ 𝑟𝑟𝑖𝑖,𝜏𝜏

+ 𝑟𝑟𝑀𝑀,𝜏𝜏
+𝑂𝑂

𝜏𝜏=1

∑ 𝑟𝑟𝑀𝑀,𝜏𝜏
2𝑂𝑂

𝜏𝜏=1
,𝛽𝛽𝑖𝑖,𝑡𝑡𝑁𝑁 =

∑ 𝑟𝑟𝑖𝑖,𝜏𝜏
− 𝑟𝑟𝑀𝑀,𝜏𝜏

−𝑂𝑂
𝜏𝜏=1
∑ 𝑟𝑟𝑀𝑀,𝜏𝜏

2𝑂𝑂
𝜏𝜏=1

,𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀+ = −∑ 𝑟𝑟𝑖𝑖,𝜏𝜏
− 𝑟𝑟𝑀𝑀,𝜏𝜏

+𝑂𝑂
𝜏𝜏=1
∑ 𝑟𝑟𝑀𝑀,𝜏𝜏

2𝑂𝑂
𝜏𝜏=1

,𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀− =
−∑ 𝑟𝑟𝑖𝑖,𝜏𝜏

+ 𝑟𝑟𝑀𝑀,𝜏𝜏
−𝑂𝑂

𝜏𝜏=1

∑ 𝑟𝑟𝑀𝑀,𝜏𝜏
2𝑂𝑂

𝜏𝜏=1
,       (2) 

This decomposition relies on the new semi-covariance concept for decomposing the systematic 

market risk. As a result, realized semi-betas contain fundamentally different information from 

those defined based on asset-specific “good” and “bad” volatility measures. The realized semi-

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

d

0

0.5

1

1.5

2

2.5

3

3.5

4

D
en

si
ty



8 
 

beta estimators provide an exact four-way decomposition of the classic realized beta, which is 

shown in (3), 

𝛽𝛽𝑖𝑖,𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖,𝜏𝜏𝑟𝑟𝑀𝑀,𝜏𝜏
𝑂𝑂
𝜏𝜏=1
∑ 𝑟𝑟𝑀𝑀,𝜏𝜏

2𝑂𝑂
𝜏𝜏=1

= 𝛽𝛽𝑖𝑖,𝑡𝑡𝑃𝑃 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑁𝑁 − 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀+ − 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀−,                  (3) 

If the market and individual asset returns were jointly normally distributed, it can be shown that 

𝛽𝛽𝑖𝑖𝑃𝑃 = 𝛽𝛽𝑖𝑖𝑁𝑁 ≠ 1/2𝜋𝜋(�𝜎𝜎𝑖𝑖2/𝜎𝜎𝑀𝑀2 − 𝛽𝛽𝑖𝑖
2 + 𝛽𝛽𝑖𝑖arccos(−𝜎𝜎𝑖𝑖𝛽𝛽𝑖𝑖/𝜎𝜎𝑀𝑀))  and 𝛽𝛽𝑖𝑖𝑀𝑀+ = 𝛽𝛽𝑖𝑖𝑀𝑀− ≠ 1/

2𝜋𝜋(�𝜎𝜎𝑖𝑖2/𝜎𝜎𝑀𝑀2 − 𝛽𝛽𝑖𝑖
2 + 𝛽𝛽𝑖𝑖arccos(𝜎𝜎𝑖𝑖𝛽𝛽𝑖𝑖/𝜎𝜎𝑀𝑀))  as 𝑂𝑂 → ∞  (see Bollerslev et al., 2020). Otherwise, 

the four realized semi-betas would generally differ, which convey additional useful information to 

that of the standard market beta. 

Apart from the four realized semi-beta measures, Ang et al. (2006) introduced upside and 

downside betas which were found to be useful for improving upon the traditional CAPM. The 

realized version of upside and downside betas can thus be defined, respectively, as follow, 

𝛽𝛽𝑖𝑖,𝑡𝑡+ =
∑ 𝑟𝑟𝑖𝑖,𝜏𝜏𝑟𝑟𝑀𝑀,𝜏𝜏

+𝑂𝑂
𝜏𝜏=1
∑ (𝑟𝑟𝑀𝑀,𝜏𝜏

+ )2𝑂𝑂
𝜏𝜏=1

,𝛽𝛽𝑖𝑖,𝑡𝑡− =
∑ 𝑟𝑟𝑖𝑖,𝜏𝜏𝑟𝑟𝑀𝑀,𝜏𝜏

−𝑂𝑂
𝜏𝜏=1
∑ (𝑟𝑟𝑀𝑀,𝜏𝜏

− )2𝑂𝑂
𝜏𝜏=1

,                      (4) 

Different from the four realized semi-betas proposed by Bollerslev et al. (2021), the realized upside 

and downside betas condition only on the sign of market returns to account for joint asymmetric 

dependencies, which can be considered as a weighted sum of realized semi-betas,  

𝛽𝛽𝑖𝑖,𝑡𝑡+ = �𝛽𝛽𝑖𝑖,𝑡𝑡𝑃𝑃 − 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀+�
∑ 𝑟𝑟𝑀𝑀,𝜏𝜏

2𝑂𝑂
𝜏𝜏=1

∑ (𝑟𝑟𝑀𝑀,𝜏𝜏
+ )2𝑂𝑂

𝜏𝜏=1
,𝛽𝛽𝑖𝑖,𝑡𝑡− = �𝛽𝛽𝑖𝑖,𝑡𝑡𝑁𝑁 − 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀−�

∑ 𝑟𝑟𝑀𝑀,𝜏𝜏
2𝑂𝑂

𝜏𝜏=1

∑ �𝑟𝑟𝑀𝑀,𝜏𝜏
− �2𝑂𝑂

𝜏𝜏=1
,             (5) 

Note that the weights on the realized semi-betas only involve functions of market returns, which 

do not vary in the cross section. 

Figure 3 plots the time series of realized betas, four realized semi-betas and realized upside 

and downside betas. We can see that different beta components show distinctly different patterns 

of variation over time. Take the four realized semi-betas as examples, during the 2008-09 financial 

crisis periods, though 𝛽𝛽𝑀𝑀+ and 𝛽𝛽𝑀𝑀− fluctuated less pronouncedly than 𝛽𝛽𝑃𝑃 and 𝛽𝛽𝑁𝑁 in general, 

some sudden and substantial “spikes” in their levels occurred. Therefore, it would be interesting 

to examine whether these different beta components can provide additional predictive power for 

realized betas. 
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Figure 3. Time-series plots of the realized measures of beta and beta components. This figure plots the daily realized betas, 

four realized semi-betas, and realized upside and downside betas, averaged across all individual stocks.  

 

The summary statistics of seven realized measures of beta and beta components are 

documented in Table 2. Their mean, median and standard deviation values are reported in Panel A 

of Table 2. It is confirmed that 𝛽𝛽𝑀𝑀+ and 𝛽𝛽𝑀𝑀− are much less variable than others. In addition, 

Panel B of Table 2 shows the sample correlations. It is observed that the classic realized beta is 

strongly correlated with 𝛽𝛽𝑁𝑁 , 𝛽𝛽+  and 𝛽𝛽− , while the four realized semi-betas are much less 
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correlated with the realized upside and downside betas contemporarily. Therefore, realized semi-

betas and realized upside and downside betas may provide unique information to some extent on 

future realized betas. 

 

Table 2 

Summary statistics. Panel A reports the sample mean, median and standard deviation for each of the realized measures of beta 

and beta components. Panel B reports the sample correlations among them. 

 

  𝛽𝛽 𝛽𝛽𝑝𝑝 𝛽𝛽𝑀𝑀− 𝛽𝛽𝑀𝑀+ 𝛽𝛽𝑁𝑁 𝛽𝛽+ 𝛽𝛽− 
Panel A: Summary statistics      
Mean 0.854 0.589 0.141 0.158 0.564 0.892 0.921 
Median 0.898 0.572 0.116 0.124 0.569 0.959 0.986 
St. Dev. 0.220 0.223 0.098 0.120 0.207 0.255 0.254 

        

Panel B: Correlation       

𝛽𝛽 1.000 0.492 0.078 0.031 0.585 0.601 0.562 
𝛽𝛽𝑝𝑝  1.000 0.306 0.681 -0.013 0.188 0.356 
𝛽𝛽𝑀𝑀−   1.000 0.597 0.573 0.153 -0.154 
𝛽𝛽𝑀𝑀+    1.000 0.163 -0.201 0.172 
𝛽𝛽𝑁𝑁     1.000 0.391 0.240 
𝛽𝛽+      1.000 -0.236 
𝛽𝛽−       1.000 

 

Panel A of Figure 4 visualizes the empirical distributions of realized measures of beta and 

various beta components. The empirical distributions of realized betas and realized upside and 

downside betas are left-skewed with centers around unity. For realized semi-betas, we observe that 

𝛽𝛽𝑀𝑀+ and 𝛽𝛽𝑀𝑀− are symmetrically distributed, while 𝛽𝛽𝑃𝑃 and 𝛽𝛽𝑁𝑁 are significantly right-skewed. 

Panel B of Figure 4 plots the sample Autocorrelation Functions (ACFs) for all realized measures. 

Interestingly, 𝛽𝛽𝑀𝑀+ and 𝛽𝛽𝑀𝑀− show the strongest long-memory features. The autocorrelations of 

other realized measures, including the realized beta, however, decline rapidly at first but soon 

climb to and stabilize at around between 0.05 and 0.2. The sample ACFs evidently show that the 

persistent structures of beta and its various components are considerably different from those of 

the realized volatility (see, e.g., Corsi, 2009). 
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Figure 4. Empirical distributions and autocorrelation functions. Panel A plots the empirical distributions of realized measures 

of beta and various beta components. Panel B plots their sample autocorrelations. 

 

2.4. Structural breaks 

The aforementioned time-series analysis of realized betas, realized semi-betas, and realized 

upside and downside betas (e.g., Figure 3) provides us a further idea of improving the predictive 

accuracy by taking into account the structural breaks that may occur from time to time. We adopt 

Iterated Cummulative Sum of Square (ICSS) algorithm based on the Cummulative Sum (CUSUM) 

statistic proposed by Inclan and Tiao (1994) to detect multiple structural break points in the 

variance of daily realized measures of beta and beta components. 

Figure 5 displays the testing results for structural breaks of realized betas, realized semi-betas 

and realized upside and downside betas (averaged across all individual stocks). It is clear that both 

concordant semi-beta components 𝛽𝛽𝑃𝑃 and 𝛽𝛽𝑁𝑁 have the lowest number (i.e., K = 1) of structural 

breaks. Other realized beta components 𝛽𝛽, 𝛽𝛽𝑀𝑀−, 𝛽𝛽𝑀𝑀+, 𝛽𝛽+ and 𝛽𝛽− have three, five, ten, five 

and three structural breaks, respectively. Take the main research objective 𝛽𝛽 as an example, the 

three detected structural break points correspond to the financial crisis of 2008, the European debt 

crisis of 2011, and the Fed interest rate hike of 2018, respectively. These structural breaks usually 

stem from important macroeconomic shocks and may in turn lead to significant future variations. 

For each of the individual stocks, one can reasonably presume that a much greater number of 

structural breaks would occur in betas. In short, taking the structural break dummies into 

consideration may provide additional predictive power for individual betas. 
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Figure 5. Structural break tests for realized betas, realized semi-betas, and realized upside and downside betas. This figure 

shows the number of structural breaks for each of the realized measures of beta and various beta components (averaged across all 

individual stocks) using the method of ICSS algorithm introduced by Inclan and Tiao (1994). The results show that 𝛽𝛽, 𝛽𝛽𝑃𝑃, 𝛽𝛽𝑀𝑀−, 

𝛽𝛽𝑀𝑀+, 𝛽𝛽𝑁𝑁, 𝛽𝛽+ and 𝛽𝛽− have three, one, five, ten, one, five and three structural breaks, respectively. 

 

3. Forecasting Models 

With the empirical properties of realized betas, realized semi-betas, and realized 

upside/downside betas shown in Section 2, we propose a set of new HAR-type forecasting models 

(which are denoted as HARARE, HARSB, HARARE.SB, and LHARARE.SB, respectively) and compare 

them with three groups of competing models: 1) Difference-stationary models (including the 
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random walk model); 2) Short-memory models (including AR(p), ARMA(p,q) and HAR models); 

3) Long-memory models (including FI(d) and ARFIMA(p,d,q) models). 

 

3.1. Random walk model 

The simplest difference-stationary model is the Random Walk (RW) model without drift. In 

this case, the h-step-ahead beta forecasts are obtained by  

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ−1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,                           (6) 

where 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ is the mean-zero error term for stock i on day t+h. Note that we can rewrite Equation 

(6) as 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝛽𝛽𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡+1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+2 + ⋯+ 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ. Therefore, the (mean-squared) optimal h-step-

ahead forecasts are directly given by the level of 𝛽𝛽𝑖𝑖 on day t. 

 

3.2. AR(p) model 

The Autoregressive (AR) model is widely used for forecasting betas (see, e.g., Hooper et al., 

2008, Reeves and Wu, 2013, and Cenesizoglu et al., 2017). For a p-order AR model, it allows us 

to predict the h-step-ahead 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ  for stock i based on previous p beta estimates of 

�𝛽𝛽𝑖𝑖,𝑡𝑡,𝛽𝛽𝑖𝑖,𝑡𝑡−1,⋯ ,𝛽𝛽𝑖𝑖,𝑡𝑡−𝑝𝑝+1� . Recall that since an AR(p) process has an exponentially decreasing 

autocorrelation function, it is referred to as a short-memory model (Hosking, 1996). The AR(p) 

model can be written as follows,  

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝛼𝛼𝑖𝑖 + 𝜃𝜃𝑖𝑖,1𝛽𝛽𝑖𝑖,𝑡𝑡 +. . . +𝜃𝜃𝑖𝑖,𝑝𝑝𝛽𝛽𝑖𝑖,𝑡𝑡−𝑝𝑝+1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,                (7) 

where 𝜃𝜃𝑖𝑖,𝑗𝑗 is the autoregressive coefficient of 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1(𝑗𝑗 = 1,2,⋯ ,𝑝𝑝) and 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ is the mean-

zero error term for stock i on day t+h. The lag order p determined by AIC criterion is almost always 

one. Therefore, we simply set p = 1 and thus only focus on the AR(1) model in the forecasts. 

 

3.3. ARMA(p,q) model 

Another simple short-memory model that is widely used in the literature is the Autoregressive 

Moving Average (ARMA) model, which explicitly takes the exogenous disturbances 

�𝜀𝜀𝑖𝑖,𝑡𝑡, 𝜀𝜀𝑖𝑖,𝑡𝑡−1,⋯ , 𝜀𝜀𝑖𝑖,𝑡𝑡−𝑞𝑞+1� into account. The ARMA(p,q) model is shown in Equation (8), 

         𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝛼𝛼𝑖𝑖 + 𝜃𝜃𝑖𝑖,1𝛽𝛽𝑖𝑖,𝑡𝑡 +. . . +𝜃𝜃𝑖𝑖,𝑝𝑝𝛽𝛽𝑖𝑖,𝑡𝑡−𝑝𝑝+1+𝛿𝛿𝑖𝑖,1𝜀𝜀𝑖𝑖,𝑡𝑡 +. . . +𝛿𝛿𝑖𝑖,𝑝𝑝𝜀𝜀𝑖𝑖,𝑡𝑡−𝑞𝑞+1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,      (8) 

where 𝜃𝜃𝑖𝑖,𝑗𝑗  is the autoregressive coefficient of 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1 (𝑗𝑗 = 1,2,⋯ ,𝑝𝑝) , 𝛿𝛿𝑖𝑖,𝑘𝑘  is the moving 
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average coefficient of 𝜀𝜀𝑖𝑖,𝑡𝑡−𝑘𝑘+1 (𝑘𝑘 = 1,2,⋯ , 𝑞𝑞), and 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ is the mean-zero error term for stock 

i on day t+h. Both p and q are set to be ones according to preliminary AIC and BIC tests with a 

maximum lag length of 12[(𝑇𝑇/100)0.25]. Hosking (1984) argued that the ARMA(1,1) model with 

roots lying near the unit circle can generate a time-series with long-memory properties. Even in 

such case, however, it still differs from the true long-memory model. 

 

3.4. ARFIMA(p,d,q) and FI(d) models 

The true long-memory models that are most used in the literature include Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) model (Granger and Joyeux, 1980; Hosking, 

1981) and Fractionally Integrated (FI) model. With a compact representation using lag 

polynomials, the parameter �̂�𝑑𝑖𝑖,𝑇𝑇 in the differencing operator for ARIMA model must be an integer, 

while ARFIMA(p,d,q) model allows the differencing parameter to take fractional values, which is 

the determinant of long-term dependence. The long-memory properties of ARFIMA(p,d,q) model 

were empirically examined by Ding et al. (1996), Stock and Watson (2002) and many others. 

ARFIMA(p,d,q) model can be written as, 

𝛾𝛾(𝐿𝐿)(1 − 𝐿𝐿)𝑑𝑑�𝑖𝑖,𝑇𝑇𝛽𝛽𝑖𝑖,𝑡𝑡 = 𝜓𝜓(𝐿𝐿)𝜀𝜀𝑖𝑖,𝑡𝑡,                       (9) 

where L is the lag operator, (1 − 𝐿𝐿)𝑑𝑑�𝑖𝑖,𝑇𝑇  is the fractional differencing operator, and 𝜀𝜀𝑖𝑖,𝑡𝑡  is the 

white noise disturbance. Within the fractional differencing operator, the parameter �̂�𝑑𝑖𝑖,𝑇𝑇 denotes 

the order of differencing, which is estimated by the GPH method in this paper with a bandwidth 

of 𝜆𝜆 = 𝑇𝑇0.5 for stock i over an estimation window with length T. 𝛾𝛾(𝐿𝐿) and 𝜓𝜓(𝐿𝐿) are p-order 

and q-order stationary hysteretic polynomial operators, respectively, which can be expressed as 

follow, 

𝛾𝛾(𝐿𝐿) = 1 − 𝛾𝛾1𝐿𝐿 − 𝛾𝛾2𝐿𝐿2 − ⋯− 𝛾𝛾𝑝𝑝𝐿𝐿𝑝𝑝,                    (10) 

𝜓𝜓(𝐿𝐿) = 1 − 𝜓𝜓1𝐿𝐿 − 𝜓𝜓2𝐿𝐿2 − ⋯− 𝜓𝜓𝑞𝑞𝐿𝐿𝑞𝑞 .                   (11) 

The ARFIMA(p,d,q) model produces time series with hyperbolically decaying 

autocorrelations, while short-memory models, such as ARMA, can only produce exponentially or 

geometrically decaying autocorrelations (Bhardwaj and Swanson, 2006; Aye et al., 2014). Such a 

feature of ARFIMA can be easily verified by noting that, 
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(1 − 𝐿𝐿)𝑑𝑑�𝑖𝑖,𝑇𝑇 = ∑ (−1)𝑗𝑗 ��̂�𝑑𝑖𝑖,𝑇𝑇
𝑗𝑗
� (𝐿𝐿)𝑗𝑗𝑡𝑡−1

𝑗𝑗=0 = 1 − �̂�𝑑𝑖𝑖,𝑇𝑇𝐿𝐿 + 𝑑𝑑�𝑖𝑖,𝑇𝑇�𝑑𝑑�𝑖𝑖,𝑇𝑇−1�
2!

𝐿𝐿2 − 𝑑𝑑�𝑖𝑖,𝑇𝑇�𝑑𝑑�𝑖𝑖,𝑇𝑇−1��𝑑𝑑�𝑖𝑖,𝑇𝑇−2�
3!

𝐿𝐿3 + ⋯+

(−1)𝑡𝑡−1 𝑑𝑑
�𝑖𝑖,𝑇𝑇�𝑑𝑑�𝑖𝑖,𝑇𝑇−1��𝑑𝑑�𝑖𝑖,𝑇𝑇−2�⋯(𝑑𝑑�𝑖𝑖,𝑇𝑇−𝑡𝑡+2)

(𝑡𝑡−1)!
𝐿𝐿𝑡𝑡−1 = ∑ 𝑏𝑏𝑖𝑖,𝑗𝑗(�̂�𝑑𝑖𝑖,𝑇𝑇),𝑡𝑡−1

𝑗𝑗=0  𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑡𝑡 = 1,2,⋯ ,𝑇𝑇,    (12) 

for any d > 1. For d < 0, the difference filter can also be developed further using a hyper geometric 

function as follows,  

(1 − 𝐿𝐿)𝑑𝑑�𝑖𝑖,𝑇𝑇 = Λ(−�̂�𝑑𝑖𝑖,𝑇𝑇)∑ 𝐿𝐿𝑗𝑗𝑡𝑡−1
𝑗𝑗=0 Λ(𝑗𝑗 − �̂�𝑑𝑖𝑖,𝑇𝑇)/Λ(𝑗𝑗 + 1) = 𝐹𝐹(−�̂�𝑑𝑖𝑖,𝑇𝑇 , 1,1, 𝐿𝐿),      (13) 

where 𝐹𝐹(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑧𝑧) =  Λ(𝑐𝑐)/[Λ(𝑎𝑎)𝛬𝛬(𝑏𝑏)]∑ 𝑧𝑧𝑗𝑗𝑡𝑡−1
𝑗𝑗=0 Λ(𝑎𝑎 + 𝑗𝑗)Λ(𝑏𝑏 + 𝑗𝑗)/[Λ(𝑐𝑐 + 𝑗𝑗)Λ(𝑗𝑗 + 1)].  

Combining Equation (9)-(13), one obtains a mean-zero ARMA(p,q) for the process of 

{∆𝑑𝑑�𝑖𝑖,𝑇𝑇𝛽𝛽𝑖𝑖,𝑡𝑡} . Therefore, p and q can be determined by AIC or BIC criterion for ARMA models 

introduced in Section 3.3. The final prediction of 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ can thus be obtained by using fractional 

inverse operation, 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = ∆−𝑑𝑑�𝑖𝑖,𝑇𝑇(∆𝑑𝑑�𝑖𝑖,𝑇𝑇𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ) . Corresponding with AR(1) and ARMA(1,1) 

models, we also set p = q = 1 for ARFIMA model, i.e., we consider the ARFIMA(1,d,1) 

specification. FI(d) model is another widely-used long-memory model, which is a special case of 

ARFIMA(p,d,q) with p = q = 0.  

 

3.5. HAR model 

The Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) can also be used 

to characterize long-memory processes. For instance, many empirical studies on HAR models, 

including Andersen et al. (2007), Corsi et al. (2008), Andersen et al. (2011), etc., have successfully 

achieved the long-memory feature of realized volatility and thus yielded accurate out-of-sample 

volatility forecasts. Note that the classic HAR model is actually a short-memory model since it is 

essentially a constrained AR(22) model. The long-memory properties stem from the additive 

“cascade” structure of variable components defined over different time periods. Compared with 

ARFIMA and FI models, HAR model is parsimonious and much easier to implement. Recently, 

Becker et al. (2021) found that HAR model was a suitable choice for forecasting realized betas. 

For each realized beta series, HAR model can be expressed as follows,  

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝑎𝑎𝑖𝑖 + 𝜃𝜃𝑑𝑑,𝑖𝑖𝛽𝛽𝑖𝑖,𝑡𝑡 + 𝜃𝜃𝑤𝑤,𝑖𝑖 ∑
𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

5
5
𝑗𝑗=1 + 𝜃𝜃𝑚𝑚,𝑖𝑖 ∑

𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
22

22
𝑗𝑗=1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,      (14) 

where 𝜃𝜃𝑑𝑑,𝑖𝑖, 𝜃𝜃𝑤𝑤,𝑖𝑖 and 𝜃𝜃𝑚𝑚,𝑖𝑖 are the coefficients of three predictors, i.e., daily realized beta, weekly 
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realized beta, and monthly realized beta, respectively, for stock i on day t. Although HAR models 

are successful in modeling long-memory volatility processes, Baillie et al. (2019) showed that in 

general they can not capture the full scale of long-run dependence. It is thus possible to improve 

the classic HAR model by incorporating other predictors. 

 

3.6. HARARE model 

Based on the analysis in Section 2.3, realized semi-betas and realized upside and downside 

betas potentially capture some useful information regarding various asymmetric risk effects and 

thus may provide additional predictive power for realized betas. To account for these effects, we 

propose the HARARE model that replaces the predictors in classic HAR model (i.e., Equation (14)) 

with realized semi-betas and realized upside and downside betas. The HARARE model can be 

written as, 

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝑎𝑎𝑖𝑖 + 𝜃𝜃𝑑𝑑′𝛽𝛽𝑡𝑡,𝑑𝑑,𝑖𝑖 + 𝜃𝜃𝑤𝑤′𝛽𝛽𝑡𝑡,𝑤𝑤,𝑖𝑖 + 𝜃𝜃𝑚𝑚′𝛽𝛽𝑡𝑡,𝑚𝑚,𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,                (15) 

𝛽𝛽𝑑𝑑,𝑖𝑖,𝑡𝑡 = �𝛽𝛽𝑖𝑖,𝑡𝑡
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑀𝑀+  𝛽𝛽𝑖𝑖,𝑡𝑡

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡
+ 𝛽𝛽𝑖𝑖,𝑡𝑡

− �, 

𝛽𝛽𝑤𝑤,𝑖𝑖,𝑡𝑡 = 1/5∑ �𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑀𝑀+   𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

− �5
𝑗𝑗=1 ,  

𝛽𝛽𝑚𝑚,𝑖𝑖,𝑡𝑡 = 1/22∑ �𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑀𝑀+   𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

− �22
𝑗𝑗=1 ,  

where 𝛽𝛽𝑑𝑑,𝑖𝑖,𝑡𝑡, 𝛽𝛽𝑤𝑤,𝑖𝑖,𝑡𝑡 and 𝛽𝛽𝑚𝑚,𝑖𝑖,𝑡𝑡 are defined, respectively, as the daily, weekly and monthly beta 

predictor vectors for stock i, and 𝜃𝜃𝑑𝑑, 𝜃𝜃𝑤𝑤 and 𝜃𝜃𝑚𝑚 are their corresponding coefficient vectors.  

 

3.7. HARSB model 

As discussed in Section 2.4, structural breaks are often observed in the time series of daily 

realized betas. To account for this prevailing feature, we propose another HAR variant, which is 

denoted as the HARSB model. In particular, the occurrence of structural breaks is detected by ICSS 

algorithm within the in-sample estimation period. Specifically, the HARSB model can be expressed 

as follows, 

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝑎𝑎𝑖𝑖 + 𝜃𝜃𝑑𝑑,𝑖𝑖𝛽𝛽𝑖𝑖,𝑡𝑡 + 𝜃𝜃𝑤𝑤,𝑖𝑖 ∑
𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

5
5
𝑗𝑗=1 + 𝜃𝜃𝑚𝑚,𝑖𝑖 ∑

𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
22

22
𝑗𝑗=1 + ∑ 𝜔𝜔𝑛𝑛,𝑖𝑖𝐷𝐷𝑛𝑛,𝑖𝑖,𝑡𝑡

𝑁𝑁𝑖𝑖
𝑛𝑛=1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,   (16)                                                             

where 𝐷𝐷𝑛𝑛,𝑖𝑖,𝑡𝑡 denotes a dummy variable that takes the value of one if a structural break is detected 

at time t for stock i and zero otherwise, and 𝑁𝑁𝑖𝑖 counts the total number of structural breaks over 
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the in-sample period for stock i. 

 

3.8. HARARE.SB model 

To take both asymmetric risk effects and structural breaks into consideration, we additionally 

propose the HARARE.SB, which is naturally written as,  

𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ = 𝑎𝑎𝑖𝑖 + 𝜃𝜃𝑑𝑑′𝛽𝛽𝑡𝑡,𝑑𝑑,𝑖𝑖 + 𝜃𝜃𝑤𝑤′𝛽𝛽𝑡𝑡,𝑤𝑤,𝑖𝑖 + 𝜃𝜃𝑚𝑚′𝛽𝛽𝑡𝑡,𝑚𝑚,𝑖𝑖 + ∑ 𝜔𝜔𝑛𝑛,𝑖𝑖𝐷𝐷𝑛𝑛,𝑖𝑖,𝑡𝑡
𝑁𝑁
𝑛𝑛=1 + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ,                  (17) 

𝛽𝛽𝑑𝑑,𝑖𝑖,𝑡𝑡 = �𝛽𝛽𝑖𝑖,𝑡𝑡
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑀𝑀+  𝛽𝛽𝑖𝑖,𝑡𝑡

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡
+ 𝛽𝛽𝑖𝑖,𝑡𝑡

− �, 

𝛽𝛽𝑤𝑤,𝑖𝑖,𝑡𝑡 = 1/5∑ �𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑀𝑀+   𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

− �5
𝑗𝑗=1 ,  

𝛽𝛽𝑚𝑚,𝑖𝑖,𝑡𝑡 = 1/22∑ �𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑃𝑃 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑀𝑀− 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
𝑀𝑀+   𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

𝑁𝑁 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑗𝑗+1

− �22
𝑗𝑗=1 .  

where  𝛽𝛽𝑑𝑑,𝑖𝑖,𝑡𝑡, 𝛽𝛽𝑤𝑤,𝑖𝑖,𝑡𝑡 and 𝛽𝛽𝑚𝑚,𝑖𝑖,𝑡𝑡 are defined, respectively, as the daily, weekly and monthly beta 

predictor vectors for stock i, and 𝜃𝜃𝑑𝑑, 𝜃𝜃𝑤𝑤 and 𝜃𝜃𝑚𝑚 are their corresponding coefficient vectors. All 

the parameters in Equation (17) are in line with those of HARARE model and HARSB model. 

Although the HARARE.SB model takes into account both internal (i.e., asymmetric risk effects) and 

external (i.e., structural breaks) factors to improve the forecasting accuracy, it raises the potential 

issue of overfitting. In addition, the model structure of realized betas can be time-varying and can 

differ across individual assets. Therefore, we introduce the LASSO method to solve these problems 

in next section. 

 

3.9. LASSO approach and LHARARE.SB model 

One of the main potential problems of the three proposed HAR variants, i.e., HARARE, HARSB 

and HARARE.SB models, is that the total number of model parameters is relatively large, which may 

lead to the overfitting issue. For the sake of model parsimony, we employ the Least Absolute 

Shrinkage and Selection Operator (LASSO) method proposed by Tibshirani (1996) for variable 

selection in this paper. LASSO utilizes a penalty that operates as a function of regression 

coefficients, so that it effectively controls the model complexity and avoids overfitting. Rather 

than minimizing the loss function associated with an ℓ2-norm penalty on the coefficients (such as 

the ridge regression), LASSO employs an ℓ1-norm penalty that sets an upper bound on the sum 

of absolute values of all the coefficients, i.e., 𝑃𝑃(𝛉𝛉) = 𝜆𝜆∑ |𝜃𝜃𝑖𝑖|𝑃𝑃
𝑖𝑖=1 . Therefore, LASSO minimizes 

the following loss function, 
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𝐿𝐿(𝜃𝜃1, 𝜃𝜃2,⋯ ,𝜃𝜃𝑝𝑝) = �𝐘𝐘 − ∑ 𝐗𝐗𝑖𝑖𝜃𝜃𝑖𝑖𝑃𝑃
𝑖𝑖=1 �

2
+ 𝜆𝜆∑ |𝜃𝜃𝑖𝑖|𝑃𝑃

𝑖𝑖=1 .              (18) 

For any 𝜆𝜆 > 0 , the ℓ1 -norm penalty generates the desired sparsity, i.e., some regression 

coefficients are shrunken to exactly zeros. In other words, predictors that lack of sufficient power 

are eliminated. Particularly, the 𝜆𝜆 for the HAR model is selected by a 10-fold cross-validation. 

Therefore, the model we propose in this paper is a combination of the LASSO approach and 

the HARARE.SB model, which is denoted as LHARARE.SB. By using a rolling-window estimation 

scheme, the selected predictors for LHARARE.SB model would be different over time. It may also 

be interesting to study how the importance of asymmetric risk effects and structural breaks for 

forecasting betas. 

 

4. Forecasting Results 

To compare the predictive performance of different models and, in particular, to examine the 

importance of structural breaks and asymmetric risk effects for forecasting realized betas, we carry 

out an extensive forecasting “horse-race” using all the models introduced in Section 3. In our out-

of-sample forecasts, we set the rolling windows of 600 days, which is approximately 1/5 of the 

full-sample length. We also conduct the robust analysis by specifying the rolling window of 800 

days and 1000 days, which correspond to 1/4 and 1/3 of the full-sample length. We present the 

short-run forecast results (h = 1) in this section and also conduct robust analysis regarding mid-

term (h = 5) and long-term forecasts(h = 22). The predictive performance of all competing models 

is evaluated using both statistical and economic measures. Predictive accuracy tests are also 

conducted and the testing results are reported in the analysis. 

 
4.1. Statistical and economic criteria  

We consider two different statistical loss functions to compare the predictive accuracy of 

various models (Andersen et al., 1999), including the Root Mean Squared Error (RMSE) and the 

Mean Absolute Error (MAE) as shown below,  

RMSE = �1
𝜗𝜗
∑ �𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ − �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ�

2𝜗𝜗
𝑡𝑡=1 ,                      (19) 

MAE = 1
𝜗𝜗
∑ �𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ − �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ�,𝜗𝜗
𝑡𝑡=1                        (20) 

where 𝜗𝜗 is the total number of beta forecasts over the out-of-sample period, 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ is the true 
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value of realized beta on day t+h and �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ is the corresponding ex ante forecast.  

 Besides reporting the four statistical measures, we conduct pairwise Diebold–Mariano (DM) 

predictive accuracy tests using all of the aforementioned loss functions. DM tests assume a null 

hypothesis of equal predictive ability between a pair of competing models and are asymptotically 

normally distributed. Given a certain significance level, e.g., 𝛼𝛼 = 5%, if the null hypothesis is 

rejected, we conclude that the two competing models have a different forecasting performance. 

The sign of DM test statistics can be further used to determine which of two competing models is 

statistically significantly better. In addition to pairwise model comparison, we also carry out the 

Model Confidence Set (MCS) test proposed by Hansen et al. (2011) for multiple comparisons. One 

of the main appealing features of MCS procedure when compared to other predictive accuracy 

tests is that researchers do not need to specify a benchmark model. With a certain level of 

confidence, e.g., (1 − 𝛼𝛼) = 95%, the MCS procedure eliminates inferior models sequentially and 

formulates a final set of best models. To calculate the MCS p-values, we use the block bootstrap 

method with 10000 replications. The greater the p value of a competing model achieves, the higher 

the probability of being included in the final confidence set of best models. 

 To address the potential errors-in-variables issue in the forecast evaluation proxy, we construct 

portfolios similar to Fama and MacBeth (1973) and Hollstein and Prokopczuk (2016). Specifically, 

we sort all individual stocks in ascending order based on their realized beta values obtained during 

the second-to-last non-overlapping beta estimation window. In doing so, we follow Becker et al. 

(2021) to use a common sorting variable for all forecasting models.4 In this way, all the individual 

stocks are sorted into 20 portfolios.5  To yield the portfolio beta forecast 𝛽𝛽𝑝𝑝 , we weight each 

individual beta forecast based on the firm’s market value at the time the forecast is generated, i.e., 

𝛽𝛽𝑝𝑝 = ∑ 𝑤𝑤𝑖𝑖,𝑝𝑝
𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝛽𝛽𝑖𝑖 , where 𝑤𝑤𝑖𝑖,𝑝𝑝  is the market capitalization and 𝑁𝑁𝑝𝑝  is the number of stocks in 

portfolio p. The data of stocks’ market capitalization are obtained from JoinQuant database. Figure 

 
4 Similar to Becker et al. (2021), we do so to ensure that (i) there is a spread in the market betas of the different portfolios. (ii) 
Using a sorting variable that is independent of the predictor variables is important to avoid discriminating against any of the 
predictors. Otherwise, the stocks with the highest positive and negative noise for the estimator upon which the betas are sorted are 
likely to end up in the extreme portfolios and that noise cannot be fully diversified. For stocks with missing estimates for the sorting 
variable, we set it to unity. 
5 Let N be the total number of individual stocks and int(N/20) be the largest integer less than or equal to N/20. Each of the 18 
portfolios in the middle has int(N/20) stocks. If N is even, each of the two portfolios at both ends has int(N/20)+1/2[N-int(N/20)] 
stocks; If N is odd, the last portfolio has an additional stock.  
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6 shows the average market capitalizations of the stocks in different portfolios. 

 

 
Figure 6. Average market capitalization of the stocks in each portfolio. This figure shows the average market capitalizations 

(in Billions of USD) of the stocks (sorted in ascending order) in the 20 portfolios. The first and the last portfolios have 19 and 20 

stocks, respectively. On average, each of the rest portfolios contains 16 stocks. 

 

 It is also of great importance to assess beta forecasts based on some economic criteria since 

accurate beta forecasts are critical to asset allocation. First, similar to Becker et al. (2021), we 

evaluate different forecasting models based on their abilities to create portfolios arranged in strict 

order of ex-post realized betas. For each model, we first sort all individual stocks into ten portfolios 

based on their respective beta forecasts at the end of each day. Next we calculate the ex-post 

realized beta of each beta-sorted portfolio. A good forecasting model should be able to generate a 

monotonically increasing pattern in portfolios’ realized betas. Moreover, the spread between the 

ex-post realized betas of high and low beta-sorted portfolios should be large. 

 Second, following Hollstein et al. (2020), we evaluate the ability of each model for creating 

market-neutral portfolios, by checking their average risk exposure and ex-post realized betas. To 

create such portfolios, we set the weight 𝑣𝑣𝑗𝑗,𝑡𝑡  so that the equation 𝑣𝑣𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗,𝑡𝑡
𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − 𝛽𝛽𝑗𝑗,𝑡𝑡

𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡 = 0  is 

fulfilled, where 𝛽𝛽𝑗𝑗,𝑡𝑡
𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 and 𝛽𝛽𝑗𝑗,𝑡𝑡

𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡 represent the beta forecast of long portfolio (consisting of top 

quantile of beta-sorted stocks) and the beta forecast of short portfolio (consisting of bottom 
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quantile of beta-sorted stocks), respectively. Then, we compute the average risk exposure 

∑ 1
𝑇𝑇
�𝑣𝑣𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗,𝑡𝑡

𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − 𝛽𝛽𝑗𝑗,𝑡𝑡
𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡�𝑇𝑇

𝑡𝑡=1   for each model and test whether the ex-post realized beta of the 

anomaly portfolios deviates from zero on average. 
 
4.2. Statistical evaluations 

A number of clear-cut findings emerge upon inspection of the results contained in Tables 3-

4. Table 3 summarizes the performance of various models for forecasting realized betas of the 20 

constructed portfolios, based on the RMSE loss. Testing results of pairwise model comparison, as 

well as multiple comparisons are also reported.  

First, according to the average RMSE values and the DM tests at the 5% level, the HAR-type 

models perform significantly better than the benchmark AR and RW model and slightly better than 

the true long-memory models (FI and ARFIMA). The results suggest that the short-memory and 

stationary models are not suitable for forecasting realized betas. In addition, the HAR-type models 

perform slightly better than the true long-memory models in general. The LHARARE.SB model 

performs the best and yield significantly higher precision than other models.  

Second, the structural break dummies and decomposed beta components provide additional 

predictive power. For instance, HARARE, HARSB and HARARE.SB generate lower RMSE values on 

average when compared to the classic HAR model. Turning to the DM test results, this finding is 

more distinct. For all of the 20 portfolios, HARARE, HARSB and HARARE.SB significantly 

outperform the classic HAR based on DM tests at the 5% level. Fourth, when the LASSO approach 

is conducted on HARARE.SB, a further significant improvement of predictive accuracy is observed. 

For 14 out of 20 portfolios, LHARARE.SB achieves the lowest RMSEs from amongst all models.  

Finally, the MCS testing results also support the superior performance of LHARARE.SB as it is 

always included in the confidence set of “best” models with the level of either 90% or 80%. 

Interestingly, the long-memory models ARFIMA and FI are the only other alternatives that can be 

selected by MCS90 (MCS80) tests. Table 4 demonstrates similar findings based on the MAE loss. 

For instance, ARFIMA, HARARE, HARSB and HARARE.SB general outperform the baseline HAR 

model as well as the short-memory and stationary-difference models, and LASSO approach 

significantly improves the performance of the HAR-type models. However, under the MAE loss, 

ARFIMA shows relatively comparable performance when compared to the HAR variants, such as 
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HARARE, HARSB and HARARE.SB.  

According to the results summarized in Tables 3-4, we conclude that it is of great significance 

to characterize the main empirical features of realized betas, such as long-run persistence, 

structural breaks and asymmetric risk effects, in a tractable and parsimonious way to yield accurate 

forecasts. 

Table 3 

Out-of-sample forecasting results based on RMSE loss. This table shows the results of out-of-sample short-term (h = 1) 

prediction based on RMSE loss function with rolling-window scheme. The first row is the average RMSEs of all 20 portfolios. The 

next row “Best” refers to the frequencies at which lowest RMSEs are achieved for each model when forecasting portfolio betas. 

MCS90 (MCS80) shows the number of times a forecasting model is included within the 90% (80%) confidence set under the RMSE 

loss. Finally, the rows denoted by “vs. X” demonstrate the pairwise DM test results. For instance, the integer “13” (in Row 5, 

Column 2) indicates that for 13 out of 20 portfolios, the AR model significantly beats the random walk model based on the DM 

test at the 5% level of significance. 
 RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

RMSE 0.4236 0.4586 0.4160 0.2856 0.3069 0.2454 0.2332 0.2305 0.2247 0.1797 
Best 0 0 0 6 0 0 0 0 0 14 
MCS80 0 0 0 7 1 0 0 0 0 16 
MCS90 0 0 0 7 1 0 0 0 0 17 
vs. RW 0 13 15 17 17 20 20 20 20 20 
vs. AR 7 0 20 20 20 19 19 19 19 19 
vs. ARMA 5 0 0 20 20 16 16 16 16 19 
vs. ARFIMA 3 0 0 0 6 6 9 9 9 12 
vs. FI 3 0 0 14 0 8 10 10 11 14 
vs. HAR 0 1 4 14 12 0 20 20 20 20 
vs. HARARE 0 1 4 11 10 0 0 19 20 20 
vs. HARSB 0 1 4 11 10 0 1 0 20 20 
vs. HARARE.SB 0 1 4 11 9 0 0 0 0 20 
vs. LHARARE.SB 0 1 1 8 6 0 0 0 0 0 

 

Table 4 

Out-of-sample forecasting results based on MAE loss. This table shows the results of out-of-sample short-term (h = 1) prediction 

based on MAE loss function with rolling-window scheme. See the notes to Tables 3 for further details.  
  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MAE 0.3205 0.3632 0.3369 0.2267 0.2500 0.1892 0.1784 0.1761 0.1709 0.1288 
Best 0 0 0 3 0 0 0 0 0 17 
MCS80 0 0 0 5 0 0 0 0 0 18 
MCS90 0 0 0 6 0 0 0 0 0 18 
vs. RW 0 11 15 17 16 20 20 20 20 20 
vs. AR 9 0 20 20 20 20 20 20 20 20 
vs. ARMA 5 0 0 20 20 17 19 19 19 20 
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vs. ARFIMA 3 0 0 0 4 9 9 9 9 14 
vs. FI 4 0 0 16 0 9 12 12 12 20 
vs. HAR 0 0 3 11 11 0 20 20 20 20 
vs. HARARE 0 0 1 11 8 0 0 19 20 20 
vs. HARSB 0 0 1 11 8 0 1 0 20 20 
vs. HARARE.SB 0 0 1 11 8 0 0 0 0 20 
vs. LHARARE.SB 0 0 0 6 0 0 0 0 0 0 

 

4.3. Economic analysis 

In addition to the statistical evaluations presented thus far, we also compare various 

forecasting models based on the economic criterion introduced in Section 4.1. Table 5 shows the 

ex-post realized betas of ten beta-sorted portfolios constructed using ex ante beta forecasts yielded 

from each model. Although the monotonically increasing pattern in portfolios’ betas is universally 

observed, the high-minus-low portfolio spreads can be very different across the ten competing 

models. For instance, as shown in the last row of Table 5, the entries corresponding to true long-

memory models exceed 1.37. In particular, the ARFIMA model generates a large spread of 1.4466, 

while the short-memory and stationary-difference models can only generate spreads below 1.2. In 

addition, the HAR model as well as all of its variants generate relatively large spreads with values 

greater than 1.37. Amongst all the HAR-type models, LHARARE.SB is the best-performing one that 

generates the largest spread of 1.4735.  
We also evaluate the ability of each model for creating market-neutral portfolios. After sorting 

stocks into 10 portfolios based on the forecasted betas, we construct ex-ante beta-neutral portfolios 

by solving the equation 𝑣𝑣𝑗𝑗,𝑡𝑡�̂�𝛽𝑗𝑗,𝑡𝑡
𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − �̂�𝛽𝑗𝑗,𝑡𝑡

𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡  =  0, where �̂�𝛽𝑗𝑗,𝑡𝑡
𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡 is the beta of long portfolios and  

�̂�𝛽𝑗𝑗,𝑡𝑡
𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡 is the beta of short portfolio. And applying the resulting weight 𝜐𝜐𝑗𝑗,𝑡𝑡 constructs ex-ante beta 

neutral portfolios with 𝑣𝑣𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗,𝑡𝑡
𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − 𝛽𝛽𝑗𝑗,𝑡𝑡

𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡   . Following Papageorgiou et al.(2016) and Hollstein 

(2019), we present p-value of Newey West t-statistics to test whether ex post portfolio betas deviate 

from 0. The results are shown in Table 6. 

The performance varies substantially across different forecasting models. The portfolios 

constructed using short-memory models in general have relatively low risk exposures. For instance, 

ARMA achieves an average risk exposure of 0.2076, which is almost identical to the performance 

of LHARARE.SB model. For the true long-memory models, FI also shows a good performance, 

ARFIMA, however, constructs portfolios with large risk exposures on average. The HAR model 
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and our proposed HAR-type models show similar performance when compared to the FI model. 

Amongst all competing models, LHARARE.SB works best in terms of this economic criterion. Next, 

turn to the t-test results for the null of zero ex-post portfolios’ beta. We observe that only the HAR-

type models can generate p-values greater than 0.1. The testing results show that neither ARMA 

model nor FI model constructs portfolios with zero ex-post beta. So we can conclude that 

LHARARE.SB constructs portfolios with lowest average risk exposures and these portfolios are 

market-neutral on average. 

 

Table 5 

Ex-post realized betas of portfolios sorted by ex ante beta forecasts. This table presents the ex-post realized betas of portfolios 

sorted by ex ante beta forecasts generated from each model. At the end of each trading day, we sort the individual stocks into ten 

portfolios based on stocks’ beta forecasts. In addition, we show the high-minus-low spreads, i.e., ex-post realized beta of the 

“highest-beta” portfolio minus that of the “lowest-beta” portfolio. The statistic values in parentheses are the HAC-robust standard 

errors (Andrews, 1991). *, ** and *** indicate significance at 10%, 5% and 1% levels, respectively. 

  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 
1 0.2221*** 0.4111*** 0.2757*** 0.0694*** 0.0995*** 0.0943*** 0.0864*** 0.0827*** 0.0798*** 0.0512*** 
 (0.0155) (0.0135) (0.0110) (0.0142) (0.0150) (0.0156) (0.0156) (0.0157) (0.0157) (0.0161) 
2 0.5146*** 0.6218*** 0.5942*** 0.4549*** 0.4841*** 0.4872*** 0.4837*** 0.4814*** 0.4768*** 0.4649*** 
 (0.0089) (0.0102) (0.0114) (0.0098) (0.0094) (0.0093) (0.0093) (0.0094) (0.0094) (0.0093) 
3 0.6023*** 0.6622*** 0.6614*** 0.5730*** 0.5690*** 0.5802*** 0.5741*** 0.5748*** 0.5725*** 0.5660*** 
 (0.0090) (0.0111) (0.0106) (0.0092) (0.0091) (0.0088) (0.0087) (0.0087) (0.0087) (0.0088) 
4 0.6720*** 0.7184*** 0.7249*** 0.6689*** 0.6677*** 0.6646*** 0.6642*** 0.6636*** 0.6622*** 0.6588*** 
 (0.0092) (0.0107) (0.0116) (0.0090) (0.0088) (0.0091) (0.0091) (0.0090) (0.0090) (0.0086) 
5 0.7520*** 0.7530*** 0.7689*** 0.7709*** 0.7558*** 0.7556*** 0.7551*** 0.7521*** 0.7531*** 0.7506*** 
 (0.0098) (0.0105) (0.0111) (0.0095) (0.0097) (0.0091) (0.0090) (0.0090) (0.0090) (0.0089) 
6 0.8219*** 0.7816*** 0.8250*** 0.8785*** 0.8528*** 0.8439*** 0.8485*** 0.8489*** 0.8495*** 0.8528*** 
 (0.0099) (0.0116) (0.0118) (0.0103) (0.0103) (0.0095) (0.0096) (0.0095) (0.0094) (0.0096) 
7 0.9078*** 0.8678*** 0.8759*** 0.9882*** 0.9557*** 0.9561*** 0.9589*** 0.9565*** 0.9581*** 0.9685*** 
 (0.0112) (0.0117) (0.0127) (0.0114) (0.0112) (0.0110) (0.0110) (0.0108) (0.0109) (0.0108) 
8 1.0314*** 0.9032*** 0.9618*** 1.1379*** 1.1033*** 1.1029*** 1.1071*** 1.1096*** 1.1120*** 1.1285*** 
 (0.0132) (0.0122) (0.0128) (0.0137) (0.0135) (0.0136) (0.0136) (0.0136) (0.0136) (0.0135) 
9 1.2754*** 1.0183*** 1.1387*** 1.4515*** 1.4069*** 1.4016*** 1.4127*** 1.4130*** 1.4180*** 1.4550*** 
 (0.0185) (0.0155) (0.0156) (0.0196) (0.0196) (0.0187) (0.0189) (0.0189) (0.0189) (0.0192) 
10 1.3246*** 1.0323*** 1.1634*** 1.5160*** 1.4696*** 1.4697*** 1.4806*** 1.4819*** 1.4866*** 1.5247*** 
 (0.0195) (0.0156) (0.0160) (0.0212) (0.0212) (0.0208) (0.0210) (0.0210) (0.0210) (0.0212) 
10-1 1.1026*** 0.6212*** 0.8877*** 1.4466*** 1.3701*** 1.3754*** 1.3942*** 1.3992*** 1.4068*** 1.4735*** 
  (0.0275) (0.0195) (0.0194) (0.0298) (0.0299) (0.0300) (0.0303) (0.0302) (0.0303) (0.0309) 
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Table 6 

Market-neutral anomaly portfolios. This table presents the average risk exposure of market-neutral anomaly portfolios and the 

testing results for the null of zero ex-post realized betas of these portfolios. The first row contains the values calculated by 

∑ 1
𝑇𝑇
�𝑣𝑣𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗,𝑡𝑡

𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − 𝛽𝛽𝑗𝑗,𝑡𝑡
𝑠𝑠ℎ𝑙𝑙𝑟𝑟𝑡𝑡�𝑇𝑇

𝑡𝑡=1 . The next row shows the p-values of one-sample t-tests for the null of zero ex-post realized beta of the 

anomaly portfolios. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. 

  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

Risk exposure 0.4052*** 0.2836*** 0.2076*** 0.3604*** 0.2417*** 0.2427 0.2370 0.2348 0.2320 0.2070 
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.4240 0.5944 0.6177 0.3373 0.1414 

 

Market participants usually care more about the economic gains than forecast precision. 

Therefore, we design a profitable trading strategy based on beta models to identify undervalued 

(overvalued) stocks, as suggested by Bollerslev et al. (2023).  

The portfolio construction procedure is as follows: First, we rely on the traditional CAPM 

model �̂�𝑟𝑖𝑖,𝑡𝑡+1 = �𝑟𝑟𝑀𝑀,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡��̂�𝛽𝑖𝑖,𝑡𝑡+1 + 𝑟𝑟𝑓𝑓,𝑡𝑡 to obtain the forecast return �̂�𝑟𝑖𝑖,𝑡𝑡+1 of stock i for the next 

day, where 𝑟𝑟𝑀𝑀,𝑡𝑡  and 𝑟𝑟𝑓𝑓,𝑡𝑡  are the returns of the S&P 500 and the risk-free interest rate on the 

current day, respectively, and �̂�𝛽𝑖𝑖,𝑡𝑡+1 is the beta forecast for the next day. We use the interest rate 

on the U.S. 10-year bond as the risk-free interest rate. Second, each day we select 10 stocks with 

the highest ��̂�𝑟𝑖𝑖,𝑡𝑡+1 − 𝑟𝑟𝑖𝑖,𝑡𝑡� and construct the long-short portfolio as follows: if the return forecast 

of stock i is above (below) the actual current-day return, we expect its price to rise (fall) the next 

day and take a long (short) position, allocating 𝑤𝑤𝑖𝑖 amount of money, where 𝑤𝑤𝑖𝑖 is the weight 

based on the market capitalization of stock i. Finally, we repeat this strategy daily, using the daily 

beta forecasts to compute the cumulative returns, average annualized returns, and Sharpe ratio to 

assess the performance of different forecasting models. The intuition behind this trading strategy 

is straightforward: rational investors aim to buy undervalued stocks and sell overvalued stocks. 

The differences between current returns and return forecasts indicate arbitrage opportunities. 

To further evaluate the economic significance of the forecasting models, we employ the 

quadratic utility to compute the economic value △, according to Bollerslev et al. (2016b): 

𝑈𝑈(𝑟𝑟𝑘𝑘,𝛾𝛾) = �1 + 𝑟𝑟𝑝𝑝𝑘𝑘� −
𝛾𝛾

2(1+𝛾𝛾)
(1 + 𝑟𝑟𝑘𝑘)2,                    (21) 

where 𝑟𝑟𝑝𝑝𝑘𝑘 refers to the monthly cumulative rate of return on portfolio associated with model k, 
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and γ refers to the risk aversion rate. In this paper, we consider two levels of risk aversion: a mild 

rate γ = 1 and a strong rate γ = 10. The economic value ∆ is the value such that 

∑ 𝑈𝑈(𝑟𝑟𝑘𝑘, 𝛾𝛾) = ∑ 𝑈𝑈(𝑟𝑟𝑙𝑙 − ∆, 𝛾𝛾)𝑇𝑇
𝑡𝑡=𝑇𝑇1+1

𝑇𝑇
𝑡𝑡=𝑇𝑇1+1 .                    (22) 

The greater the ∆, the more returns a risk-aver investor is willing to sacrifice to switch from model 

l to model k. For brevity, we display only the economic values of each forecasting model against 

the benchmark RW model.  
Table 7 presents the results of the economic evaluation for each forecasting model based on 

our stock selection strategy. The results show that the portfolio based on the LHARARE.SB model 

achieves the highest annualized return, Sharp ratio, and economic values compared to those based 

on other models, with the average annualized return of 20.0659% and the average Sharp ratio of 

0.2049. Notably, almost all long-memory models perform better than short-memory models and 

the benchmark models. Furthermore, according to the results of △ for 𝛾𝛾 = 1 and 𝛾𝛾 = 10, the 

economic gains of the LHARARE.SB model are more pronounced when the risk aversion rate is 

higher. This suggests that the utility for risk-seeking investors can be significantly improved by 

relying on the LHARARE.SB model for stock trading.  

Figure 7 plots the cumulative returns of the proposed HAR-type models and the S&P 500 

over the out-of-sample period. We find that the LHARARE.SB model yields better out-of-sample 

cumulative returns compared to other models. Additionally, out-of-sample cumulative portfolio 

returns based on the HAR-type models outperform the benchmark S&P 500 index return.   

Table 7 

Economic values evaluation. This table presents the annualized cumulative returns, average returns, Sharp ratios, and economic 

values △ for the forecasting models. γ refers to the risk aversion rate. We use the interest rate on U.S. 10-year bonds as the risk-

free interest rate. The economic value △ is estimated using the quadratic utility with risk aversion, as described by Bollerslev et al. 

(2016b). 

Models  
Annualized Return (%) Sharp Ratio △ 

Cumulative Average Cumulative Average γ=1 γ=10 

RW -0.5899  -0.4341  -0.0276  -0.0259  -  -  
AR -12.0801  -11.9234  -0.1567  -0.1550  -11.5682  -12.2773  

ARMA -13.8240  -13.6656  -0.1754  -0.1736  -13.4808  -15.8151  
ARFIMA 3.7465  3.9091  0.0208  0.0226  3.6673  -3.5047  

FI -7.8423  -7.6834  -0.1083  -7.6834  -7.5522  -10.4267  
HAR 15.1556  15.3108  0.1501  0.1519  15.7947  16.2305  

HARARE 17.6299  17.7862  0.1774  0.1792  18.1585  17.6047  
HARSB 15.2476  15.4063  0.1495  0.1513  15.5459  12.7565  
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HARARE.SB 14.4275  14.5845  0.1411  0.1429  14.8946  13.7678  
LHARARE.SB 19.9098  20.0659  0.2032  0.2049  20.4597  20.1002  

 

 
Figure 7. Accumulative returns of various models and S&P 500 for the out-of-sample period. This figure shows the 

accumulative returns for various HAR-type models as well as for S&P 500 index for the out-of-sample period. 

 

5. Further Analysis 
5.1 Decomposition of MSE 

In this section, we delve into the reasons behind the wide differences in forecasting 

performance of various models. Following Mincer and Zarnowitz (1969), the analysis approach is 

based on decomposing the Mean Squared Error (note that MSE = RMSE2) of out-of-sample 

realized beta forecasts as follows, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = (�̅�𝛽𝑖𝑖 − �̅̂�𝛽𝑖𝑖)2 + (1 − 𝑏𝑏𝑖𝑖)2𝜎𝜎2(�̂�𝛽𝑖𝑖) + (1 − 𝑝𝑝𝑖𝑖2)𝜎𝜎2(�̂�𝛽𝑖𝑖),               (23) 

where �̅̂�𝛽𝑖𝑖 and 𝜎𝜎2(�̂�𝛽𝑖𝑖) are the sample mean and variance of beta forecasts, respectively, and 𝑏𝑏𝑖𝑖 

and 𝑝𝑝𝑖𝑖2 are the slope coefficient and the coefficient of determination of the regression 𝛽𝛽𝑖𝑖 = 𝑎𝑎𝑖𝑖 +

𝑏𝑏𝑖𝑖�̂�𝛽𝑖𝑖 + 𝜖𝜖𝑖𝑖, respectively. The first component of MSE in Equation (23) is associated with the bias 

term, which indicates, on average, how much the forecasts deviate from the true values. The second 

term characterizes inefficiency. A large inefficiency represents that the forecasting model tends to 

yield positive forecast errors for low values and negative forecast errors for high values. The last 

random error term is unrelated to the forecasts as well as the true values. 

 Table 8 reports mean values for each component of MSE. Recall from Table 3, RW, AR and 

ARMA models generate large RMSEs. However, their causes are very distinct. For instance, short-
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memory models, i.e., AR and ARMA, have sizable biases and random errors. On the contrary, RW 

model has surprisingly the smallest bias term, in the meantime, however, it has the largest 

inefficiency component amongst all models. Next, comparing ARFIMA with ARMA, we find that 

the true long-memory structure plays a key role in substantially reducing the bias and random error 

terms. Again, from Table 3, we have learned that HAR-type models perform exceedingly well in 

terms of RMSE. Based on the analysis of MSE decomposition, it is mainly because they are all 

approximately unbiased. The LASSO approach further reduces the inefficiency and random error 

components when applied to HARARE.SB, though at a slight cost to bias term. As a consequence, it 

is not surprising to find that LHARARE.SB is the best-performing model in terms of RMSE.     

 

Table 8 

Decomposition of MSE. This table shows the results of MSE decomposition based on short-term (h = 1) forecast errors of realized 

betas. All entries within this table represent the average across 20 beta-sorted portfolios. 
  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

Bias 0.0001 0.1167 0.1237 0.0659 0.0735 0.0005 0.0005 0.0003 0.0003 0.0046 
Inefficiency 0.0947 0.0368 0.0085 0.0248 0.0091 0.0202 0.0173 0.0168 0.0155 0.0056 
Random error 0.0541 0.1096 0.1095 0.0324 0.0495 0.0306 0.0285 0.0280 0.0271 0.0177 

 
5.2 In consideration of beta spillover effects 

Recent studies address volatility spillover effects and commonalities in dynamic 

dependencies in multivariate volatility modeling (Herskovic et al., 2016; Bollerslev, et al., 2018). 

Similarly, we consider beta spillover effects and construct Vector HAR (VHAR) models to 

forecast betas. Specifically, the VHAR models can be regarded as a parsimonious version of the 

HAR-type model and are estimated by pool-fitting method (Bollerslev et al., 2018). To compare 

the performance of the competing models, we adopt 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2   to evaluate the out-of-sample 

forecasting performance against the benchmark HAR-type model, as shown in Equation (24). 

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2 = 1 −
∑ 𝜔𝜔𝑖𝑖,𝑡𝑡�𝛽𝛽𝑖𝑖,𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛽𝛽𝚤𝚤,𝑡𝑡
𝑚𝑚� �

2𝑇𝑇
𝑡𝑡=𝑇𝑇1+1

∑ 𝜔𝜔𝑖𝑖,𝑡𝑡�𝛽𝛽𝑖𝑖,𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛽𝛽𝚤𝚤,𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻

� �
2𝑇𝑇

𝑡𝑡=𝑇𝑇1+1

,                     (24) 

where 𝛽𝛽𝑖𝑖,𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙  refers to the actual realized beta of stock i at time t, 𝛽𝛽𝚤𝚤,𝑡𝑡𝑚𝑚�   and 𝛽𝛽𝚤𝚤,𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻�   are the 

forecasted realized betas from model m and the HAR model, respectively, and 𝜔𝜔𝑖𝑖,𝑡𝑡 is the weight 

of forecasting errors. Specifically, we consider two types of weighting methods to compute 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2 : 
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equal-weight and value-weight. In the equal-weight scenario, 𝜔𝜔𝑖𝑖,𝑡𝑡 is a constant 1/N, while in the 

value-weight scenario, 𝜔𝜔𝑖𝑖,𝑡𝑡 depends on the market capitalization of each stock. 

The 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2   results are shown in Table 9. We find that all VHAR models considering beta 

spillover effects have better forecast precision compared to the benchmark HAR model in both 

equal-weight and value-weight scenarios. The VHARARE.SB model, which includes indicators of 

both structural breaks and asymmetric risk effects, has the highest 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  among all VHAR models, 

with values of 10.84% and 10.81% for the two weighting scenarios, respectively. However, we 

find that the univariate LHARARE.SB model, implemented by the LASSO method, still outperforms 

all VHAR-type models with 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  values of 13.97% and 13.90% for the two weighting scenarios. 

 

Table 9 

Forecast performance considering beta spillover effects. This table presents the average 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  of VHAR models that take beta 

spillover effects into consideration. Equal-weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  refers to 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  based on equal weights of 1/N, while value-weighted 

𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  refers to 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  weighted by the market values of the stocks. 

Models 
Equal-weighted 

𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  
Value-weighted 

𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  
VHAR 4.28% 4.25% 
VHARARE 6.76% 6.74% 
VHARSB 7.13% 7.10% 
VHARARE.SB 10.84% 10.81% 
LHARARE.SB 13.97% 13.90% 

 
 

5.3 Alternative features and machine learning techniques 

As shown in the literature, machine learning techniques contribute to the selection of 

predictors and improve predictive accuracy (Gu et al., 2020; Murray et al., 2022; Guijaro-Ordonez 

et al., 2022; Jiang et al., 2023; Bollerslev et al., 2023). Therefore, we introduce additional machine 

learning techniques, such as Ridge regression, Elastic-Net regression, and conventional principal 

component regression (PCR), to the HAR models with all the proposed predictors, including those 

for structural breaks and asymmetric risk effects. We compare the forecasting models using 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  

as shown in Eq.(24).  

Moreover, to address the influence of structural breaks on the slopes of the HAR models, we 

introduce interaction predictors by interacting the break dummies with ARE predictors. These 
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interaction terms consist of the structural break dummy variable and all other predictors, including 

the asymmetric risk effect predictors and the basic HAR predictors (daily, weekly and monthly 

realized betas), and we denote this model as HARARE.SB.interact. 

The results are shown in Table 10. Panel A and Panel B display the equal-weighted and value-

weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  results for forecasting models based on various machine learning methods. Table 

10 suggests that forecasting models based on the LASSO method outperform those based on 

alternative machine learning methods and the benchmark PCR method. Moreover, considering 

interaction terms does not improve forecast accuracy but increases model complexity and 

computational burden. 

 

Table 10 

Forecast performance considering alternative features and machine learning techniques. This table presents the weighted 

average 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  of HAR-type models that consider asymmetric risk effects, structural break dummies, and interaction predictors 

constructed by interacting break dummies and other predictors. We employ alternative machine learning techniques such as Ridge 

regression, Elastic-Net regression, and PCR for predictor selection. Equal-weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  refers to 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  based on equal weights 

of 1/N, while value-weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  refers to 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  weighted by the market values of the stocks. 
Panel A: Equal-weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  

 LASSO Ridge ENet PCR 
HARARE 10.27% 6.36% 7.94% 6.90% 
HARARE.SB 13.97% 11.91% 10.58% 9.06% 
HARARE.SB.interact 14.12% 12.08% 10.96% 10.57% 

Panel B: Value-weighted 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠2  
  LASSO Ridge ENet PCR 
HARARE 10.30% 6.52% 7.98% 6.91% 
HARARE.SB 13.90% 11.98% 10.79% 9.07% 
HARARE.SB.interact 14.18% 12.08% 11.03% 10.57% 

 
 
5.4 The importance of predictors 

This section analyzes how important the proposed new predictors are for forecasting realized 

betas and how their importance may vary over time. Figure 8 shows the time-series plots of 

frequencies at which daily, weekly and monthly asymmetric risk predictors (i.e., the four realized 

semi-betas and the two realized upside and downside betas) are selected by LASSO approaches. 

More specifically, given a rolling estimation window, we apply the LASSO method to HARARE.SB 

regression for each individual stock, the selection rate for each proposed new predictor is then 



31 
 

calculated across all 327 individual stocks. It is observed that the selection rates for all asymmetric 

risk predictors vary substantially over time and it seems that no recognizable patterns emerge. The 

average selection rates over all rolling windows are reported in Table 11. We find that amongst all 

the daily and weekly predictors, realized semi-beta 𝛽𝛽𝑀𝑀− and realized downside beta 𝛽𝛽− have 

the highest selection rates, respectively (see entries in the columns denoted by “daily” and 

“weekly”). In fact, the realized downside beta 𝛽𝛽− predictors constructed over different horizons 

have very similar selection rates. This observation is also confirmed by time-series plots shown in 

Figure 8. The three 𝛽𝛽− curves fluctuate in a relatively narrow range centered at around 0.87. The 

above findings indicate that the downside risk of financial markets has a significant impact on the 

beta forecasts. Another interesting finding is that the long-run positive risk component 𝛽𝛽+ is also 

an important predictor for realized betas. Finally, Figure 9 visualizes the time series of average 

number of structural breaks selected by the LASSO approach across all 327 individual stocks. It 

is observed that the number of structural breaks varies tightly between 4.7 and 5.2, which indicates 

that the structural break dummies also provide nontrivial predictive power for realized betas. 

 

Table 11 

Average selection rates for various components of realized beta. This table summarizes the average selection rates calculated 

over all estimation windows. See the notes to Figure 7 for more details. 

  daily weekly monthly 

𝛽𝛽𝑝𝑝 0.8722 0.7921 0.6993 
𝛽𝛽𝑀𝑀− 0.8917 0.8414 0.7859 
𝛽𝛽𝑀𝑀+ 0.8784 0.8192 0.7632 
𝛽𝛽𝑁𝑁 0.8730 0.8053 0.8220 
𝛽𝛽+ 0.8377 0.8438 0.9150 
𝛽𝛽− 0.8879 0.8744 0.8617 
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Figure 8. Selection rates for various components of realized beta. This figure shows the time-series plots of frequencies at 

which daily, weekly and monthly asymmetric risk predictors, including the four realized semi-betas and the two realized upside 

and downside betas, are selected by the LASSO approach over all rolling estimation windows. 
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Figure 9. Average number of structural breaks. This figure shows the time-series plots of the average number of structural 

breaks across all individual stocks. 

 

6. Robustness Check 

6.1. Different loss functions 

We consider two heteroscedasticity-adjusted statistics, the Heteroscedasticity-adjusted 

RMSE (HRMSE) and the Heteroscedasticity-adjusted MAE (HMAE) to better accommodate the 

heteroscedasticity in the forecast errors of realized betas (Andersen et al., 1999). 

HRMSE = �1
𝜗𝜗
∑ ��𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ − �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ�/𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ�

2𝜗𝜗
𝑡𝑡=1 ,                  (25) 

HMAE = 1
𝜗𝜗
∑ ��𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ − �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ�/𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ�,𝜗𝜗
𝑡𝑡=1                    (26) 

where 𝜗𝜗 is the total number of beta forecasts over the out-of-sample period, 𝛽𝛽𝑖𝑖,𝑡𝑡+ℎ is the true 

value of realized beta on day t+h and �̂�𝛽𝑖𝑖,𝑡𝑡+ℎ is the corresponding ex ante forecast.  

The results are shown in Table A2 in the Appendix. The findings in general are still similar to 

those in Tables 3 and 4. Combining HARARE.SB with the LASSO method remains the best 

forecasting approach under both heteroscedasticity-adjusted loss functions.  

 

6.2. Different rolling estimation windows  

For robustness checks, we also replicate the forecast experiment using rolling windows of 

400 days, 800 days, and 1000 days. The results are shown in Table A3. we find that the true long-
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memory models, including ARFIMA and FI, and the HAR variants with structural break dummies 

and asymmetric risk estimators have comparable forecasting performance. Our proposed HARARE, 

HARSB and HARARE.SB models consistently generate more accurate beta forecasts than the classic 

HAR in terms of RMSE. Amongst all the competing models, LHARARE.SB still performs best. 

 

6.3. Different data sampling frequencies 

Moreover, we consider to use data sampled at alternative frequencies to construct various 

realized measures described in Section 2.3. With higher-frequency data, realized measures may be 

deteriorated due to larger microstructure noise. As a result, we follow Bollerslev et al. (2016a) and 

Becker et al. (2021) to consider the 30-minute sampling frequency in this section. We report the 

forecasting results for daily realized betas and monthly realized betas in Tables A5. The results are 

similar and consistent with baseline results as discussed above.  

 

6.4. Different sub-periods 

Moreover, we divide the sample period into three sub-periods: January 2007 to December 

2011, January 2012 to December 2015, and January 2016 to December 2019, following Bollerslev 

et al. (2023). The first sub-period corresponds to the global financial crisis, the second to the 

market recovery period, and the last to the steady growth period. We specify the rolling windows 

for 1/5 of the full-sample length. The results, shown in Table A4, indicate that the proposed 

HARARE, HARSB and HARARE.SB models exhibit better forecasting performance compared to other 

models. These three models particularly excel during the second sub-period when the market is in 

an upturn.  

 

6.5. Different quantiles of the beta distribution 

Additionally, we examine the forecasting performances of beta models across different 

quantiles of the beta distribution. Specifically, we sort the betas into quantiles and conduct a robust 

analysis for the lowest 1/5 betas, the middle betas, and the highest 1/5 betas. For each quintile of 

betas, the individual stocks are sorted into 10 portfolios. The results are shown in Table A6. We 

find that the LHARARE.SB model performs the best among the HAR-type models for all three 

scenarios. For the upper-tail betas, all HAR-type models outperform the conventional benchmark 
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models, including RW, AR, ARMA, ARFIMA, and FI models. For the lower-tail betas, only the 

LHARARE.SB model outperforms the conventional ARMA, ARFIMA, and FI models in most cases. 

However, for the middle-beta sample, we find that HAR-type models perform worse than the 

conventional ARFIMA and FI models 

 

6.6. Different sector-specific portfolios 

Finally, we evaluate all the models based on forecasting results with sector-specific portfolios. 

We categorize all the 327 individual stocks and divide them into 12 different industry groups, 

including “Food Catering and Retail”, “Energy and Electric”, “Finance and Management”, 

“Biomedicines”, “Semiconductor and Electronic Components”, “Industrial Products”, 

“Information Technology Service”, “Hotels, Entertainment and Media”, “Automobile and 

Machinery”, “Aerospace”, “Bioscience” and “Others” (see Table A1 in Appendix A). Then we 

forecast realized betas of each portfolio. The results are shown in Table A7. With sector-specific 

portfolios, we still find that HARSB, HARARE.SB and LHARARE.SB models show the best 

performance. The classic HAR model is outperformed by other HAR variants, indicating, again, 

that the structural break dummies and asymmetric risk estimators provide nontrivial predictive 

power for realized betas. Therefore, the results are robust to the baseline results.   

 

7. Conclusion 

Beta is crucial to asset pricing, portfolio allocation and risk management, which can be 

consistently estimated by realized beta estimator using high-frequency financial data. Empirically, 

we find that realized betas have a number of prominent features, including long memory, structural 

breaks, and asymmetric risk effects. To characterize these features, we propose a set of new 

predictors for which structural breaks are detected by Iterated Cumulative Sum of Square (ICSS) 

algorithm and asymmetric risk effects are captured by decomposing the realized beta further into 

various components following Ang et al. (2006) and Bollerslev et al. (2021). The long-run 

dependence of realized betas can be reproduced by considering the HAR-type models that 

incorporate structural breaks and asymmetric risk effects. In addition, to achieve model parsimony 

and to keep only the predictors with significant power, we apply Least Absolute Shrinkage and 

Selection Operator (LASSO) method to the proposed HAR-type models for variable selection. We 
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compare these new HAR-type models with a variety of competing models, including difference-

stationary, short-memory and long-memory models through a comprehensive study of their 

forecasting performance.  

The main empirical findings can be summarized as follow. (i) The difference-stationary and 

short-memory models are not suitable for forecasting realized betas; (ii) The true long-memory 

models show decent forecasting performance; (iii) The estimators of structural breaks and 

asymmetric risk effects provide nontrivial predictive power for realized betas; (iv) The LASSO 

approach further improves HAR-type models by dynamically selecting the most important 

predictors, which may vary substantially over time. 
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Appendix A 

Table A1 

Industrial classification. This table summarizes the number of stocks for each industrial sector. 

Industry Classification Number of stocks 

Food catering and retail 60 
Energy and electric 43 
Finance and management 38 
Biomedicines 35 
Semiconductor and electronic components 39 
Industrial products 21 
Information technology service 18 
Hotels, entertainment and media 18 
Automobile and machinery 17 
Aerospace 12 
Bioscience 11 
Others 15 

Total 327 
 

Table A2 

Out-of-sample forecasting results based on HRMSE and HMAE loss functions. This table shows the results of out-of-sample 

short-term (h = 1) prediction based on HRMSE (left of the forward slash) and HMAE (right of the forward slash) loss functions 

with rolling-window scheme. See the notes to Tables 3 for further details. 
  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 2/0 2/0 2/0 6/2 4/0 2/0 2/0 2/0 2/0 20/20 
MCS90 3/0 3/0 3/0 9/3 6/0 3/0 3/0 3/0 3/0 20/20 
vs. RW 0/0 7/8 8/11 17/18 18/18 19/19 19/19 19/19 19/19 20/20 
vs. AR 13/12 0/0 15/16 20/20 20/20 19/20 20/20 20/20 20/20 20/20 
vs. ARMA 12/9 5/4 0/0 20/20 20/20 19/20 20/20 20/20 20/20 20/20 
vs. ARFIMA 3/2 0/0 0/0 0/0 10/7 11/10 14/11 14/11 14/12 16/19 
vs. FI 2/2 0/0 0/0 10/13 0/0 12/12 13/14 13/14 13/14 14/18 
vs. HAR 1/1 1/0 1/0 9/10 8/8 0/0 19/19 20/20 20/20 20/20 
vs. HARARE 1/1 0/0 0/0 6/9 7/6 1/1 0/0 12/16 19/20 19/20 
vs. HARSB 1/1 0/0 0/0 6/9 7/6 0/0 8/4 0/0 19/19 20/20 
vs. HARARE.SB 1/1 0/0 0/0 6/8 7/6 0/0 1/0 1/1 0/0 19/20 
vs. LHARARE.SB 0/0 0/0 0/0 4/1 6/2 0/0 1/0 0/0 1/0 0/0 
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Table A3 

Forecasting results based on shorter rolling estimation windows. This table shows the results of out-of-sample short-term (h = 

1) prediction using 400-day (left of the forward slash), 800-day (middle of the forward slash) and 1000-day (right of the forward 

slash) rolling estimation windows. Predictive accuracy is measured by the RMSE loss function. Refer to the notes in Table 3 for 

more details. 

  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 0/0/0 0/0/0 0/0/0 7/7/7 1/1/1 0/0/0 0/0/0 0/0/0 0/0/0 17/17/17 
MCS90 0/0/0 0/0/0 0/0/0 8/8/8 2/1/1 0/0/0 0/0/0 0/0/0 0/0/0 17/18/18 
vs. RW 0/0/0 15/14/15 16/15/15 17/17/17 17/17/17 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 
vs. AR 5/6/5 0/0/0 19/19/19 20/20/20 20/20/20 18/19/19 18/19/19 19/19/19 19/19/19 19/19/19 
vs. ARMA 4/5/5 1/1/1 0/0/0 20/20/20 19/20/20 16/16/16 16/17/17 16/17/17 16/17/17 18/18/19 
vs. ARFIMA 3/3/3 0/0/0 0/0/0 0/0/0 7/6/6 6/7/7 7/9/8 7/9/8 8/9/9 12/12/12 
vs. FI 3/3/3 0/0/0 1/0/0 13/14/14 0/0/0 9/9/9 10/10/11 10/10/11 10/12/11 15/14/14 
vs. HAR 0/0/0 2/1/1 4/4/4 14/13/13 11/11/11 0/0/0 20/20/20 20/20/20 20/20/20 20/20/20 
vs. HARARE 0/0/0 2/1/1 4/3/3 13/11/12 10/10/9 0/0/0 0/0/0 17/19/19 20/20/20 20/20/20 
vs. HARSB 0/0/0 1/1/1 4/3/3 13/11/12 10/10/9 0/0/0 3/1/1 0/0/0 20/20/20 20/20/20 
vs. HARARE.SB 0/0/0 1/1/1 4/3/3 12/11/11 10/8/9 0/0/0 0/0/0 0/0/0 0/0/0 20/20/20 
vs. LHARARE.SB 0/0/0 1/1/1 2/2/1 8/8/8 5/6/6 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 

 

Table A4 

Forecasting results based on prior sub-periods rolling estimation windows. This table shows the results of out-of-sample short-

term (h = 1) prediction using the sub-periods from January 2007 to December 2011 (left of the forward slash), January 2012 to 

December 2015 (middle of the forward slash) and January 2016 to December 2019 (right of the forward slash). Predictive accuracy 

is measured by the RMSE loss function. See the notes to Table 3 for more details. 
 RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 0/0/0 0/0/0 0/0/0 6/7/9 4/0/0 0/0/0 0/0/0 0/0/0 0/0/0 17/19/15 
MCS90 0/0/0 0/0/0 0/0/0 6/9/9 4/1/0 0/0/0 0/0/0 0/0/0 0/0/0 17/20/16 
vs. RW 0/0/0 14/13/13 15/15/14 16/17/17 16/17/17 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 
vs. AR 6/7/7 0/0/0 19/19/20 20/20/20 20/20/20 19/19/18 19/19/18 19/19/18 19/19/18 19/20/20 
vs. ARMA 5/5/6 1/1/0 0/0/0 20/20/20 19/20/20 15/16/16 16/17/18 16/17/18 16/18/18 17/19/18 
vs. ARFIMA 4/3/3 0/0/0 0/0/0 0/0/0 9/5/4 7/6/6 8/6/7 8/8/6 10/8/9 12/12/11 
vs. FI 4/3/3 0/0/0 1/0/0 11/15/16 0/0/0 8/9/8 10/10/9 10/10/9 11/10/9 14/15/16 
vs. HAR 0/0/0 1/1/2 5/4/4 13/14/14 12/11/12 0/0/0 20/20/20 20/20/20 20/20/20 20/20/20 
vs. HARARE 0/0/0 1/1/2 4/3/2 12/14/13 10/10/11 0/0/0 0/0/0 15/18/19 20/20/20 20/20/20 
vs. HARSB 0/0/0 1/1/2 4/3/2 12/12/14 10/10/11 0/0/0 5/2/1 0/0/0 20/20/20 20/20/20 
vs. HARARE.SB 0/0/0 1/1/2 4/2/2 10/12/11 9/10/11 0/0/0 0/0/0 0/0/0 0/0/0 19/20/20 
vs. LHARARE.SB 0/0/0 1/0/0 3/1/2 8/8/9 6/5/4 0/0/0 0/0/0 0/0/0 1/0/0 0/0/0 
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Table A5 

Short-term forecasting results based on data sampled at the 30-minute frequency. This table shows the results of out-of-

sample short-term (h = 1) (left of the forward slash) and long-term (h = 22) (right of the forward slash) prediction using data 

sampled at the 30-minute frequency. Predictive accuracy is measured by the RMSE loss function. See the notes to Table 3 for more 

details. 

  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 0/0 0/0 0/0 7/12 1/3 0/0 0/0 0/0 0/0 17/11 
MCS90 0/0 0/0 0/0 8/12 1/3 0/0 0/0 0/0 0/0 18/11 
vs. RW 0/0 15/14 15/15 17/19 17/19 20/20 20/20 20/20 20/20 20/20 
vs. AR 5/6 0/0 19/19 20/20 20/20 19/18 19/18 19/19 19/19 19/19 
vs. ARMA 5/5 1/1 0/0 20/20 20/20 16/16 17/16 17/16 17/16 18/18 
vs. ARFIMA 3/1 0/0 0/0 0/0 6/3 7/4 8/4 8/4 9/4 12/6 
vs. FI 3/1 0/0 0/0 14/17 0/0 9/4 11/5 11/5 12/5 14/8 
vs. HAR 0/0 1/2 4/4 13/16 11/16 0/0 20/20 20/20 20/20 20/20 
vs. HARARE 0/0 1/2 3/4 12/16 9/15 0/0 0/0 19/16 20/20 20/20 
vs. HARSB 0/0 1/1 3/4 12/16 9/15 0/0 1/4 0/0 20/20 20/20 
vs. HARARE.SB 0/0 1/1 3/4 11/16 8/15 0/0 0/0 0/0 0/0 20/20 
vs. LHARARE.SB 0/0 1/1 2/2 8/14 6/12 0/0 0/0 0/0 0/0 0/0 

 

Table A6 

Forecasting results based on beta distribution. This table shows the results of out-of-sample short-term (h = 1) prediction of 

lower-betas (left of the forward slash), middle-betas (middle of the forward slash) and higher-betas (right of the forward slash) 

based on the three quantiles of the beta distribution equally. Predictive accuracy is measured by the RMSE loss function. See the 

notes to Table 3 for more details. 
 RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 0/0/0 0/0/0 0/0/0 0/10/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 10/0/10 

MCS90 0/0/0 0/0/0 0/0/0 0/10/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 10/1/10 

vs. RW 0/0/0 6/10/4 7/10/5 10/10/8 10/10/8 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 

vs. AR 4/0/6 0/0/0 10/10/10 10/10/10 10/10/10 10/8/10 10/8/10 10/8/10 10/8/10 10/9/10 

vs. ARMA 3/0/5 0/0/0 0/0/0 10/10/10 10/10/10 10/0/10 10/1/10 10/1/10 10/1/10 10/8/10 

vs. ARFIMA 0/0/2 0/0/0 0/0/0 0/0/0 10/0/2 3/0/9 4/0/9 5/0/9 5/0/9 6/0/9 

vs. FI 0/0/2 0/0/0 0/0/0 0/10/8 0/0/0 1/0/9 2/0/9 3/0/9 3/0/9 5/2/10 

vs. HAR 0/0/0 0/2/0 0/10/0 7/10/1 9/10/1 0/0/0 10/10/10 10/10/10 10/10/10 10/10/10 

vs. HARARE 0/0/0 0/2/0 0/9/0 6/10/1 8/10/1 0/0/0 0/0/0 8/9/8 10/10/10 10/10/10 

vs. HARSB 0/0/0 0/2/0 0/9/0 5/10/1 7/10/1 0/0/0 2/1/2 0/0/0 9/10/10 10/10/10 

vs. HARARE.SB 0/0/0 0/2/0 0/9/0 5/10/1 7/10/1 0/0/0 0/0/0 1/0/0 0/0/0 10/10/10 

vs. LHARARE.SB 0/0/0 0/1/0 0/2/0 4/10/1 5/8/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
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Table A7 

Forecasting results based on sector-specific portfolios. This table shows the results of out-of-sample short-term (h = 1) forecasts 

of sector-specific portfolios’ betas. Predictive accuracy is measured by the RMSE loss function. See the notes to Table 3 for more 

details. The construction of these portfolios is described in Section 6.3. See also Table A1 in Appendix A for details. 

  RW AR ARMA ARFIMA FI HAR HARARE HARSB HARARE.SB LHARARE.SB 

MCS80 0 0 0 3 0 0 0 0 0 11 
MCS90 0 0 0 4 0 0 0 0 0 11 
vs. RW 0 7 8 9 9 12 12 12 12 12 
vs. AR 5 0 12 12 12 11 11 11 11 11 
vs. ARMA 4 0 0 12 12 10 10 10 10 11 
vs. ARFIMA 3 0 0 0 5 6 6 6 6 8 
vs. FI 3 0 0 7 0 6 9 9 9 9 
vs. HAR 0 1 2 6 6 0 12 12 12 12 
vs. HARARE 0 1 2 6 3 0 0 12 12 12 
vs. HARSB 0 1 2 6 3 0 0 0 12 12 
vs. HARARE.SB 0 1 2 6 3 0 0 0 0 12 
vs. LHARARE.SB 0 1 1 4 3 0 0 0 0 0 

 


