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From mean-variance analysis to mental accounting and back:

Bridging contributions of Markowitz to portfolio selection

Abstract

Modern portfolio theory considers investors whose preferences are often represented by a

function defined over the means and variances of portfolio returns and specified with a risk

aversion coeffi cient; see Markowitz (1952). In Das et al. (2010), however, Markowitz and

three co-authors consider an investor who has: (i) mental accounts (hereafter, ‘accounts’)

with different investing motives; (ii) preferences within an account that are specified by

some maximum threshold probability of the account’s return being less than or equal to

some threshold return; and (iii) threshold probabilities and threshold returns (hereafter,

‘thresholds’) that possibly vary across accounts. Like the optimal portfolio in Markowitz’s

model, optimal portfolios within accounts in Das et al.’s model are on the mean-variance

frontier and so is the corresponding aggregate portfolio if short selling is allowed. Bridging

Markowitz’s contributions, several analytical results are here uncovered. These results en-

compass: (1) the losses arising from misspecifying a risk aversion coeffi cient in Markowitz’s

model; (2) the impact of using thresholds instead of a risk aversion coeffi cient to specify

investor preferences on portfolio selection; and (3) the risk aversion coeffi cients of investors

in Markowitz’s model who select the same portfolios as an investor in Das et al.’s model

selects within accounts.

Keywords: modern portfolio theory; mean-variance analysis; mental accounting; tail risk;

behavioral finance.

JEL Classification: G11



1. Introduction

The origins of modern portfolio theory can be traced to the seminal paper of Markowitz

(1952). In his model, investors assess portfolios based on their expected rewards and risks.1

The expected reward of a portfolio is measured by the mean of the portfolio’s future return

(hereafter, ‘mean’or ‘expected return’). The risk of a portfolio is measured by the variance

or standard deviation of the portfolio’s future return (hereafter, respectively, ‘variance’and

‘standard deviation’). Since Markowitz considers investors who prefer the portfolio with the

smallest variance among portfolios with the same mean, they select portfolios on the mean-

variance frontier. A portfolio is on the mean-variance frontier if there is no portfolio with

the same mean and a smaller variance. In order to locate an investor’s optimal portfolio on

this frontier, the investor’s preferences are often represented by a function defined over the

means and variances of portfolios and specified with a risk aversion coeffi cient.2

In Das et al. (2010), however, Markowitz and three co-authors note that modern portfolio

theory does not address the practical fact that an investor might have: (i) various investing

motives such as retirement and bequest;3 (ii) preferences that are diffi cult to correctly specify

with a risk aversion coeffi cient;4 and (iii) different goals for different investing motives. Ac-

cordingly, their model considers an investor whose wealth is divided among mental accounts

(hereafter, ‘accounts’) with different investing motives. The investor’s preferences within a

1Markowitz (1959) reviews the model of Markowitz (1952), whereas Markowitz (2000, 2008) collects his
work. For insightful perspectives on his contributions, see Rubinstein (2002), Goetzmann (2023), and the
2024 Special Issue of The Journal of Portfolio Management dedicated to him.

2While Markowitz is often viewed as the father of modern portfolio theory, Markowitz (1999, p. 5) notes
that “Roy (1952) can claim an equal share of this honor.”The investor in Roy’s model selects the portfolio
that maximizes the ratio of (a) excess expected return over some disastrous level of return to (b) standard
deviation. For a review of this model, see Elton et al. (2014, pp. 226—229).

3In practice, money management firms list many investing motives (e.g., college education, a house, a
wedding, and a vacation); see <investor.vanguard.com/investor-resources-education/investing-goals>.

4Das et al. note two reasons for investors not being able to correctly specify their risk aversion coeffi cients.
First, since an investor might have different risk aversion coeffi cients for different investment motives, the
investor might not be able to properly weigh such coeffi cients to find the overall risk aversion coeffi cient used
to identify the portfolio that in aggregate maximizes the investor’s overall satisfaction. Second, investors
might find that the specification of their levels of risk aversion in units of variance is not intuitive.
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given account are specified by a threshold probability and a threshold return (hereafter,

‘thresholds’).5 Formally, the optimal portfolio within the account maximizes the account’s

expected return subject to the constraint that the probability of the account’s return be-

ing less than or equal to the threshold return does not exceed the threshold probability.

Hence, the account’s Value-at-Risk (VaR) at the confidence level of one minus the threshold

probability cannot exceed minus one multiplied by the threshold return.6 Recognizing that

different accounts have differ investment motives, thresholds possibly vary across accounts.7

The models of Markowitz and Das et al. are closely related if asset returns are assumed

to have a multivariate Normal distribution and thresholds are such that optimal portfolios

within accounts exist in Das et al.’s model. Since the VaR of a portfolio is a linear function of

its mean and standard deviation under this distribution, optimal portfolios within accounts

are on the mean-variance frontier. Hence, the optimal portfolio within a given account of an

investor in Das et al.’s model would be selected by a hypothetical investor in Markowitz’s

model with some (implied) risk aversion coeffi cient. Conversely, the optimal portfolio of an

investor in the latter model would be selected within an account of a hypothetical investor

in the former with some (implied) thresholds. The aggregate portfolio of an investor in Das

et al.’s model (the combination of the investor’s optimal portfolios within accounts) is also

on the mean-variance frontier if short selling is allowed.8

5In practice, financial advisers (working independently or at money management firms) utilize financial
advising programs that use thresholds to reflect the goals of investors; see Statman (2017, pp. 208—217).

6Since the practical use of VaR is at the heart of modern risk management (see Hull (2023)) and the
theoretical use of VaR as a measure of risk is related to mean-variance analysis under certain conditions (see
Baumol (1963) and Alexander and Baptista (2002)), Alexander (2009) contends that Markowitz is also the
father of modern risk management.

7The model of Das et al. extends the model of Telser (1955) from the single-account case to the multiple-
account case. While Das et al. (2011) and Statman (2024) review the former model, Elton et al. (2014, pp.
230—231) review the latter; see also Arzac and Bawa (1977).

8The investor in the behavioral portfolio selection model of Shefrin and Statman (2000) has one or
more accounts and is possibly risk seeking. In comparison, the investor in Das et al.’s model has two or
more accounts and is risk averse. Hence, Das et al.’s model integrates features of behavioral portfolio theory
(accounts) and modern portfolio theory (optimal portfolios within accounts are on the mean-variance frontier
and so is the aggregate portfolio if short selling allowed). When short selling is disallowed, Das et al. show
that the former portfolios are also on the frontier but the latter might lie away from but close to the frontier.
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Bridging Markowitz’s contributions, results along three dimensions are here uncovered.9

First, consider the loss in certainty-equivalent return (CER) arising from an investor using

an erroneous (instead of the ‘true’) risk aversion coeffi cient in seeking to find the optimal

portfolio in Markowitz’s model. An analytical expression for the loss in CER is derived.

Importantly, the loss in CER in the case where the erroneous coeffi cient is less than the

‘true’coeffi cient by some amount exceeds the loss in CER in the case where the erroneous

coeffi cient is greater than the ‘true’coeffi cient by the same amount. Moreover, the loss in

CER is unbounded (bounded) from above in the former (latter) case.

Second, consider the impact of using thresholds instead of a risk aversion coeffi cient to

specify investor preferences on portfolio selection. For any positive risk aversion coeffi cient,

the optimal portfolio in Markowitz’s model lies on the mean-variance frontier above the

global minimum-variance portfolio. In comparison, for any pair of thresholds such that the

optimal portfolio within a given account exists in Das et al.’s model, this portfolio lies on

the mean-variance frontier at the same point as or above the global minimum-VaR portfolio

at the confidence level of one minus the threshold probability, which in turn lies above the

global minimum-variance portfolio. While different risk aversion coeffi cients lead to different

optimal portfolios in Markowitz’s model, infinitely many pairs of thresholds lead to the same

optimal portfolio within an account in Das et al.’s model.

Third, consider the risk aversion coeffi cients implied by optimal portfolios within accounts

(when these portfolios exist). Using an analytical characterization of such coeffi cients, key

observations are made. Assuming thresholds such that the optimal portfolio within a given

account exists, the risk aversion coeffi cient implied by this portfolio: (i) is strictly between

9There is a vast literature on extensions of the models of Markowitz and Das et al. (involving consideration
of, for example, portfolio delegation, background risk, estimation risk, and equilibrium). For a review of such
extensions, see Fabozzi et al. (2010), Alexander et al. (2020), Koumou (2020), and references therein.
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zero and a positive value associated with the global minimum-VaR portfolio at the confidence

level of one minus the threshold probability; (ii) decreases in the threshold probability; (iii)

increases in the threshold return; and (iv) is very sensitive to the thresholds if the coeffi cient

is relatively large but notably less so if the coeffi cient is relatively small.

The paper proceeds as follows. Section 2 characterizes the composition of the optimal

portfolio of an investor in Markowitz’s model and the loss in CER arising from the mis-

specification of the investor’s risk aversion coeffi cient. Section 3 characterizes the existence

and composition of the optimal portfolios within accounts and the aggregate portfolio of an

investor in Das et al.’s model as well as the risk aversion coeffi cients implied by the former

and latter portfolios. Section 4 uses a numerical example to illustrate the theoretical results

uncovered in Sections 2 and 3. Section 5 concludes.10

2. The model of Markowitz (1952)

This section examines the model of Markowitz (1952).

2.1. Assumptions

Suppose that a risk-free asset is not available for trade.11 Let N > 1 be the number of

risky assets that are available for trade. The first two moments of their return distribution

are assumed to be finite. Let µ be the N × 1 vector of their expected returns. Suppose that

rank([1N µ]) = 2 where 1N is the N × 1 unit vector.12 Let Σ be the N × N variance-

covariance matrix for asset returns. Suppose that rank(Σ) = N .13 Hereafter, µ and Σ are

referred to as optimization inputs.

10An Online Appendix contains: (i) a table listing the notation used for the models of Markowitz and Das
et al.; and (ii) proofs of the theoretical results in the paper.

11Tobin (1958) extends the results in Markowitz’s model to the case where a risk-free asset is assumed to
be available for trade. Sharpe (1964) characterizes expected asset returns in equilibria for economies where
investors use Tobin’s model for portfolio selection.

12The case where all assets have the same expected return is thus precluded.
13The existence of a combination of risky assets with a risk-free return is thus precluded.
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A portfolio is an N × 1 vector w with w ′1N = 1. The nth entry of portfolio w is the

weight of asset n in the portfolio. A positive (negative) weight represents a long (short)

position. Here, short selling is allowed and asset weights are assumed to be unbounded.14

Let rw denote the random return of portfolio w . Its mean or expected return is E[rw ] =

w ′µ. While its variance is σ2[rw ] = w ′Σw , its standard deviation is σ[rw ] =
√
w ′Σw .

2.2. The mean-variance frontier

A portfolio is on the mean-variance frontier if there is no portfolio with the same mean

and a smaller variance. Merton (1972) provides an analytical characterization of the portfolios

on the mean-variance frontier. Some notation is useful to describe his characterization. Let

A ≡ µ′Σ−11N , B ≡ µ′Σ−1µ, C ≡1′NΣ−11N , and D ≡ BC − A2 denote constants with B,

C, and D being positive. Suppose that A 6= 0. Let w0 ≡ Σ−11N
C

and w1 ≡ Σ−1µ
A

denote two

portfolios on the mean-variance frontier. While w0 is the global minimum-variance portfolio

and has an expected return of A/C, w1 has an expected return of B/A.

The portfolio on the mean-variance frontier with an expected return of E ∈ R is:

wE ≡ θEw0 + (1− θE)w1 (1)

where θE ≡ E−B/A
A/C−B/A . For any portfolio w on the frontier, the following holds:

σ2[rw ]

1/C
− (E[rw ]− A/C)2

D/C2
= 1. (2)

As Fig. 1(a) illustrates, portfolios on the frontier are represented in (E[rw ], σ[rw ]) space by

a hyperbola.15 The dot (‘•’) plots w0, which has an expected return of A/C as noted earlier

and a standard deviation of
√

1/C. The top and bottom half-lines show the asymptotes of

the frontier: E[rw ] = A/C ±
√
D/Cσ[rw ]. As Fig. 1(b) illustrates, portfolios on the frontier

14The assumptions that short selling is allowed and asset weights are unbounded follow Merton (1972).
15While in general A can be negative, zero, or positive, Fig. 1(a) assumes that A is positive. Since A

is assumed to be positive in this figure and C is always positive, A/C is positive in the figure. Similar
observations apply to subsequent figures that use the value of A.
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are represented in (E[rw ], σ2[rw ]) space by a parabola. The leftmost and rightmost dots plot,

respectively, w0 and w1. While their respective expected returns are A/C and B/A as noted

earlier, their respective variances are 1/C and B/A2. Note that w1 is located at the point

where a ray from the origin that goes through w0 crosses the frontier; see Roll (1992).

2.3. The optimal portfolio

Consider an investor with an exogenously given amount of wealth. The investor’s prefer-

ences over portfolios are represented by the function U : R× R+ → R defined by:

U(E[rw ], σ[rw ]) = E[rw ]− (γ/2)σ2[rw ] (3)

where γ > 0 is the investor’s risk aversion coeffi cient.16 Focusing on portfolios with the same

variance, the investor’s satisfaction is higher for portfolios with higher means. Focusing on

portfolios with the same mean, the investor’s satisfaction is higher for portfolios with lower

variances since γ > 0. Noting that U(E[rw ]−(γ/2)σ2[rw ], 0) = U(E[rw ], σ[rw ]), the certainty-

equivalent return (CER) of portfolio w is U(E[rw ], σ[rw ]).

The investor’s optimal portfolio solves:

max
w∈RN

E[rw ]− (γ/2)σ2[rw ] (4)

s.t. w ′1N = 1. (5)

Eqs. (4) and (5) imply that this portfolio maximizes the function defined by Eq. (3) subject

to asset weights summing to one. Asset weights are constrained to sum to one because the

investor’s wealth is assumed to be fully invested.

The following result characterizes the composition, expected return, and standard devi-

ation of the investor’s optimal portfolio.

16The use of this function by expected utility maximizers leads to the selection of optimal portfolios if:
(1) risky asset returns have a multivariate elliptical distribution (such as the Normal or t-distributions) with
finite first and second moments; or (2) utility functions are quadratic; see Ingersoll (1987, Ch. 4) and Huang
and Litzenberger (1988, Ch. 3). When neither (1) or (2) holds, expected utility is under certain conditions
well approximated by such a function; see Markowitz (1959, 2010) and Levy and Markowitz (1979).
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Theorem 1. The optimal portfolio of an investor with a risk aversion coeffi cient of γ ∈ R++

is:

wγ ≡ θγw0 + (1− θγ)w1 (6)

where θγ ≡ Eγ−B/A
A/C−B/A , its expected return is:

Eγ ≡ A/C + (D/C)/γ, (7)

and its standard deviation is:

σγ ≡
√

1/C + (D/C)/γ2. (8)

Using Eqs. (1) and (6), the optimal portfolio of an investor with a risk aversion coeffi cient

of γ ∈ R++, wγ, is on the mean-variance frontier. Eqs. (7) and (8) imply that wγ’s expected

return and standard deviation, respectively, Eγ and σγ, depend on µ and Σ (through the

values of A, C, and D in the case of Eγ and through the values of C and D in the case of

σγ) as well as γ. Given µ and Σ, note that Eγ and σγ decrease in γ since D/C > 0.17

The next two corollaries examine the location of an investor’s optimal portfolio along the

mean-variance frontier.

Corollary 1. (i) The optimal portfolio of an investor with a risk aversion coeffi cient of

γ ∈ R++, wγ, lies above the global minimum-variance portfolio, w0, in (E[rw ], σ[rw ]) space;

(ii) The former portfolio converges to the latter as γ converges to infinity.

Corollary 1(i) can be seen as follows. Consider an investor with a risk aversion coeffi cient

of γ ∈ R++. Since D/C > 0 and γ > 0, Eq. (7) implies that the investor’s optimal portfolio,

wγ, has an expected return, Eγ, that exceeds A/C. Recall that the global minimum-variance

portfolio,w0, has an expected return ofA/C. Hence,wγ lies abovew0 in (E[rw ], σ[rw ]) space.

The leftmost and rightmost dots (‘•’) in Fig. 2(a) illustrate the location of, respectively,

17Here, only partial equilibrium results are discussed. Black (1972) characterizes expected asset returns
in equilibria for economies where investors use Markowitz’s model for portfolio selection.
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w0 and wγ in (E[rw ], σ[rw ]) space. By definition, w0 lies at the leftmost point on the curve

representing portfolios on the mean-variance frontier. The two thin dashed indifference curves

are associated with γ; see Eq. (3). Note that wγ lies at the point where the top thin dashed

curve is tangent to the top half of the frontier. Hence, wγ lies above w0.

Corollary 1(ii) can be seen as follows. Using Eq. (7), note that Eγ converges to A/C and

thus θγ converges to one as γ converges to infinity. Hence, Eq. (6) implies that wγ moves

down along the top half of the mean-variance frontier toward w0 as γ converges to infinity.

Corollary 2. The expected return of the optimal portfolio of an investor with a risk aversion

coeffi cient of γ ∈ R++, Eγ, converges to infinity as γ converges to zero.

Corollary 2 can be seen as follows. Since D/C > 0, Eq. (7) implies that Eγ converges to

infinity as γ converges to zero. Hence, wγ moves up unboundedly along the top half of the

mean-variance frontier as γ converges to zero.

2.4. Loss in CER arising from the misspecification of the risk aversion coeffi cient

The loss in CER of an investor with a risk aversion coeffi cient of γ ∈ R++ who uses an

erroneous risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal portfolio

is:

Lγ,γε ≡ U(E[rwγ ], σ[rwγ ])− U(E[rwγε ], σ[rwγε ]). (9)

Fig. 2(a) illustrates Lγ,γε in (E[rw ], σ[rw ]) space. As noted earlier, the rightmost dot (‘•’)

shows that the investor’s optimal portfolio, wγ, lies at the point where the top thin dashed

indifference curve associated with γ is tangent to the top half of the mean-variance frontier.

The middle dot shows that the portfolio that the investor selects when using an erroneous

risk aversion coeffi cient of γε > γ, wγε, lies at the point where the thick dashed indifference

curve associated with γε is tangent to the top half of the mean-variance frontier. Since γε > γ,
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wγε lies below wγ.18 The bottom thin dashed indifference curve is associated to γ and goes

through wγε. Note that Lγ,γε is the vertical distance between the top and bottom thin dashed

curves.

The following result provides an analytical expression for the loss in CER.

Theorem 2. An investor with a risk aversion coeffi cient of γ ∈ R++ who uses an erroneous

risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal portfolio has a loss

in CER of:

Lγ,γε = (D/C) (γε − γ)2/(2γγ2ε). (10)

Consider an investor with a risk aversion coeffi cient of γ ∈ R++ who uses an erroneous

risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal portfolio. Two

observations follow from Eq. (10). First, since D/C, |γε − γ|, γ, and γε are positive, so is

Lγ,γε. Second, Lγ,γε depends on µ and Σ (through the term D/C) as well as γ and γε.

Given µ, Σ, and γ ∈ R++, Fig. 2(b) illustrates how Lγ,γε depends on γε; see Eq. (10). If

0 < γε < γ, then Lγ,γε: (a) decreases in γε; (b) is unbounded from above since Lγ,γε converges

to infinity as γε converges to zero; and (c) is strictly convex on γε.
19 If γε > γ, then Lγ,γε:

(a) increases in γε; (b) is bounded from above since Lγ,γε converges to (D/C) /(2γ) as γε

converges to infinity; (c) is strictly convex on γε if γ < γε < 3γ/2;20 and (d) is strictly concave

on γε if γε > 3γ/2. Importantly, the value of Lγ,γε if γε is less than γ by an amount strictly

between zero and γ exceeds the value of Lγ,γε if γε is greater than γ by the same amount.

For example, Lγ,γε = (D/C) /(2γ) if γε = γ/2 but Lγ,γε = (D/C) /(18γ) if γε = 3γ/2.

The intuition for why the loss in CER if γε is less than γ by an amount strictly between

18Similar graphical results hold in the case where 0 < γε < γ. In this case, however, wγε lies above wγ .
19Note that ∂2Lγ,γε/∂γ

2
ε = (D/C)(3γ − 2γε)/γ4ε; see Eq. (10).

20Since ∂2Lγ,γε/∂γ
2
ε = (D/C)(3γ − 2γε)/γ4ε and D/C > 0, the inflection point of Lγ,γε occurs when

γε = 3γ/2 and Lγ,γε = (D/C)/(18γ); see Eq. (10).
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zero and γ exceeds the loss in CER if γε is greater than γ by the same amount is as follows.

Since the difference between the expected returns of the optimal and global-minimum vari-

ance portfolios is inversely proportional to γ, the use of the former value of γε leads to the

selection of a portfolio on the mean-variance frontier with an expected return that deviates

more from that of the optimal portfolio than the use of the latter; see Eqs. (6) and (7).21

Hence, the use of the value of γε less than γ results in a larger loss in CER than the use of

the value of γε greater than γ.
22

The next result examines the losses in CER when γε is either less than or greater than γ

by some percentage.

Theorem 3. Consider an investor with a risk aversion coeffi cient of γ ∈ R++ who uses an

erroneous risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal portfolio.

(i) If γε = γε,κ− ≡ (1− κ)γ where κ ∈ (0, 1), then the loss in CER is:

Lγ,γε,κ− = [(D/C) /(2γ)] [κ/(1− κ)]2 . (11)

(ii) If γε = γε,κ+ ≡ (1 + κ)γ where κ ∈ (0,∞), then the loss in CER is:

Lγ,γε,κ+ = [(D/C) /(2γ)] [κ/(1 + κ)]2 . (12)

(iii) If κ ∈ (0, 1), then:

(Lγ,γε,κ−/Lγ,γε,κ+ )− 1 = RCLκ ≡ [(1 + κ)/(1− κ)]2 − 1. (13)

Consider an investor with a risk aversion coeffi cient of γ ∈ R++. In seeking to find the

optimal portfolio, suppose that the investor uses an erroneous risk aversion coeffi cient less

than γ by some percentage κ ∈ (0, 1), γε,κ−. Using Eq. (11), the loss in CER, Lγ,γε,κ− , depends

21For example, while the use of γε = γ/2 leads to the selection of a portfolio with an expected return
greater than that of the optimal portfolio by (D/C)/γ, the use of γε = 3γ/2 leads to the selection of a
portfolio with an expected return less than that of the optimal portfolio by (1/3)(D/C)/γ.

22The CER of a portfolio on the mean-variance frontier can be seen of as a function of the expected return
of the portfolio. Since this function is symmetric around the expected return of the optimal portfolio, the
use of the value of γε less than γ and the corresponding larger deviation from the expected return of the
optimal portfolio result in a larger loss in CER than the use of the value of γε greater than γ.
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on µ and Σ (through the term D/C) as well as γ and κ. Given µ, Σ, and γ ∈ R++, note

that Lγ,γε,κ− increases in κ. Given µ, Σ, and κ ∈ (0, 1), note that Lγ,γε,κ− decreases in γ.
23

In seeking to find the optimal portfolio, suppose now that the investor uses an erroneous

risk aversion coeffi cient greater than γ by some percentage κ ∈ (0,∞), γε,κ+ . The results for

the loss in CER, Lγ,γε,κ+ , are similar to the results noted for Lγ,γε,κ− ; see Eq. (12). However,

for any κ ∈ (0, 1), Eqs. (11) and (12) imply that Lγ,γε,κ− > Lγ,γε,κ+ . Hence, the loss in CER

when γε is less than γ by some percentage κ strictly between zero and one exceeds the loss

in CER when γε is greater than γ by the same percentage.

Using Eq. (13), the relative change in the loss in CER arising from an investor using γε,κ−

instead of γε,κ+ in seeking to find the optimal portfolio, RCLκ: (i) is positive (consistent with

the fact that Lγ,γε,κ− > Lγ,γε,κ+ ); (ii) increases in κ; and (iii) does not depend on µ or Σ or

γ. Fig. 2(c) reports the values of RCLκ when κ ranges from zero to 30%. Since these values

of RCLκ are sizeable except if κ is zero or very close to zero, a key practical implication

follows. In attempting to infer the preferences of an investor to implement Markowitz’s model,

practitioners should be aware that the loss in CER if the erroneous risk aversion coeffi cient

is less than the ‘true’risk aversion coeffi cient by some amount can notably exceed the loss

in CER if the former coeffi cient is greater than the latter by the same amount.24

23Das et al. (2010) assess the loss in CER in a numerical example. Fixing the value of κ, they find that
the average loss in CER across two values of γε given by γε,κ− and γε,κ+ is larger for smaller values of γ.
However, they do not provide an analytical expression for the loss in CER nor the average loss in CER.
Using Eqs. (11) and (12), the average loss in CER is [(D/C) /(2γ)] [κ2(1 + κ2)]/[(1− κ2)2].

24For any risk aversion coeffi cient γ ∈ R++, let t = 1/γ denote the corresponding risk tolerance coeffi cient.
Let Lt,tε denote the loss in CER of an investor with a ‘true’risk tolerance coeffi cient of t ∈ R++ who uses an
erroneous risk tolerance coeffi cient of tε ∈ R++\{t} in seeking to find the optimal portfolio. Eq. (10) implies
that Lt,tε = (D/C) t(1− tε/t)2/2. Letting tε,l− ≡ (1− l)t and tε,l+ ≡ (1 + l)t where l ∈ (0, 1), it can be seen
that Lt,tε,l− = Lt,tε,l+ = (D/C) tl

2/2. Hence, the loss in CER arising from using an erroneous risk tolerance
coeffi cient less than the ‘true’risk tolerance coeffi cient by some amount equals the loss in CER arising from
using an erroneous risk tolerance coeffi cient greater than the ‘true’ risk tolerance coeffi cient by the same
amount. Since Das et al. (2010) parameterize the loss in CER by the erroneous risk aversion coeffi cient (not
by the erroneous risk tolerance coeffi cient), so does Section 2.4.
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3. The model of Das et al. (2010)

This section examines the model of Das et al. (2010).

3.1. Assumptions

In addition to the assumptions in Section 2.1 on assets and portfolios, suppose that asset

returns have a multivariate Normal distribution.25

3.2. Optimal portfolios within accounts

Consider an investor with an exogenously given amount of wealth. This amount of wealth

is exogenously allocated to an exogenously given number of accounts denoted by M > 1.

Letting 1M denote the M × 1 unit vector, the M × 1 vector of fractions of the investor’s

wealth in the accounts is y ∈ RM++ where y ′1M = 1. The mth entry of y is the fraction of

the investor’s wealth in account m. The investor allocates the wealth within each account

among the same set of assets that are available for trade. However, the fraction of wealth in

an account that the investor allocates to a given asset possibly depends on the account.

The optimal portfolio within account a given account m ∈ {1, ...,M} solves:

max
w∈RN

E[rw ] (14)

s.t. w ′1N = 1 (15)

P [rw ≤ Hm] ≤ αm (16)

where P [ · ] denotes probability, Hm ∈ R is account m’s threshold return, and αm ∈ (0, 1/2)

is account m’s threshold probability. Hence, this portfolio maximizes account m’s expected

return subject to: (i) fully investing the wealth in the account; and (ii) the probability of

25The results in Das et al.’s model hold more generally in the case where asset returns are assumed to have
a multivariate elliptical distribution with finite first and second moments. Moreover, these results hold as
an approximation if the multivariate distribution of asset returns is unknown but has finite first and second
moments; see O’cinneide (1990). Das and Statman (2013) examine the composition of optimal portfolios
within accounts when asset returns are assumed to have non-elliptical distributions. Additionally, the results
in Das et al.’s model extend to the case where a risk-free asset is assumed to be available for trade; see
Alexander et al. (2020) and references therein.
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the account’s return being less than or equal to Hm not exceeding αm. Note that probability

constraint (16) loosens if αm increases but tightens if Hm increases. Therefore, the size of

thresholds αm and Hm reflects the investor’s goal for account m.

Probability constraint (16) can be seen as a restriction on account m’s tail risk. Some

notation is useful to formally write such a restriction. For any α ∈ (0, 1/2), let zα ≡ −Φ−1(α)

where Φ(·) denotes the cumulative univariate standard Normal distribution function. Since

α ∈ (0, 1/2), note that zα is positive and decreases in α.

The Value-at-Risk (VaR) at confidence level 1− α of portfolio w is:26

V [1− α, rw ] ≡ zασ[rw ]− E[rw ]. (17)

Note that portfolio w meets probability constraint (16) if and only if:

V [1− αm, rw ] ≤ −Hm. (18)

Hence, probability constraint (16) restricts account m’s VaR at confidence level 1 − αm to

be −Hm or less. Using Eqs. (17) and (18), probability constraint (16) is equivalent to:

E[rw ] ≥ Hm + zαmσ[rw ]. (19)

Hence, as Fig. 3(a) illustrates, portfolios that lie on or above a line with an intercept of

Hm and a slope of zαm in (E[rw ], σ[rw ]) space meet probability constraint (16), whereas

portfolios that lie below the line do not meet the constraint.27 Given a threshold probability

of αm, Fig. 3(b) shows that increasing the threshold return from H low
m to Hhigh

m tightens the

constraint because the intercept of the line associated with the constraint also increases from

H low
m to Hhigh

m . Given a threshold return of Hm, Fig. 3(c) shows that increasing the threshold

probability from αlowm to αhighm loosens the constraint because the slope of the line associated

26Like a portfolio’s VaR, a portfolio’s Conditional Value-at-Risk (CVaR) is a linear function of its mean
and standard deviation if asset returns have a multivariate Normal distribution. Here, a portfolio’s CVaR at
a given confidence level is the portfolio’s expected loss given that the loss equals or exceeds the portfolio’s
VaR at that confidence level. The results in Das et al.’s model extend to the case where CVaR is used instead
of VaR to set account goals. Hull (2023, Ch. 11) compares the theoretical properties of VaR and CVaR.

27While threshold returns can in general be negative, zero, or positive, Fig. 3(a) assumes that Hm < 0.
Subsequent figures that use threshold returns similarly make an assumption on the sign of threshold returns.
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with the constraint decreases from zαlowm to zαhighm
(recall that zα decreases in α).

Optimal portfolios within accounts may or may not exist depending on the thresholds

and optimization inputs. In order to identify conditions on the thresholds and optimization

inputs under which these portfolios exist, a characterization of the existence of the global

minimum-VaR portfolio and its VaR if it exists is useful. The following notation is used to

describe such a characterization. Let:

α ≡ Φ(−
√
D/C). (20)

Using Eq. (20), note that α depends on µ and Σ (through the values of C and D). Since

−
√
D/C < 0, Eq. (20) implies that α ∈ (0, 1/2). For any α ∈ (0, α), let:

Hα ≡ A/C −
√

(z2α −D/C)/C. (21)

Using Eq. (21), note that Hα depends on α (through the value of zα) as well as µ and Σ

(through the values of A, C, and D).

Alexander and Baptista (2002) characterize the existence of the global minimum-VaR

portfolio as well as its composition, expected return, standard deviation, and VaR if it

exists.

Theorem 4. (i) The global minimum-VaR portfolio at confidence level 1 − α exists if and

only if α ∈ (0, α); (ii) If α ∈ (0, α), then this portfolio is:

w1−α ≡ θ1−αw0 + (1− θ1−α)w1 (22)

where θ1−α ≡ E1−α−B/A
A/C−B/A , its expected return is:

E1−α ≡ A/C +
√

(D2/C3) / (z2α −D/C), (23)

its standard deviation is:

σ1−α ≡
√

(z2α/C) / (z2α −D/C), (24)

and its VaR at confidence level 1− α is:

V1−α ≡ −Hα. (25)
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Using Theorem 4(i), the existence of the global minimum-VaR portfolio depends on the

confidence level 1 − α as well as µ and Σ (since α depends on µ and Σ). First, if 1 − α is

less than or equal to 1 − α, then the portfolio does not exist. Its non-existence can be

seen by noting that the slope of the representation of the portfolios on the top half of the

mean-variance frontier in (E[rw ], σ[rw ]) space exceeds zα if 1− α ≤ 1− α (or, equivalently,

α ≥ α).28 Using Eq. (17), the VaRs of such portfolios decrease when moving up along the

frontier. Hence, the problem of globally minimizing VaR does not have a solution.

Second, if 1 − α is greater than 1 − α, then the global minimum-VaR portfolio, w1−α,

exists. Eqs. (1) and (22) imply that w1−α is on the mean-variance frontier. The leftmost

and rightmost dots (‘•’) in Fig. 4 illustrate the location of, respectively, w0 and w1−α in

(E[rw ], σ[rw ]) space. While w1−α lies above w0, w1−α converges to w0 as 1 − α converges

to 100% from below (or, equivalently, α converges to zero from above); see Eq. (23).29 Also,

w1−α lies at the point where a line with a slope of zα is tangent to the top half of the

mean-variance frontier. The intercept of this line is Hα = −V1−α; see Eq. (25).

The following result characterizes the existence of the optimal portfolio within a given

account as well as its composition, expected return, standard deviation, and VaR if it exists.

Theorem 5. Consider an account m ∈ {1, ...,M} with threshold probability αm and threshold

return Hm. (i) The optimal portfolio within account m exists if and only if αm ∈ (0, α) and

Hm ∈ (−∞, Hαm ];30 (ii) If αm ∈ (0, α) and Hm ∈ (−∞, Hαm ], then this portfolio is:

wαm,Hm ≡ θαm,Hmw0 + (1− θαm,Hm)w1 (26)

28While the slope of the representation of the portfolios on the top half of the mean-variance frontier in
(E[rw ], σ[rw ]) space exceeds

√
D/C, zα is less than or equal to

√
D/C if α ≥ α; see Eqs. (2) and (20).

29Note that zα and E1−α converge to, respectively, infinity and A/C as α converges to zero from above.
30The existence of optimal portfolios within accounts is closely related to Theorem 4. The global minimum-

VaR portfolio at the confidence level of 1−αm exists if and only if αm ∈ (0, α). Moreover, when αm ∈ (0, α),
there is a portfolio meeting probability constraint (16) if and only if (−∞, Hαm ] where Hαm equals minus
one multiplied by the VaR of the global minimum-VaR portfolio at the confidence level of 1− αm.
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where θαm,Hm ≡
Eαm,Hm−B/A
A/C−B/A , its expected return is:

Eαm,Hm ≡ A/C +
√

(D/C)(σ2αm,Hm − 1/C), (27)

its standard deviation is:

σαm,Hm ≡
zαm (A/C −Hm) +

√
(D/C)[(A/C −Hm)2 − (z2αm −D/C)/C]

z2αm −D/C
, (28)

and its VaR at confidence level 1− αm is:

Vαm,Hm ≡ −Hm. (29)

Consider an account m ∈ {1, ...,M} with threshold probability αm and threshold return

Hm. Using Theorem 5(i), the optimal portfolio within account m exists if and only if αm ∈

(0, α) and Hm ∈ (−∞, Hαm ].31 Hence, its existence depends on αm and Hm as well as µ and

Σ (since α and Hαm depend on µ and Σ). Its non-existence occurs in two cases. First, if

αm ∈ [α, 1/2), then probability constraint (16) is overly loose regardless of the value of Hm.

As Fig. 5(a) illustrates, the optimal portfolio within account m does not exist in this case

because the set of expected returns of portfolios that meet this constraint does not have a

finite upper bound. While the curve represents portfolios on the mean-variance frontier in

(E[rw ], σ[rw ]) space, the line has an intercept ofHm and a slope of zαm . Since portfolios on the

frontier with suffi ciently large expected returns lie above the line and thus meet probability

constraint (16), the set of expected returns of portfolios that meet this constraint does not

have a finite upper bound. Noting that the optimal portfolio within account m would have

the maximum expected return among the portfolios that meet such a constraint, the former

portfolio does not exist; see Eqs. (14)—(16).

Second, if αm ∈ (0, α) and Hm ∈ (Hαm ,∞), then probability constraint (16) is overly

31While Das et al. (2010, pp. 325 and 326) examine the problem of existence of the optimal portfolio within
a given account, they do not analytically identify the thresholds for which this portfolio exists. Specifically,
given the threshold probability of the account, they formulate the problem of finding the maximum threshold
return for which such a portfolio exists and note that this problem can be numerically solved.
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tight. As Fig. 5(b) illustrates, the optimal portfolio within account m does not exist in this

case because no portfolio meets probability constraint (16). By definition, all portfolios lie

either on or to the right of the curve that represents portfolios on the mean-variance frontier.

Any portfolio that would meet probability constraint (16) would lie on or above a line with

an intercept of Hm and a slope of zαm . Since the line is above the curve, no portfolio meets

probability constraint (16). Hence, the optimal portfolio within account m does not exist.

If αm ∈ (0, α) and Hm ∈ (−∞, Hαm ], then the optimal portfolio within account m,

wαm,Hm , exists and is on the mean-variance frontier;
32 see Theorem 5(ii) along with Eqs.

(1) and (26). Its expected return and standard deviation, respectively, Eαm,Hm and σαm,Hm ,

depend on αm and Hm as well as µ and Σ (through the values of A, C, and D); see Eqs. (27)

and (28). Given µ, Σ, and αm ∈ (0, α), note that Eαm,Hm and σαm,Hm decrease in Hm if Hm

∈ (−∞, Hαm). Given µ, Σ, and Hm ∈ (−∞, Hαm ], note that Eαm,Hm and σαm,Hm increase

in αm if αm ∈ (0, α). Its VaR at confidence level 1− αm, Vαm,Hm , is −Hm; see Eq. (29).

The next four corollaries examine the location of optimal portfolios within accounts along

the mean-variance frontier.

Corollary 3. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α)

and threshold return Hm ∈ (−∞, Hαm ]. (i) If Hm ∈ (−∞, Hαm), then the optimal portfolio

within account m, wαm,Hm , lies above the global minimum-VaR portfolio at confidence level

1− αm, w1−αm, in (E[rw ], σ[rw ]) space; (ii) If Hm = Hαm, then the former portfolio equals

the latter.

Consider an accountm ∈ {1, ...,M} with threshold probability αm ∈ (0, α) and threshold

return Hm ∈ (−∞, Hαm ]. Assuming that Hm < Hαm , Fig. 6(a) illustrates Corollary 3(i). The

32Das et al. derive a semi-analytical expression for wαm,Hm that requires a numerical approach.
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curve represents portfolios on the mean-variance frontier in (E[rw ], σ[rw ]) space, whereas the

line has an intercept of Hm and a slope of zαm . The rightmost dot (‘•’) shows that wαm,Hm

lies at the point where the line crosses the top half of the frontier. The leftmost dot shows

the global minimum-VaR portfolio at confidence level 1 − αm, w1−αm . Note that wαm,Hm

lies above w1−αm . Assuming that Hm = Hαm , Fig. 6(b) illustrates Corollary 3(ii). The dot

shows that wαm,Hm lies at the point where the line is tangent to the top half of the frontier.

Hence, wαm,Hm equals w1−αm .

Corollary 4. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α).

The expected return of the optimal portfolio within account m, Eαm,Hm , converges to infinity

as Hm converges to minus infinity.

Corollary 4 can be seen as follows. Consider an account m ∈ {1, ...,M} with threshold

probability αm ∈ (0, α). Since z2αm > D/C > 0, Eq. (28) implies that the standard deviation

of the optimal portfolio within account m, σαm,Hm , converges to infinity as Hm converges to

minus infinity. It follows from Eq. (27) that the expected return of this portfolio, Eαm,Hm ,

also converges to infinity as Hm converges to minus infinity.

For any threshold return Hm ∈ (−∞, A/C), let:

αHm ≡ Φ
(
−
√
D/C + C(A/C −Hm)2

)
. (30)

Since C and D are positive, Eqs. (20) and (30) imply that αHm ∈ (0, α).

Corollary 5. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ [αHm , α)

and threshold return Hm ∈ (−∞, A/C). (i) If αm ∈ (αHm , α), then the optimal portfolio

within account m, wαm,Hm , lies above the global minimum-VaR portfolio at confidence level

1− αm, w1−αm, in (E[rw ], σ[rw ]) space; (ii) If αm = αHm, then the former portfolio equals
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the latter.

Consider an accountm ∈ {1, ...,M} with threshold probability αm ∈ [αHm , α) and thresh-

old return Hm ∈ (−∞, A/C). Assuming that αm ∈ (αHm , α), Fig. 6(c) illustrates Corollary

5(i). The rightmost dot (‘•’) shows that wαm,Hm lies in (E[rw ], σ[rw ]) space at the point

where a line with an intercept of Hm and a slope of zαm crosses the top half of the fron-

tier. The leftmost dot plots the global minimum-VaR portfolio at confidence level 1− αHm ,

w1−αHm . Hence, wαm,Hm lies above w1−αHm . Assuming that αm = αHm , Fig. 6(d) illustrates

Corollary 5(ii). The dot shows that wαm,Hm lies at the point where the line is tangent to the

top half of the frontier. Hence, wαm,Hm equals w1−αHm .

Corollary 6. Consider an account m ∈ {1, ...,M} with threshold return Hm ∈ (−∞, A/C).

The expected return of the optimal portfolio within account m, Eαm,Hm , converges to infinity

as the threshold probability αm converges to α from below.

Corollary 6 can be seen as follows. Consider an account m ∈ {1, ...,M} with threshold

return Hm ∈ (−∞, A/C). Using the definition of zαm and Eq. (20), zαm converges to
√
D/C

as αm converges to α from below. Therefore, the assumption that Hm < A/C and Eq.

(28) imply that the standard deviation of the optimal portfolio within account m, σαm,Hm ,

converges to infinity as αm converges to α from below. It follows from Eq. (27) that the

expected return of this portfolio, Eαm,Hm , also converges to infinity as αm converges to α

from below.

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α), threshold

return Hm ∈ (−∞, Hαm ], and optimal portfolio wαm,Hm . It turns out that there are infinitely

many pairs of thresholds that lead to the same optimal portfolio. Some notation is useful to
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identify such pairs. Let:33

α ≡ Φ
(
−
√

(D/C)[σ2αm,Hm/(σ
2
αm,Hm

− 1/C)]
)
. (31)

Since C > 0, D > 0, and σ2αm,Hm > 0, Eqs. (20) and (31) imply that α ∈ (0, α). For any

α ∈ (0, α], let:34

Hα ≡ Eαm,Hm − zασαm,Hm . (32)

Since zα decreases in α, zα > 0, and σαm,Hm > 0, Eq. (32) implies that Hα increases in α.

Given an account for which the optimal portfolio exists, the following result identifies the

pairs of thresholds for another account with the same optimal portfolio.

Theorem 6. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α) and

threshold return Hm ∈ (−∞, Hαm ]. Another account with threshold probability α ∈ (0, α] and

threshold return Hα has the same optimal portfolio as account m.

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α), threshold

return Hm ∈ (−∞, Hαm ], and optimal portfolio wαm,Hm . Consider another account with

threshold probability α ∈ (0, α] and threshold returnHα. As Fig. 7(a) illustrates, if α ∈ (0, α),

then the optimal portfolio within this account is wαm,Hm because it lies at the point where a

line with an intercept of Hα and a slope of zα crosses the top half of the curve representing

portfolios on the mean-variance frontier. As Fig. 7(a) also illustrates, if α = α, then the

optimal portfolio within such an account is again wαm,Hm because it lies at the point where

a line with an intercept of Hα and a slope of zα is tangent to the top half of the curve. Hence,

wαm,Hm equals the global minimum-VaR portfolio at confidence level 1− α, w1−α.
35

33While α depends on αm and Hm, the notation ‘α’(instead of, e.g., ‘ααm,Hm’) is used for brevity.
34While Hα depends on αm and Hm, the notation ‘Hα’(instead of, e.g., ‘Hα,αm,Hm’) is used for brevity.
35If α ∈ (α, α), then wα,Hα lies on the top half of the mean-variance frontier at the same point as or above

w1−α, which in turn lies above wαm,Hm ; see Corollary 3. Therefore, an account with a threshold probability
of α ∈ (α, α) cannot have an optimal portfolio equal to wαm,Hm . Hence, Theorem 6 imposes the condition
that α ∈ (0, α].
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Fig. 7(b) illustrates the pairs of thresholds {(α,Hα)}α∈(0,α] of an account with an optimal

portfolio equal to wαm,Hm .
36 Note that Hα: (i) increases in α; (ii) converges to Hα as α

converges to α from below; and (iii) converges to minus infinity as α converges to zero from

above.

Since wαm,Hm is on the mean-variance frontier, wαm,Hm solves:

max
w∈RN

E[rw ]− (γiαm,Hm/2)σ2[rw ] (33)

s.t. w ′1N = 1 (34)

for some γiαm,Hm > 0. Hereafter, γiαm,Hm is referred to as the risk aversion coeffi cient implied

by the optimal portfolio within account m. The following result characterizes this coeffi cient.

Theorem 7. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α)

and threshold return Hm ∈ (−∞, Hαm ]. The risk aversion coeffi cient implied by the optimal

portfolio within account m is:

γiαm,Hm = (D/C) / (Eαm,Hm − A/C) (35)

where Eαm,Hm is given by Eq. (27).

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α), threshold

return Hm ∈ (−∞, Hαm ], and optimal portfolio wαm,Hm . Using Eqs. (27) and (35), the risk

aversion coeffi cient implied by this portfolio, γiαm,Hm , depends on αm and Hm (through the

term Eαm,Hm) as well as on µ and Σ (through the terms D/C, Eαm,Hm , and A/C).
37 Given

αm, µ, and Σ, recall that Eαm,Hm decreases in Hm and thus γiαm,Hm increases in Hm. Given

Hm, µ, and Σ, recall that Eαm,Hm increases in αm and thus γ
i
αm,Hm

decreases in αm.

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α). Of interest

36Given the thresholds of an account, Das et al. (2010, Table 2) numerically identify selected pairs of
thresholds for another account with the same optimal portfolio in an example. However, they do not analyt-
ically identify all pairs of thresholds for the latter account.

37Das et al. numerically solve a problem to jointly find the optimal portfolio within a given account and
the risk aversion coeffi cient implied by this portfolio but do not analytically characterize such a coeffi cient.
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are lower and upper bounds on γiαm,Hm assuming a threshold returnHm for which the optimal

portfolio within account m exists. Let:

γαm ≡
√(

z2αm −D/C
)
C. (36)

Since zαm decreases in αm, z
2
αm − D/C > 0, C > 0, and D > 0, Eq. (36) implies that γαm

decreases in αm. The aforementioned bounds are identified next.

Corollary 7. Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α).

The risk aversion coeffi cient implied by the optimal portfolio within account m, γiαm,Hm : (i)

converges to zero as Hm converges to minus infinity; and (ii) is γαm if Hm = Hαm .

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α). Corollary

7(i) can be seen by recalling that the expected return of the optimal portfolio within account

m, Eαm,Hm , converges to infinity as Hm converges to minus infinity; see Corollary 4. Hence,

as Fig. 8(a) illustrates, γiαm,Hm converges to zero as Hm converges to minus infinity.

Corollary 7(ii) can be seen by recalling that wαm,Hm equals the global minimum-VaR

portfolio at confidence level 1−αm, w1−αm , if Hm = Hαm ; see Corollary 3(ii). Hence, as Fig.

8(a) illustrates, γiαm,Hm is γαm if Hm = Hαm .

As noted earlier, an increase in Hm tightens probability constraint (16) and decreases

wαm,Hm’s expected return, Eαm,Hm . Hence, γ
i
αm,Hm

increases in Hm as Fig. 8(a) illustrates;

see Eq. (35). If Hm is notably (slightly) less than Hαm , then Eαm,Hm notably (slightly)

exceeds A/C; see Eqs. (27) and (28). Therefore, γiαm,Hm slightly (notably) increases in Hm if

Hm is notably (slightly) less than Hαm as Fig. 8(a) also illustrates. Intuitively, increasing Hm

moves the optimal portfolio within account m down along the top part of the mean-variance

frontier by a smaller extent when Hm is notably less than Hαm .

Consider an account m ∈ {1, ...,M} with a threshold return Hm ∈ (−∞, A/C). Of
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interest are lower and upper bounds on γiαm,Hm assuming a threshold probability αm for

which the optimal portfolio within account m exists. Let:

γHm ≡ A− CHm. (37)

Since C > 0, Eq. (37) implies that γHm decreases in Hm. The aforementioned bounds are

identified next.

Corollary 8. Consider an account m ∈ {1, ...,M} with threshold return Hm ∈ (−∞, A/C).

The risk aversion coeffi cient implied by the optimal portfolio within account m, γiαm,Hm: (i)

converges to zero as the threshold probability αm converges to α from below; and (ii) is γHm

if αm = αHm .

Consider an account m ∈ {1, ...,M} with threshold return Hm ∈ (−∞, A/C). Corollary

8(i) can be seen by recalling that the expected return of optimal portfolio within account

m, Eαm,Hm , converges to infinity as the threshold probability αm converges to α from below;

see Corollary 6. Hence, as Fig. 8(b) illustrates, γiαm,Hm converges to zero as αm converges to

α from below.

Corollary 8(ii) can be seen by recalling that wαm,Hm equals the global minimum-VaR

portfolio at confidence level 1−αm, w1−αm , if αm = αHm ; see Corollary 5(ii). Hence, as Fig.

8(b) illustrates, γiαm,Hm = γHm if αm = αHm .

As noted earlier, an increase in αm loosens probability constraint (16) and increases

wαm,Hm’s expected return, Eαm,Hm . Hence, γ
i
αm,Hm

decreases in αm as Fig. 8(b) illustrates;

see Eq. (35). If αm is notably (slightly) less than α, then Eαm,Hm slightly (notably) exceeds

A/C; see Eqs. (27) and (28). Therefore, γiαm,Hm notably (slightly) decreases in αm if αm is

notably (slightly) less than α as Fig. 8(b) also illustrates. Intuitively, increasing αm moves

the optimal portfolio within account m up along the top part of the mean-variance frontier
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by a larger extent when αm is notably less than α.

The result that the risk aversion coeffi cients implied by optimal portfolios within accounts

are possibly very sensitive to thresholds has a key practical implication. In order to precisely

reflect the levels of risk aversion within the accounts, thresholds should be carefully set,

particularly when seeking to reflect relatively high levels of risk aversion.

Given a positive risk aversion coeffi cient for an investor in Markowitz’s model, there are

infinitely many pairs of thresholds for an account of a hypothetical investor in Das et al.’s

model such that the optimal portfolio within this account of the former investor equals the

optimal portfolio of the latter. Some notation is useful to identify these pairs of thresholds.

For any risk aversion coeffi cient γ ∈ R++, let:

αγ ≡ Φ
(
−
√

(D + γ2)/C
)
. (38)

Since C > 0, D > 0, and γ > 0, Eqs. (20) and (38) imply that αγ ∈ (0, α). For any

αγ ∈ (0, αγ], let:

Hγ ≡ Eγ − zαγσγ. (39)

Since zαγ decreases in αγ, zαγ > 0, and σγ > 0, Eq. (39) implies that Hγ increases in αγ.

Theorem 8. Consider an investor with a risk aversion coeffi cient of γ ∈ R++. The optimal

portfolio within an account with threshold probability αγ ∈ (0, αγ] and threshold return of

Hγ equals the optimal portfolio of the investor with a risk aversion coeffi cient of γ.38

Consider an investor with a risk aversion coeffi cient of γ ∈ R++. Using Theorem 8, there

are infinitely many pairs of thresholds {(αγ, Hγ)}α∈(0,αγ ] for an account of a hypothetical

investor with the same optimal portfolio as an investor with a risk aversion coeffi cient of

γ. The existence of these pairs of thresholds can be seen by recalling that: (a) the optimal

38The condition that αγ ∈ (0, αγ ] is similar to Theorem 6’s condition that α ∈ (0, α]; see footnote 35.
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portfolio of an investor with a positive risk aversion coeffi cient is located on the top half

of the mean-variance frontier above the global minimum-variance portfolio (Corollary 1(i));

(b) the global minimum-VaR portfolio converges to the global minimum-variance portfolio

as the confidence level converges to 100% (see the discussion of Theorem 4); (c) the optimal

portfolio within a given account lies on the top half of the mean-variance frontier at the

same point as or above the global minimum-VaR portfolio at the confidence level equal to

one minus the threshold probability (Corollary 3); and (d) infinitely many pairs of thresholds

lead to the same optimal portfolio within a given account (Theorem 6).

3.3. Aggregate portfolio

Suppose that threshold probability αm ∈ (0, α) and threshold return Hm ∈ (−∞, Hαm ]

for any accountm ∈ {1, ...,M}. Using Theorem 5(i), optimal portfolios within accounts exist

and so does the corresponding aggregate portfolio wa ≡
∑M

m=1 ymwαm,Hm . The next result

characterizes the composition, expected return, and standard deviation of this portfolio.

Theorem 9. If threshold probability αm ∈ (0, α) and threshold return Hm ∈ (−∞, Hαm ] for

any account m ∈ {1, ...,M}, then the aggregate portfolio is:

wa = θaw0 + (1− θa)w1 (40)

where θa ≡
∑M

m=1 ymθαm,Hm, its expected return is:

Ea ≡
∑M

m=1 ymEαm,Hm , (41)

and its standard deviation is:

σa ≡
√

1/C + (Ea − A/C)2 /(D/C). (42)

Suppose that threshold probability αm ∈ (0, α) and threshold return Hm ∈ (−∞, Hαm ]

for any account m ∈ {1, ...,M}. Using Eqs. (1) and (40), the aggregate portfolio, wa, is on

the mean-variance frontier. The third dot (‘•’) from the left in Fig. 9 illustrates the location

25



of wa in (E[rw ], σ[rw ]) space when there are three accounts (i.e., M = 3). For simplicity,

Fig. 9 makes the assumption that H3 < H2 < H1 and α3 > α2 > α1.39 Hence, probability

constraint (16) loosens when moving from account m = 1 to account m = 2 and then to

account m = 3. It follows that wα3,H3 lies above wα2,H2 , which in turn lies above wα1,H1 as

the first, second, and fourth dots from the left illustrate.

Since wa is on the mean-variance frontier, wa solves:

max
w∈RN

E[rw ]− (γia/2)σ2[rw ] (43)

s.t. w ′1N = 1 (44)

for some γia > 0. Hereafter, γia is referred to as the risk aversion coeffi cient implied by the

aggregate portfolio. The following result characterizes this coeffi cient.

Theorem 10. If threshold probability αm ∈ (0, α) and threshold return Hm ∈ (−∞, Hαm ]

for any account m ∈ {1, ...,M}, then the risk aversion coeffi cient implied by the aggregate

portfolio is:

γia =
(∑M

m=1 ym/γ
i
αm,Hm

)−1
(45)

where γiαm,Hm is given by Eq. (35).

Suppose that threshold probability αm ∈ (0, α) and threshold return Hm ∈ (−∞, Hαm ]

for any account m ∈ {1, ...,M}. Using Eq. (45), the risk aversion coeffi cient implied by the

aggregate portfolio, γia, depends on the fractions of the investor’s wealth in the accounts

{ym}Mm=1 and the thresholds {(αm, Hm)}Mm=1 as well as µ and Σ (through the risk aversion

coeffi cients implied by optimal portfolios within accounts, {γiαm,Hm}Mm=1). Moreover, γia is a

weighted harmonic average of {γiαm,Hm}Mm=1 with respective weights of {ym}Mm=1.

39Graphical results can similarly be obtained if this assumption is not made.
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3.4. Differences between the models of Markowitz and Das et al.

Table 1 lists six crucial differences between the models of Markowitz and Das et al. First,

an investor in Markowitz’s model has one account but an investor in Das et al.’s model has

two or more accounts. Second, while the preferences of the former investor are specified by a

risk aversion coeffi cient, the preferences of the latter within a given account are specified by

thresholds. Third, the optimal portfolio in Markowitz’s model always exists, whereas optimal

portfolios within accounts in Das et al.’s model might not exist depending on the thresholds

and optimization inputs. Fourth, the optimal portfolio of an investor in the former model

(with a positive risk aversion coeffi cient) lies on the mean-variance frontier above the global

minimum-variance portfolio but the optimal portfolio within an account of an investor in

the former model (for thresholds such that the portfolio exists) lies on the mean-variance

frontier at the same point as or above the global minimum-VaR portfolio at a confidence level

equal to one minus the account’s threshold probability. Fifth, while different risk aversion

coeffi cients lead to different optimal portfolios in Markowitz’s model, infinitely many pairs

of thresholds lead to the same optimal portfolio within an account in Das et al.’s model.

Sixth, the investor in Markowitz’s model has a unique risk aversion coeffi cient that does

not depend on the optimization inputs, whereas the risk aversion coeffi cients implied by the

optimal portfolios within accounts of an investor in Das et al.’s model possibly differ across

accounts and depend on the optimization inputs. The risk aversion coeffi cient implied by the

aggregate portfolio of the latter investor (the combination of the investor’s optimal portfolios

within accounts) also depends on the optimization inputs.

4. Example

This section uses a numerical example to illustrate the theoretical results uncovered in
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Sections 2 and 3 for the models of Markowitz and Das et al. It considers the same assets,

optimization inputs, and investors as the numerical example of Das et al. By applying the

aforementioned theoretical results to their example, numerical results that complement theirs

are obtained.

4.1. Assets and optimization inputs

As the first column of Table 2(a) notes, three assets (1, 2, and 3) are available for trade.

Asset 1 is analogous to a risky bond, whereas assets 2 and 3 are analogous to, respectively,

low- and high-risk stocks. The next two columns indicate that the expected return and

standard deviation of asset 3 (high-risk stock) respectively exceed those of asset 2 (low-risk

stock), which in turn respectively exceed those of asset 1 (risky bond). The last three columns

indicate that the return on asset 1 is uncorrelated with the returns of assets 2 and 3, whereas

the returns of assets 2 and 3 are positively correlated.

4.2. Optimal portfolios in Markowitz’s model

Consider four investors (1, 2, 3, and 4) in Markowitz’s model. As Table 2(b) shows, their

risk aversion coeffi cients are assumed to range from 0.8773 for investor 3 to 3.7950 for in-

vestor 1, whereas investor 2 and 4 have risk aversion coeffi cients of, respectively, 2.7063 and

2.1740. Table 3(a) provides the asset weights, expected returns, and standard deviations of

their optimal portfolios. The optimal portfolios of investors with larger risk aversion coef-

ficients have: (i) larger weights in asset 1 (risky bond); (ii) smaller weights in assets 2 and

3 (respectively, low- and high-risk stocks); and (iii) smaller expected returns and standard

deviations.

The thin dashed curve in Fig. 10 shows the loss in CER, Lγ,γε, arising from investor 1

using an erroneous risk aversion coeffi cient of γε ∈ (0, 10] instead of the ‘true’coeffi cient of
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γ = 3.7950 in seeking to find the optimal portfolio. Note that Lγ,γε notably decreases in γε

if γε < γ but increases in γε if γε > γ. The thick dashed, thin solid, and thick solid curves

show similar results for, respectively, investors 2, 3, and 4.40 Given a suffi ciently large value

of γε, it can be seen that Lγ,γε decreases in γ; compare the values of Lγ,γε for the values of

γ of the four investors if, e.g., γε = 10. This result can be understood by noting that: (i)

given γ > 0, Eq. (10) implies that Lγ,γε converges to (D/C)/(2γ) as γε converges to infinity

as mentioned earlier; and (ii) (D/C)/(2γ) decreases in γ.

4.3. Optimal portfolios within accounts and aggregate portfolio in Das et al.’s model

Consider an investor in Das et al.’s model with three accounts (1, 2, and 3). Table

2(c) shows the fractions of the investor’s wealth in the accounts (second column) and the

thresholds (last two columns).

Fig. 11 examines the existence of optimal portfolios within accounts. The dashed vertical

line goes through αm = α = 33.40%; see Eq. (20). The curve plots Hαm as a function of

αm ∈ (0, α);41 see Eq. (21). The dots (‘•’) plot the pairs of thresholds of accounts 1, 2, and

3, {(αm, Hm)}3m=1; see the last two columns of Table 2(c). For any account m ∈ {1, 2, 3},

note that the pair of thresholds (αm, Hm) plots both: (a) strictly between the y-axis and the

dashed vertical line so that αm ∈ (0, α); and (b) below the curve so that Hm ∈ (−∞, Hαm).

Hence, optimal portfolios within accounts exist; see Theorem 5(i).

The first three rows of Table 3(b) provide the asset weights, expected returns, standard

deviations, and VaRs of the optimal portfolios within accounts as well as the risk aversion

coeffi cients implied by such portfolios.42 The optimal portfolios within accounts 1, 2, and

40The four curves in Fig. 10 are truncated so that Lγ,γε is 10% or less.
41This curve is truncated so that Hαm is −16% or more.
42While the numerical results in Table 3 reproduce those in Table 1 of Das et al. for completeness, the

numerical results in all figures in Section 4 are novel and illustrate the usefulness of the theoretical results
uncovered in Sections 2 and 3.
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3 equal the optimal portfolios of, respectively, investors 1, 2, and 3 in Markowitz’s model;

see the second, third, and fourth columns of Tables 3(a) and 3(b). Hence, the risk aversion

coeffi cients implied by these portfolios equal the risk aversion coeffi cients of such investors;

see the last column of Tables 2(b) and 3(b). Since the VaR of the optimal portfolio within

a given account is reported at a confidence level equal to one minus the account’s threshold

probability, the VaR of this portfolio equals minus one multiplied by the account’s threshold

return; see the last two columns of Table 2(c) and the next to last column of Table 3(b).

For example, since account 1 has a threshold probability of 5% and a threshold return of

−10%, the optimal portfolio within account 1 has a VaR at the confidence level of 95%

[= 100%− 5%] of 10% [= (−1)× (−10%)].

The last row of Table 3(b) provides the asset weights, expected return, and standard

deviation of the aggregate portfolio of the investor in Das et al.’s model (the combination

of the investor’s optimal portfolios within accounts) as well as the risk aversion coeffi cient

implied by this portfolio. The aggregate portfolio of the investor in Das et al.’s model equals

the optimal portfolio of investor 4 in Markowitz’s model; see the second, third, and fourth

columns of Tables 3(a) and 3(b). Hence, the risk aversion coeffi cient implied by the aggregate

portfolio of the former investor equals the risk aversion coeffi cient of the latter; see the last

column of Tables 2(b) and 3(b).

The thin dashed, thick dashed, and solid curves in Fig. 12 plot the pairs of thresholds

{(α,Hα)}α∈(0,α) of three accounts with the same optimal portfolios as, respectively, accounts

1, 2, and 3; see Eqs. (31) and (32) as well as Theorem 6.43 The dots (‘•’) represent the pairs

of thresholds of accounts 1, 2, and 3; see the last two columns of Table 2(c). Two results

can be seen. First, the thin dashed curve lies above the thick dashed curve, which in turn

43The solid curve is truncated so that Hα is −100% or more.
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lies above the solid curve. This result can be understood by noting that: (a) given αm, the

optimal portfolio within account m moves down the top half of the mean-variance frontier

as Hm increases; and (b) the optimal portfolio within account 1 lies on the top half of the

mean-variance frontier below the optimal portfolio within account 2, which in turn lies below

the optimal portfolio within account 3.

Second, the curves are close to each other for relatively large thresholds. This result can

be understood by noting that Hα is less sensitive to the account m used in the right-hand

side of Eq. (32) if α is relatively large. For example, the values of Hα for accounts 1, 2, and

3 are, respectively: (i) −5.53%, −9.06%, and −36.61% if α = 10%; and (ii) 3.78%, 3.49%,

and 0.59% if α = 30%. The fact that the curves are close to each other for relatively large

thresholds implies that three accounts with certain slightly different pairs of thresholds would

have the same optimal portfolios as, respectively, accounts 1, 2, and 3. For example, three

accounts with threshold probabilities of 30%, 31%, and 32% as well as threshold returns of

3.78%, 3.95%, and 3.37% would have the same optimal portfolios as, respectively, accounts 1,

2, and 3. Since the optimal portfolios within the latter accounts notably differ as Table 3(b)

shows, so do the optimal portfolios within the former. A key practical implication follows.

In attempting to infer the preferences of an investor with thresholds to implement Das et

al.’s model, practitioners should be aware that the use of relatively large thresholds leads to

optimal portfolios within accounts that are very sensitive to the thresholds. Hence, thresholds

should be carefully chosen so that these portfolios are properly identified.

Given a threshold probability of α1 = 5%, Fig. 13(a) plots the risk aversion coeffi cient

implied by the optimal portfolio within account 1, γiα1,H1 , as a function of threshold return

H1. Note that γiα1,H1 : (i) is strictly between zero and γα1 = 32.78; and (ii) slightly (notably)
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increases in H1 for relatively small (large) values of H1. Given a threshold return of H1 =

−10%, Fig. 13(b) plots γiα1,H1 as a function of threshold probability of α1. Note that γ
i
α1,H1

:

(i) is strictly between zero and γH1 = 65.52; and (ii) notably (slightly) decreases in α1 for

relatively small (large) values of α1. Similar results hold for account 2 in Figs. 13(c) and

13(d) as well as for account 3 in Figs. 13(e) and 13(f).44 In sum, the risk aversion coeffi cients

implied by optimal portfolios within accounts are very sensitive to the thresholds if such

coeffi cients are relatively large but notably less so if the coeffi cients are relatively small.

5. Conclusion

Following the insights of Markowitz (1952), modern portfolio theory considers investors

whose preferences are represented by a function defined over the means and variances of

portfolio returns and specified with a risk aversion coeffi cient. In Das et al. (2010), however,

Markowitz and three co-authors note that modern portfolio theory does not address the

practical fact that an investor might have: (i) various investing motives such as retirement and

bequest; (ii) preferences that are diffi cult to precisely specify with a risk aversion coeffi cient;

and (iii) different goals for different investing motives. Accordingly, their model considers

an investor whose wealth is divided among mental accounts (hereafter, ‘accounts’) with

different investing motives. The investor’s preferences within a given account are specified

by a threshold probability and a threshold return (hereafter, ‘thresholds’). Formally, the

optimal portfolio within the account maximizes the account’s expected return subject to

the constraint that the probability of the account’s return being less than or equal to the

threshold return does not exceed the threshold probability. Hence, the account’s Value-at-

Risk (VaR) at the confidence level of one minus the threshold probability cannot exceed

44Since α1 < α2 < α3, Figs. 13(a), 13(c), and 13(e) show that γα1 > γα2 > γα3 ; recall that γαm
decreases in αm (see Eq. (36)). Similarly, since H3 < H1 < H2, Figs. 13(b), 13(d), and 13(f) show that
γH3

> γH1
> γH2

; recall that γHm decreases in Hm (see Eq. (37)).
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minus one multiplied by the threshold return. Reflecting the fact that different accounts

have different investment motives, thresholds possibly vary across accounts.

The models of Markowitz and Das et al. are closely related if asset returns are assumed

to have a multivariate Normal distribution and thresholds are such that optimal portfolios

within accounts exist in Das et al.’s model. Since the VaR of a portfolio is a linear function of

its mean and standard deviation under this distribution, optimal portfolios within accounts

are on the mean-variance frontier. A portfolio is on the mean-variance frontier if there is

no portfolio with the same mean and a smaller variance. The optimal portfolio within a

given account of an investor in Das et al.’s model would be selected by a hypothetical

investor in Markowitz’s model with some (implied) risk aversion coeffi cient. Conversely, the

optimal portfolio of an investor in the latter model would be selected within an account of a

hypothetical investor in the former with some (implied) thresholds. The aggregate portfolio

of an investor in Das et al.’s model (the combination of the investor’s optimal portfolios

within accounts) is also on the mean-variance frontier if short selling is allowed.

Bridging Markowitz’s contributions, results along three dimensions are here uncovered.

First, consider the loss in certainty-equivalent return (CER) arising from an investor using

an erroneous (instead of the ‘true’) risk aversion coeffi cient in seeking to find the optimal

portfolio in Markowitz’s model. An analytical expression for the loss in CER is derived.

Importantly, the loss in CER in the case where the erroneous coeffi cient is less than the

‘true’coeffi cient by some amount exceeds the loss in CER in the case where the erroneous

coeffi cient is greater than the ‘true’coeffi cient by the same amount. Moreover, the loss in

CER is unbounded (bounded) from above in the former (latter) case.

Second, consider the impact of using thresholds instead of a risk aversion coeffi cient to
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specify investor preferences on portfolio selection. For any positive risk aversion coeffi cient,

the optimal portfolio in Markowitz’s model lies on the mean-variance frontier above the

global minimum-variance portfolio. In comparison, for any pair of thresholds such that the

optimal portfolio within a given account exists in Das et al.’s model, this portfolio lies on

the mean-variance frontier at the same point as or above the global minimum-VaR portfolio

at the confidence level of one minus the threshold probability, which in turn lies above the

global minimum-variance portfolio. While different risk aversion coeffi cients lead to different

optimal portfolios in Markowitz’s model, infinitely many pairs of thresholds lead to the same

optimal portfolio within an account in Das et al.’s model.

Third, consider the risk aversion coeffi cients implied by optimal portfolios within accounts

when these portfolios exist. Using an analytical characterization of such coeffi cients, key

observations are made. Assuming thresholds such that the optimal portfolio within a given

account exists, the risk aversion coeffi cient implied by this portfolio: (i) is strictly between

zero and a positive value associated with the global minimum-VaR portfolio at the confidence

level of one minus the threshold probability; (ii) decreases in the threshold probability; (iii)

increases in the threshold return; and (iv) is very sensitive to the thresholds if the coeffi cient

is relatively large but notably less so if the coeffi cient is relatively small.

The results uncovered here have two key practical implications. First, in attempting to

infer the preferences of an investor with a risk aversion coeffi cient to implement Markowitz’s

model, practitioners should be aware that the loss in CER arising from using an erroneous

coeffi cient less than the ‘true’coeffi cient by some amount exceeds the loss in CER arising

from using an erroneous coeffi cient greater than the ‘true’coeffi cient by the same amount.

Second, in attempting to infer the preferences of an investor with thresholds to implement
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Das et al.’s model, practitioners should be aware that optimal portfolios within accounts and

the risk aversion coeffi cients implied by such portfolios are very sensitive to the thresholds

for relatively large coeffi cients but notably less so for relatively small coeffi cients.
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Fig. 1. The mean-variance frontier

In Fig. 1(a), the hyperbola plots portfolios on the mean-variance frontier in (E[rw ], σ[rw ])
space. The dashed half-lines show the asymptotes of the frontier:E[rw ] = A/C±

√
D/Cσ[rw ].

The dot (‘•’) represents the global minimum-variance portfolio, w0. Its expected return
and standard deviation are, respectively, A/C and

√
1/C. In Fig. 1(b), the parabola plots

portfolios on the frontier in (E[rw ], σ2[rw ]) space. The leftmost and rightmost dots represent,
respectively, portfoliosw0 andw1. While their respective expected returns areA/C andB/A,
their respective variances are 1/C and B/A2. Note that w1 lies in (E[rw ], σ2[rw ]) space at
the point where a ray from the origin that goes through w0 crosses the frontier; see Section
2 for the definition of A, B, C, and D.

(a) The mean-variance frontier in (E[rw ], σ[rw ]) space

(b) The mean-variance frontier in (E[rw ], σ2[rw ]) space
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Fig. 2. The optimal portfolio and the loss in CER arising from using an
erroneous risk aversion coeffi cient instead of the ‘true’risk aversion coeffi cient

Consider an investor with a risk aversion coeffi cient of γ ∈ R++. In Fig. 2(a), the rightmost
dot (‘•’) shows that the investor’s optimal portfolio, wγ, lies in (E[rw ], σ[rw ]) space at the
point where the top thin dashed indifference curve associated with γ is tangent to the top
half of the curve representing portfolios on the mean-variance frontier. The leftmost dot
plots the global minimum-variance portfolio, w0. The middle dot shows that the portfolio
selected by the investor when using an erroneous risk aversion coeffi cient of γε > γ, wγε,
lies in (E[rw ], σ[rw ]) space at the point where the thick dashed indifference curve associated
with γε is tangent to the top half of the mean-variance frontier. The bottom thin dashed
indifference curve associated to γ goes throughwγε . The loss in CER arising from the investor
selecting wγε instead of wγ, Lγ,γε, is the vertical distance between the top and bottom thin
dashed curves. Given γ ∈ R++, Fig. 2(b) illustrates how Lγ,γε depends on γε. Fig. 2(c) reports
the relative change in the loss in CER if γε is less than γ by some percentage κ ∈ (0, 30%)
instead of being greater than γ by the same percentage, RCLκ.

(a) The optimal portfolio with a risk aversion coeffi cient of γ and the loss in CER
arising from using an erroneous coeffi cient γε instead of the ‘true’coeffi cient γ

(b) The loss in CER, Lγ,γε, and γε

(c) The relative change in the loss in
CER, RCLκ, if γε is less (instead of
being greater) than γ by percentage κ

0% 5% 10% 15% 20% 25% 30%
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Fig. 4. The global minimum-VaR portfolio

The curve represents portfolios on the mean-variance frontier in (E[rw ], σ[rw ]) space. The
leftmost dot (‘•’) plots the global minimum-variance portfolio, w0. Its expected return and
standard deviation are, respectively, A/C and

√
1/C. The rightmost dot plots the global

minimum-VaR portfolio, w1−α, when the confidence level is 1−α and α ∈ (0, α); see Eq. (20).
Its expected return, standard deviation, and VaR at confidence level 1−α are, respectively,
E1−α, σ1−α, and V1−α; see Eqs. (23), (24), and (25). Portfolio w1−α lies at the point where
a line with slope zα [= 4E[rw ]/4σ[rw ]] is tangent to the top half of the mean-variance
frontier. The intercept of this line is Hα = −V1−α; see Eqs. (21) and (25).
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Fig. 5. Non-existence of the optimal portfolio within a given account
The curve represents portfolios on the mean-variance frontier in (E[rw ], σ[rw ]) space. Con-
sider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, 1/2) and threshold
return Hm ∈ R. The line has an intercept of Hm and a slope of zαm [= 4E[rw ]/4σ[rw ]].
Portfolios that meet probability constraint (16) lie on or above this line. In Fig. 5(a), the
constraint is overly loose. Since the portfolios on the frontier with suffi ciently large expected
returns lie above the solid line, the set of expected returns of portfolios that meet the con-
straint does not have a finite upper bound and thus the optimal portfolio within account
m does not exist. In Fig. 5(b), the constraint is overly tight. Since the solid line lies above
the curve, no portfolio meets the constraint and thus the optimal portfolio within account
m does not exist.

(a) Probability constraint (16) is overly loose

(b) Probability constraint (16) is overly tight
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Fig. 7. Thresholds of accounts with the same optimal portfolio as account m

Consider an account m ∈ {1, ...,M} with threshold probability αm ∈ (0, α), threshold return
Hm ∈ (−∞, Hαm ], and optimal portfolio wαm,Hm . As the dot (‘•’) in Fig. 7(a) shows, wαm,Hm

lies in (E[rw ], σ[rw ]) space at the point where a line with an intercept ofHm and a slope of zαm
crosses the top half of the curve representing portfolios on the mean-variance frontier. The
optimal portfolio within an account with thresholds α ∈ (0, α) and Hα is wαm,Hm because it
lies at the point where a line with an intercept of Hα and a slope of zα crosses the top half
of the frontier. The optimal portfolio within an account with thresholds α and Hα is again
wαm,Hm because it lies at the point where a line with an intercept of Hα and a slope of zα
is tangent to the top half of the frontier. Hence, wαm,Hm equals the global minimum-VaR
portfolio at confidence level 1 − α, w1−α. Fig. 7(b) plots the thresholds {(α,Hα)}α∈(0,α] of
all accounts with the same optimal portfolio as account m; see Eqs. (31) and (32).

(a) Thresholds of two accounts with the same optimal portfolio as account m

(b) Thresholds of all accounts with the same optimal portfolio as account m
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Fig. 8. Impact of the thresholds on the risk aversion coeffi cient implied by the
optimal portfolio within account m

Consider an account m ∈ {1, ...,M}. Given a threshold probability αm ∈ (0, α), Fig. 8(a)
plots the risk aversion coeffi cient implied by the optimal portfolio within account m, γiαm,Hm ,
as a function of threshold returnHm ∈ (−∞, Hαm ]; see Eqs. (20) and (21). Note that γiαm,Hm :
(i) converges to zero as Hm converges to minus infinity; and (ii) is γαm if Hm = Hαm ; see Eq.
(36) and Corollary 7. Given a threshold return Hm ∈ (−∞, A/C), Fig. 8(b) plots γiHm,αm
as a function of threshold probability αm ∈ [αHm , α); see Eq. (30). Note that γiαm,Hm : (i)
converges to zero as αm converges to α from below; and (ii) is γHm if αm = αHm ; see Eq.
(37) and Corollary 8.

(a) Impact of threshold return Hm on implied risk aversion coeffi cient γiαm,Hm

(b) Impact of threshold probability αm on implied risk aversion coeffi cient γiαm,Hm
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Fig. 9. The aggregate portfolio

The curve represents portfolios on the mean-variance frontier in (E[rw ], σ[rw ]) space. Suppose
that there are three accounts (m = 1, 2, 3). For any account m ∈ {1, 2, 3}, the threshold
probability is αm ∈ (0, α), the threshold return is Hm ∈ (−∞, Hαm ], the optimal portfolio
is wαm,Hm , and its expected return is Eαm,Hm . The figure assumes that α3 > α2 > α1 and
H3 < H2 < H1. Given a vector of fractions of wealth in the accounts y ∈ R3++, the aggregate
portfolio is wa =

∑3
m=1 ymwαm,Hm and its expected return is Ea =

∑3
m=1 ymEαm,Hm . The

first, second, third, and fourth dots (‘•’) from the left plot, respectively, wα1,H1 , wα2,H2 ,
wa, and wα3,H3 . For any account m ∈ {1, 2, 3}, wαm,Hm lies at the point where a line with
intercept Hm and slope zαm crosses the top half of the frontier. Since the figure assumes that
α3 > α2 > α1 and H3 < H2 < H1, probability constraint (16) loosens when moving from
account m = 1 to account m = 2 and in turn to account m = 3. Hence, wα3,H3 lies above
wα2,H2 , which in turn lies above wα1,H1 .
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Fig. 10. Loss in CER arising from using an erroneous risk aversion coeffi cient

An investor with a risk aversion coeffi cient of γ ∈ R++ who uses an erroneous risk aversion
coeffi cient of γε ∈ R++ in seeking to find the optimal portfolio has a loss in CER of Lγ,γε; see
Eq. (9). The thin dashed, thick dashed, thin solid, thick solid curves show how Lγ,γε depends
on γε ∈ (0, 10] for, respectively, investors 1, 2, 3, and 4. These curves are truncated so that
Lγ,γε is 10% or less. Recall that investors 1, 2, 3, and 4 have risk aversion coeffi cients of,
respectively, 3.7950, 2.7063, 0.8773, and 2.1740; see the last column of Table 2(b).
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Fig. 11. Existence of optimal portfolios within accounts

The dashed vertical line goes through αm = α = 33.40%; see Eq. (20). The curve plots Hαm

as a function of αm ∈ (0, α); see Eq. (21). This curve is truncated so that Hαm is −16% or
more. The dots (‘•’) plot the pairs of thresholds of accounts 1, 2, and 3, {(αm, Hm)}3m=1;
see the last two columns of Table 2(c). For any account m ∈ {1, 2, 3}, note that the pair
of thresholds (αm, Hm) plots both: (a) strictly between the y-axis and the dashed vertical
line so that αm ∈ (0, α); and (b) below the curve so that Hm ∈ (−∞, Hαm). Hence, optimal
portfolios within accounts exist; see Theorem 5(i).
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Fig. 12. Thresholds of three accounts with the same optimal portfolios as
accounts 1, 2, and 3

The thin dashed, thick dashed, and solid curves identify pairs of thresholds {(α,Hα)}α∈(0,α)
of three accounts with the same optimal portfolios as, respectively, accounts 1, 2, and 3; see
Eqs. (31) and (32) as well as Theorem 6. The solid curve is truncated so that Hα is −100%
or more. The dots (‘•’) on the thin dashed, thick dashed, and solid curves plot the pairs of
thresholds of, respectively, accounts 1, 2, and 3; see the last two columns of Table 2(c).
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Fig. 13. Impact of the thresholds on the risk aversion coeffi cients implied by
the optimal portfolios within accounts 1, 2, and 3

Given a threshold probability α1 = 5%, Fig. 13(a) plots the risk aversion coeffi cient implied
by the optimal portfolio within account 1, γiα1,H1 , as a function of threshold return H1 ∈
[−40%, Hα1 ]; see Eq. (21). Given H1 = −10%, Fig. 13(b) plots γiα1,H1 as a function of
α1 ∈ [αH1 , 20%]; see Eq. (30). Given α2 = 15%, Fig. 13(c) plots γiα2,H2 as a function of
H2 ∈ [−40%, Hα2 ]. GivenH2 = −5%, Fig. 13(d) plots γiα2,H2 as a function of α2 ∈ [αH2 , 20%].

Given α3 = 20%, Fig. 13(e) plots γiα3,H3 as a function of H3 ∈ [−40%, Hα3 ]. Given H3 =
−15%, Fig. 13(f) plots γiα3,H3 as a function of α3 ∈ [αH3 , 20%].

Part I: Account 1
(a) Impact of H1 on γiα1,H1 if α1 = 5%
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Part II: Account 2
(c) Impact of H2 on γiα2,H2 if α2 = 15%
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Part III: Account 3
(e) Impact of H3 on γiα3,H3 if α3 = 20%
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(f) Impact of α3 on γiα3,H3 if H3 = −15%
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Table 2. Optimization inputs and values of the parameters used to specify the
preferences of investors in the models of Markowitz and Das et al.

Table 2(a) contains the optimization inputs for three assets (1, 2, and 3). Table 2(b) shows
the risk aversion coeffi cients of four investors (1, 2, 3, and 4) in Markowitz’s model. Table
2(c) shows the fractions of wealth and thresholds of three accounts (1, 2, and 3) of an investor
in Das et al.’s model. The values in Tables 2(a), 2(b), and 2(c) are the same as the values
used in the numerical example of Das et al.

(a) Optimization inputs

Expected Standard Correlation coeffi cient
Asset return deviation Asset 1 Asset 2 Asset 3

1 (risky bond) 5% 5% 1.0 0.0 0.0
2 (low-risk stock) 10% 20% 1.0 0.2
3 (high-risk stock) 25% 50% 1.0

(b) Risk aversion coeffi cients of
investors in Markowitz’s model
Investor Risk aversion coeffi cient

1 3.7950
2 2.7063
3 0.8773
4 2.1740

(c) Fractions of wealth and thresholds of the accounts of
an investor in Das et al.’s model
Fraction of Threshold Threshold

Account wealth probability return
1 60% 5% −10%
2 20% 15% −5%
3 20% 20% −15%
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Online Appendix

Table A1. Summary of notation

Table A1(a) summarizes the notation used for Markowitz’s model, which is also used for the

Das et al.’s model. Table A1(b) summarizes additional notation used for the latter model.

(a) Notation used for Markowitz’s model

N Number of assets

µ N × 1 vector of expected asset returns

Σ N ×N variance-covariance matrix for asset returns

w N × 1 vector of asset weights in a portfolio

rw Random return of portfolio w

E[rw ] Mean or expected return of portfolio w

σ2[rw ] Variance of portfolio w

σ[rw ] Standard deviation of portfolio w

A,B,C,D Constants used to analytically characterize the mean-variance frontier

w0 Global minimum-variance portfolio

w1 Portfolio located in (E[rw ], σ2[rw ]) where a ray from the origin

that goes through portfolio w0 crosses the mean-variance frontier

wE Portfolio on the mean-variance frontier with an expected return of E

θE, 1− θE Weights of portfolios w0 and w1 in portfolio wE

γ Risk aversion coeffi cient

wγ Optimal portfolio with a risk aversion coeffi cient of γ

θγ, 1− θγ Weights of portfolios w0 and w1 in portfolio wγ

Eγ, σγ Expected return and standard deviation of portfolio wγ

γε Erroneous risk aversion coeffi cient

Lγ,γε Loss in CER arising from an investor using γε instead of γ

γε,κ−, γε,κ+ Erroneous risk aversion coeffi cients, respectively,

below and above γ by percentage κ

κ Percentage that γε,κ− and γε,κ+ are, respectively, below and above γ

Lγ,γε,κ− , Lγ,γε,κ+ Losses in CER for an investor using, respectively,

γε,κ− and γε,κ+ instead of γ

RCLκ Relative change in the loss in CER

for an investor using γε,κ− instead of γε,κ+
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(b) Additional notation used for Das et al.’s model

M Number of accounts

y M × 1 vector of fractions of wealth allocated to the accounts

αm, Hm Threshold probability and threshold return of account m

1− α Confidence level to compute VaR

Φ(·) Cumulative univariate standard Normal distribution function

zα Minus the inverse of Φ(·) evaluated at α
V [1− α, rw ] VaR at confidence level 1− α of portfolio w

α Threshold probability at or above which optimal portfolios within

accounts do not exist

Hα Threshold return at or below which the optimal portfolio within

a given account exists when threshold probability α ∈ (0, α)

w1−α Global minimum-VaR portfolio at confidence level 1− α
θ1−α, 1− θ1−α Weights of portfolios w0 and w1 in portfolio w1−α

wαm,Hm Optimal portfolio within account m

θαm,Hm , 1− θαm,Hm Weights of portfolios w0 and w1 in portfolio wαm,Hm

Eαm,Hm , σαm,Hm Expected return and standard deviation of portfolio wαm,Hm

Vαm,Hm VaR at confidence level 1− αm of portfolio wαm,Hm

γiαm,Hm Risk aversion coeffi cient implied by portfolio wαm,Hm

α,Hα Thresholds of account with optimal portfolio equal to wαm,Hm

1− α Confidence level at which wαm,Hm equals w1−α

γαm Risk aversion coeffi cient implied by portfolio wαm,Hαm

αHm Threshold probability below which the optimal portfolio within

account m does not exist when threshold return Hm ∈ (−∞, A/C)

γHm Risk aversion coeffi cient implied by portfolio wαHm ,Hm

αγ, Hγ Thresholds of account with an optimal portfolio equal to wγ

wa Aggregate portfolio

θa, 1− θa Weights of portfolios w0 and w1 in portfolio wa

Ea, σa Expected return and standard deviation of portfolio wa

γia Risk aversion coeffi cient implied by portfolio wa
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Proofs of theoretical results

Proof of Theorem 1. Consider an investor with a risk aversion coeffi cient of γ ∈ R++.
Using Eq. (2), the following holds:

σ2[rw ] = 1/C + (E[rw ]− A/C)2/(D/C) (A.1)

for any portfolio w on the mean-variance frontier. Since wγ is on the top half of the mean-

variance frontier, Eq. (A.1) implies that Eγ solves:

max
E∈R

E − (γ/2)
[
1/C + (E − A/C)2/(D/C)

]
. (A.2)

A first-order condition for Eγ to solve maximization problem (A.2) is 1 − γEγ−A/C
D/C

= 0.

Therefore, Eq. (7) holds. Using Eq. (1) as well as the facts that wγ is on the mean-variance

frontier and has an expected return of Eγ, Eq. (6) holds. Eq. (8) follows from Eqs. (7) and

(A.1).

Proof of Corollary 1. First, consider part (i). Fix an investor with a risk aversion coeffi cient
of γ ∈ R++. Since D/C > 0 and γ > 0, Eq. (7) implies that Eγ > A/C. Recall that w0 has

an expected return of A/C. Hence, wγ lies above w0 in (E[rw ], σ[rw ]) space. This completes

the proof of part (i).

Second, consider part (ii). Eq. (7) implies that Eγ converges to A/C and thus θγ converges

to one as γ converges to infinity. It follows from Eq. (6) that wγ converges to w0 as γ

converges to infinity. This completes the proof of part (ii).

Proof of Corollary 2. Since D/C > 0, Eq. (7) implies that Eγ converges to infinity as γ

converges to zero.

Proof of Theorem 2. Consider an investor with a risk aversion coeffi cient of γ ∈ R++ who
uses an erroneous risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal
portfolio. It follows from Eqs. (3), (7), and (8) that:

U(E[rwγ ], σ[rwγ ]) = A/C + (D/C)/(2γ)− (γ/C)/2. (A.3)

Using Eqs. (7) and (8) with γ = γε:

Eγε = A/C + (D/C)/γε (A.4)

and:

σγε =
√

1/C + (D/C)/γ2ε. (A.5)
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It follows from Eqs. (A.4) and (A.5) that:

U(E[rwγε ], σ[rwγε ]) = A/C + (D/C)/γε − (γ/C)/2− (γ/2)(D/C)/γ2ε. (A.6)

Using Eqs. (A.3) and (A.6):

U(E[rwγ ], σ[rwγ ])−U(E[rwγε ], σ[rwγε ]) = (D/C)/(2γ)−(D/C)/γε+(γ/2)(D/C)/γ2ε. (A.7)

Eq. (10) follows from Eqs. (9) and (A.7) as well as elementary algebra.

Proof of Theorem 3. Fix an investor with a risk aversion coeffi cient of γ ∈ R++ who
uses an erroneous risk aversion coeffi cient of γε ∈ R++\{γ} in seeking to find the optimal
portfolio. First, consider part (i). Suppose that γε = γε,κ− = (1−κ)γ where κ ∈ (0, 1). Since

γε = (1− κ)γ, Eq. (11) follows from Eq. (10). This completes the proof of part (i).

Second, consider part (ii). Suppose that γε = γε,κ+ = (1 + κ)γ where κ ∈ (0,∞). Since

γε = (1 + κ)γ, Eq. (12) follows from Eq. (10). This completes the proof of part (ii).

Third, consider part (iii). Suppose that κ ∈ (0, 1). Eq. (13) follows from Eqs. (11) and

(12). This completes the proof of part (iii).

Proof of Theorem 4. The proof is similar to the Proof of Proposition 1 in Alexander and
Baptista (2002). In particular, Eqs. (23), (24), and (25) follows from, respectively, Eqs. (A.8),

(A.6), and (11) in Alexander and Baptista.

Proof of Theorem 5. The proof of follows by replacing symbols with a superscript ‘ε’
with symbols without this superscript in the Proof of Theorem 1 in the Online Appendix of

Alexander et al. (2017).A.1

Proof of Corollary 3. Fix an accountm ∈ {1, ...,M} with threshold probability αm ∈ (0, α)

and threshold return Hm ∈ (−∞, Hαm ]. It is convenient to first show part (ii). Suppose that

Hm = Hαm . Using Eq. (21) with α = αm:

Hαm = A/C −
√

(z2αm −D/C)/C. (A.8)

Substituting Hm in the right-hand side of Eq. (28) with the right-hand side of Eq. (A.8) and

using elementary algebra:

σαm,Hm =
√(

z2αm/C
)
/(z2αm −D/C). (A.9)

A.1See Alexander, G. J., A. M. Baptista, and S. Yan. 2017. “Portfolio Selection with Mental Accounts and
Estimation Risk.”Journal of Empirical Finance 41, 161—186. doi: 10.1016/j.jempfin.2016.07.012. The Online
Appendix of Alexander et al. (2017) is available at: <blogs.gwu.edu/alexbapt/files/2017/03/JEFAppendix-
2m65ivr.pdf>. In Alexander et al., the symbols with superscript ‘ε’are associated to the use of estimated
optimization inputs µε and Σε (instead of the ‘true’ optimization inputs µ and Σ). In comparison, the
subscript ‘ε’in ‘γε’is used here to denote the erroneous risk aversion coeffi cient of an investor in Markowitz’s
model.
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Eqs. (24) and (A.9) imply that σαm,Hm = σ1−αm . Since wαm,Hm and w1−αm lie on the top

half of the frontier, wαm,Hm =w1−αm . This completes the proof of part (ii).

Next, consider part (i). Suppose that Hm ∈ (−∞, Hαm). Since Hm < Hαm , Eq. (21)

implies that:

Hm < A/C − (z2αm −D/C)/C. (A.10)

It follows from Eq. (A.10) that:

(z2αm −D/C)/C < A/C −Hm. (A.11)

Since αm ∈ (0, α), note that z2αm > D/C. The fact that z2αm > D/C and Eq. (A.11) imply

that A/C −Hm > 0. It follows from Eq. (28) that:

∂σαm,Hm
∂Hm

=
−zαm + −D/C(A/C−Hm)√

(D/C)[(A/C−Hm)2−(z2αm−D/C)/C]

z2αm −D/C
. (A.12)

Since zαm > 0, D/C > 0, and A/C −Hm > 0:

∂σαm,Hm
∂Hm

< 0. (A.13)

Using the assumption that Hm < Hαm , Corollary 3(ii), and Eq. (A.13), σαm,Hm > σ1−αm .

Since wαm,Hm and w1−αm lie on the top half of the frontier wαm,Hm lies above w1−αm in

(E[rw ], σ[rw ]) space. This completes the proof of part (i).

Proof of Corollary 4. Fix an account m ∈ {1, ...,M} with threshold probability αm ∈
(0, α). Since z2αm > D/C > 0, Eq. (28) implies that the σαm,Hm converges to infinity as Hm

converges to minus infinity. It follows from Eq. (27) that Eαm,Hm also converges to infinity

as Hm converges to minus infinity.

Proof of Corollary 5. Fix an account m ∈ {1, ...,M} with threshold probability αm ∈
[αHm , α) and threshold return Hm ∈ (−∞, A/C). It is convenient to first show part (ii).

Suppose that αm = αHm . It follows from Eq. (30) that:

zαm =
√
D/C + C(A/C −Hm)2. (A.14)

Eqs. (21) and (A.14) imply that:

Hαm = Hm. (A.15)

Using Corollary 3(ii), wαm,Hm =w1−αm . This completes the proof of part (ii).

Consider now part (i). Suppose that αm ∈ (αHm , α). For brevity, let:

F ≡
√

(D/C)[(A/C −Hm)2 − (z2αm −D/C)/C]. (A.16)
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Eqs. (28) and (A.16) imply that:

∂σαm,Hm
∂zαm

=

[
(A/C −Hm) +

−(D/C2)zαm
F

] (
z2αm −D/C

)
− 2zαm [zαm (A/C −Hm) + F ](

z2αm −D/C
)2 .

(A.17)

It follows from Eq. (A.17) that:

∂σαm,Hm
∂zαm

=
[(A/C −Hm)F − (D/C2) zαm ]

(
z2αm −D/C

)
− 2zαm [zαm (A/C −Hm) + F ]F(

z2αm −D/C
)2
F

.

(A.18)
Simplifying Eq. (A.18):

∂σαm,Hm
∂zαm

=
− (A/C −Hm)F (D/C)− zαm

(
D/C2

) (
z2αm −D/C

)
− z2αm (A/C −Hm)F − 2zαmF 2(

z2αm −D/C
)2
F

.

(A.19)

Since zαm >
√
D/C > 0, A/C −Hm > 0, and F > 0, it follows from Eq. (A.19) that:

∂σαm,Hm
∂zαm

< 0. (A.20)

Noting that ∂zαm
∂αm

< 0, Eq. (A.20) implies that:

∂σαm,Hm
∂αm

> 0. (A.21)

Using the fact that αm > αHm , Corollary 5(ii), and Eq. (A.21), σαm,Hm > σ1−αm . Since

wαm,Hm andw1−αm lie on the top half of the frontier,wαm,Hm lies abovew1−αm in (E[rw ], σ[rw ])

space. This completes the proof of part (i).

Proof of Corollary 6. Fix an account m ∈ {1, ...,M} with threshold return Hm ∈
(−∞, A/C). Using the definition of zαm and Eq. (20), zαm converges to

√
D/C as αm con-

verges to α from below. Therefore, the assumption that Hm < A/C and Eq. (28) imply that

σαm,Hm converges to infinity as αm converges to α from below. It follows from Eq. (27) that

Eαm,Hm also converges to infinity as αm converges to α from below.

Proof of Theorem 6. Fix an accountm ∈ {1, ...,M} with threshold probability αm ∈ (0, α)

and threshold return Hm ∈ (−∞, Hαm ]. Fix another account with threshold probability

α ∈ (0, α] and threshold return Hα. Eqs. (27) and (32) imply that:

A/C −Hα = zασαm,Hm −
√

(D/C)(σ2αm,Hm − 1/C). (A.22)
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Using Eq. (28) with (αm, Hm) = (α,Hα) as well as Eq. (A.22):

σα,Hα =
zα

[
zασαm,Hm −

√
(D/C)(σ2αm,Hm − 1/C)

]
z2α −D/C

+

√
(D/C)

{[
zασαm,Hm −

√
(D/C)(σ2αm,Hm − 1/C)

]2
− (z2α −D/C)/C

}
z2α −D/C

. (A.23)

It follows from Eq. (A.23) and elementary algebra that:

σα,Hα =
zα

[
zασαm,Hm −

√
(D/C)(σ2αm,Hm − 1/C)

]
z2α −D/C

+

√
(D/C)

(
zα
√
σ2αm,Hm − 1/C −

√
D/Cσαm,Hm

)2
z2α −D/C

. (A.24)

Simplifying Eq. (A.24), σα,Hα = σαm,Hm . Since wα,Hα and wαm,Hm lie on the top half of the

mean-variance frontier, wα,Hα =wαm,Hm .

Proof of Theorem 7. Fix an accountm ∈ {1, ...,M} with threshold probability αm ∈ (0, α)

and threshold return Hm ∈ (−∞, Hαm ]. Using Eq. (7) with γ = (D/C) / (Eαm,Hm − A/C),

Eγ = Eαm,Hm . Hence, Eq. (35) holds.

Proof of Corollary 7. Fix an account m ∈ {1, ...,M} with threshold probability αm ∈
(0, α). First, consider part (i). It follows from Corollary 4 that Eαm,Hm converges to infinity

as Hm converges to minus infinity. Hence, Eq. (35) implies that γiαm,Hm converges to zero as

Hm converges to minus infinity. This completes the proof of part (i).

Second, consider part (ii). Suppose that Hm = Hαm . It follows from Corollary 3(ii) that

wαm,Hm =w1−αm . Eqs. (23) and (35) imply that:

γiαm,Hm = (D/C) /
√

(D2/C3)/
(
z2αm −D/C

)
. (A.25)

Using Eq. (A.25), γiαm,Hm = γαm . This completes the proof of part (ii).

Proof of Corollary 8. Fix an account m ∈ {1, ...,M} with threshold return Hm ∈
(−∞, A/C). First, consider part (i). Using Corollary 6, Eαm,Hm converges to infinity as

αm to α from below. Hence, Eq. (35) implies that γiαm,Hm converges to zero as αm to α from

below. This completes the proof of part (i).

Second, consider part (ii). Suppose that αm = αHm . Using Corollary 5(ii),wαm,Hm =w1−αm .

Since αm = αHm , it follows from Eq. (30) that:

zαm =
√
D/C + C(A/C −Hm)2. (A.26)
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Eqs. (23), (35), and (A.26) imply that:

γiαm,Hm = (D/C) /
√

(D2/C3)/[C(A/C −Hm)2]. (A.27)

It follows from Eq. (A.27) that γiαm,Hm = γHm . This completes the proof of part (ii).

Proof of Theorem 8. Fix an investor with a risk aversion coeffi cient of γ ∈ R++ as well
as an account with threshold probability αγ ∈ (0, αγ] and threshold return of Hγ. It follows

from Eqs. (2) and (7) that:

Eγ = A/C +
√

(D/C)(σ2γ − 1/C). (A.28)

Eqs. (A.28) and (39) imply that:

A/C −Hγ = zαγσγ −
√

(D/C)(σ2γ − 1/C) (A.29)

Using Eq. (28) with (αm, Hm) = (αγ, Hγ) as well as Eq. (A.29):

σαγ ,Hγ =
zαγ

[
zαγσγ −

√
(D/C)(σ2γ − 1/C)

]
z2αγ −D/C

+

√
(D/C)

{[
zαγσγ −

√
(D/C)(σ2γ − 1/C)

]2
− (z2αγ −D/C)/C

}
z2αγ −D/C

. (A.30)

It follows from Eq. (A.30) and elementary algebra that:

σαγ ,Hγ =
zαγ

[
zαγσγ −

√
(D/C)(σ2γ − 1/C)

]
z2αγ −D/C

+

√
(D/C)

(
zαγ

√
σ2γ − 1/C −

√
D/Cσγ

)2
z2αγ −D/C

. (A.31)

Simplifying Eq. (A.31), σαγ ,Hγ = σγ. Since wαγ ,Hγ and wγ lie on the top half of the mean-

variance frontier, wαγ ,Hγ =wγ.

Proof of Theorem 9. Suppose that threshold probability αm ∈ (0, α) and threshold return

Hm ∈ (−∞, Hαm ] for any account m ∈ {1, ...,M}. Using Theorem 5(i), {wαm,Hm}Mm=1 exist
and so does wa. Eqs. (40) and (41) follow the definition of wa as well as Eqs. (26) and (27).

Using Eqs. (1) and (40), wa is on the mean-variance frontier. Hence, Eq. (42) follows from

Eqs. (2) and (41).
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Proof of Theorem 10. Suppose that threshold probability αm ∈ (0, α) and threshold return

Hm ∈ (−∞, Hαm ] for any accountm ∈ {1, ...,M}. Using Eq. (7) with γ = (D/C) / (Ea − A/C),

Eγ = Ea. It follows that:

γia = (D/C) / (Ea − A/C) . (A.32)

Since
∑M

m=1 ym = 1 and Ea =
∑M

m=1 ymEαm,Hm , Eq. (35) implies that:

M∑
m=1

ym/γ
i
αm,Hm = (Ea − A/C) / (D/C) . (A.33)

Eq. (45) follows from Eqs. (A.32) and (A.33).
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