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From mean-variance analysis to mental accounting and back:

Bridging contributions of Markowitz to portfolio selection

Abstract

Modern portfolio theory considers investors whose preferences are often represented by a
function defined over the means and variances of portfolio returns and specified with a risk
aversion coefficient; see Markowitz (1952). In Das et al. (2010), however, Markowitz and
three co-authors consider an investor who has: (i) mental accounts (hereafter, ‘accounts’)
with different investing motives; (ii) preferences within an account that are specified by
some maximum threshold probability of the account’s return being less than or equal to
some threshold return; and (iii) threshold probabilities and threshold returns (hereafter,
‘thresholds’) that possibly vary across accounts. Like the optimal portfolio in Markowitz’s
model, optimal portfolios within accounts in Das et al.’s model are on the mean-variance
frontier and so is the corresponding aggregate portfolio if short selling is allowed. Bridging
Markowitz’s contributions, several analytical results are here uncovered. These results en-
compass: (1) the losses arising from misspecifying a risk aversion coefficient in Markowitz’s
model; (2) the impact of using thresholds instead of a risk aversion coefficient to specify
investor preferences on portfolio selection; and (3) the risk aversion coefficients of investors
in Markowitz’s model who select the same portfolios as an investor in Das et al.’s model

selects within accounts.

Keywords: modern portfolio theory; mean-variance analysis; mental accounting; tail risk;

behavioral finance.
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1. Introduction

The origins of modern portfolio theory can be traced to the seminal paper of Markowitz
(1952). In his model, investors assess portfolios based on their expected rewards and risks.!
The expected reward of a portfolio is measured by the mean of the portfolio’s future return
(hereafter, ‘mean’ or ‘expected return’). The risk of a portfolio is measured by the variance
or standard deviation of the portfolio’s future return (hereafter, respectively, ‘variance’ and
‘standard deviation’). Since Markowitz considers investors who prefer the portfolio with the
smallest variance among portfolios with the same mean, they select portfolios on the mean-
variance frontier. A portfolio is on the mean-variance frontier if there is no portfolio with
the same mean and a smaller variance. In order to locate an investor’s optimal portfolio on
this frontier, the investor’s preferences are often represented by a function defined over the
means and variances of portfolios and specified with a risk aversion coefficient.?

In Das et al. (2010), however, Markowitz and three co-authors note that modern portfolio
theory does not address the practical fact that an investor might have: (i) various investing
motives such as retirement and bequest;® (ii) preferences that are difficult to correctly specify
with a risk aversion coefficient;! and (iii) different goals for different investing motives. Ac-
cordingly, their model considers an investor whose wealth is divided among mental accounts

(hereafter, ‘accounts’) with different investing motives. The investor’s preferences within a

"Markowitz (1959) reviews the model of Markowitz (1952), whereas Markowitz (2000, 2008) collects his
work. For insightful perspectives on his contributions, see Rubinstein (2002), Goetzmann (2023), and the
2024 Special Issue of The Journal of Portfolio Management dedicated to him.

2While Markowitz is often viewed as the father of modern portfolio theory, Markowitz (1999, p. 5) notes
that “Roy (1952) can claim an equal share of this honor.” The investor in Roy’s model selects the portfolio
that maximizes the ratio of (a) excess expected return over some disastrous level of return to (b) standard
deviation. For a review of this model, see Elton et al. (2014, pp. 226-229).

3In practice, money management firms list many investing motives (e.g., college education, a house, a
wedding, and a vacation); see <investor.vanguard.com/investor-resources-education/investing-goals>.

4Das et al. note two reasons for investors not being able to correctly specify their risk aversion coefficients.
First, since an investor might have different risk aversion coefficients for different investment motives, the
investor might not be able to properly weigh such coefficients to find the overall risk aversion coefficient used
to identify the portfolio that in aggregate maximizes the investor’s overall satisfaction. Second, investors
might find that the specification of their levels of risk aversion in units of variance is not intuitive.



given account are specified by a threshold probability and a threshold return (hereafter,
‘thresholds’).> Formally, the optimal portfolio within the account maximizes the account’s
expected return subject to the constraint that the probability of the account’s return be-
ing less than or equal to the threshold return does not exceed the threshold probability.
Hence, the account’s Value-at-Risk (VaR) at the confidence level of one minus the threshold
probability cannot exceed minus one multiplied by the threshold return.® Recognizing that
different accounts have differ investment motives, thresholds possibly vary across accounts.”

The models of Markowitz and Das et al. are closely related if asset returns are assumed
to have a multivariate Normal distribution and thresholds are such that optimal portfolios
within accounts exist in Das et al.’s model. Since the VaR of a portfolio is a linear function of
its mean and standard deviation under this distribution, optimal portfolios within accounts
are on the mean-variance frontier. Hence, the optimal portfolio within a given account of an
investor in Das et al.’s model would be selected by a hypothetical investor in Markowitz’s
model with some (implied) risk aversion coefficient. Conversely, the optimal portfolio of an
investor in the latter model would be selected within an account of a hypothetical investor
in the former with some (implied) thresholds. The aggregate portfolio of an investor in Das
et al.’s model (the combination of the investor’s optimal portfolios within accounts) is also

on the mean-variance frontier if short selling is allowed.®

5In practice, financial advisers (working independently or at money management firms) utilize financial
advising programs that use thresholds to reflect the goals of investors; see Statman (2017, pp. 208-217).

6Since the practical use of VaR is at the heart of modern risk management (see Hull (2023)) and the
theoretical use of VaR as a measure of risk is related to mean-variance analysis under certain conditions (see
Baumol (1963) and Alexander and Baptista (2002)), Alexander (2009) contends that Markowitz is also the
father of modern risk management.

"The model of Das et al. extends the model of Telser (1955) from the single-account case to the multiple-
account case. While Das et al. (2011) and Statman (2024) review the former model, Elton et al. (2014, pp.
230-231) review the latter; see also Arzac and Bawa (1977).

8The investor in the behavioral portfolio selection model of Shefrin and Statman (2000) has one or
more accounts and is possibly risk seeking. In comparison, the investor in Das et al.’s model has two or
more accounts and is risk averse. Hence, Das et al.’s model integrates features of behavioral portfolio theory
(accounts) and modern portfolio theory (optimal portfolios within accounts are on the mean-variance frontier
and so is the aggregate portfolio if short selling allowed). When short selling is disallowed, Das et al. show
that the former portfolios are also on the frontier but the latter might lie away from but close to the frontier.



Bridging Markowitz’s contributions, results along three dimensions are here uncovered.’
First, consider the loss in certainty-equivalent return (CER) arising from an investor using
an erroneous (instead of the ‘true’) risk aversion coefficient in seeking to find the optimal
portfolio in Markowitz’s model. An analytical expression for the loss in CER is derived.
Importantly, the loss in CER in the case where the erroneous coefficient is less than the
‘true’ coefficient by some amount exceeds the loss in CER in the case where the erroneous
coefficient is greater than the ‘true’ coefficient by the same amount. Moreover, the loss in
CER is unbounded (bounded) from above in the former (latter) case.

Second, consider the impact of using thresholds instead of a risk aversion coefficient to
specify investor preferences on portfolio selection. For any positive risk aversion coefficient,
the optimal portfolio in Markowitz’s model lies on the mean-variance frontier above the
global minimum-variance portfolio. In comparison, for any pair of thresholds such that the
optimal portfolio within a given account exists in Das et al.’s model, this portfolio lies on
the mean-variance frontier at the same point as or above the global minimum-VaR portfolio
at the confidence level of one minus the threshold probability, which in turn lies above the
global minimum-variance portfolio. While different risk aversion coefficients lead to different
optimal portfolios in Markowitz’s model, infinitely many pairs of thresholds lead to the same
optimal portfolio within an account in Das et al.’s model.

Third, consider the risk aversion coefficients implied by optimal portfolios within accounts
(when these portfolios exist). Using an analytical characterization of such coefficients, key
observations are made. Assuming thresholds such that the optimal portfolio within a given

account exists, the risk aversion coefficient implied by this portfolio: (i) is strictly between

9There is a vast literature on extensions of the models of Markowitz and Das et al. (involving consideration
of, for example, portfolio delegation, background risk, estimation risk, and equilibrium). For a review of such
extensions, see Fabozzi et al. (2010), Alexander et al. (2020), Koumou (2020), and references therein.
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zero and a positive value associated with the global minimum-VaR portfolio at the confidence
level of one minus the threshold probability; (ii) decreases in the threshold probability; (iii)
increases in the threshold return; and (iv) is very sensitive to the thresholds if the coefficient
is relatively large but notably less so if the coefficient is relatively small.

The paper proceeds as follows. Section 2 characterizes the composition of the optimal
portfolio of an investor in Markowitz’s model and the loss in CER arising from the mis-
specification of the investor’s risk aversion coefficient. Section 3 characterizes the existence
and composition of the optimal portfolios within accounts and the aggregate portfolio of an
investor in Das et al.’s model as well as the risk aversion coefficients implied by the former
and latter portfolios. Section 4 uses a numerical example to illustrate the theoretical results

uncovered in Sections 2 and 3. Section 5 concludes.!”

2. The model of Markowitz (1952)

This section examines the model of Markowitz (1952).

2.1. Assumptions

Suppose that a risk-free asset is not available for trade.!’ Let N > 1 be the number of
risky assets that are available for trade. The first two moments of their return distribution
are assumed to be finite. Let pu be the N x 1 vector of their expected returns. Suppose that
rank([1y p]) = 2 where 1y is the N x 1 unit vector.!? Let X be the N x N variance-
covariance matrix for asset returns. Suppose that rank(X) = N.'? Hereafter, p and X are

referred to as optimization inputs.

10An Online Appendix contains: (i) a table listing the notation used for the models of Markowitz and Das
et al.; and (ii) proofs of the theoretical results in the paper.

UTobin (1958) extends the results in Markowitz’s model to the case where a risk-free asset is assumed to
be available for trade. Sharpe (1964) characterizes expected asset returns in equilibria for economies where
investors use Tobin’s model for portfolio selection.

12The case where all assets have the same expected return is thus precluded.

13The existence of a combination of risky assets with a risk-free return is thus precluded.
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A portfolio is an N x 1 vector w with w'ly = 1. The nth entry of portfolio w is the
weight of asset n in the portfolio. A positive (negative) weight represents a long (short)
position. Here, short selling is allowed and asset weights are assumed to be unbounded.*

Let 7, denote the random return of portfolio w. Its mean or expected return is E[r,| =

w’ . While its variance is 02[r,,| = w'Xw, its standard deviation is o[r,] = vVw'Iw.

2.2. The mean-variance frontier

A portfolio is on the mean-variance frontier if there is no portfolio with the same mean
and a smaller variance. Merton (1972) provides an analytical characterization of the portfolios
on the mean-variance frontier. Some notation is useful to describe his characterization. Let
A= Xy, B= S u, C =11y, and D = BC — A? denote constants with B,

C, and D being positive. Suppose that A # 0. Let wy = % and w; = 2;11“ denote two

portfolios on the mean-variance frontier. While wy is the global minimum-variance portfolio
and has an expected return of A/C, w; has an expected return of B/A.

The portfolio on the mean-variance frontier with an expected return of £ € R is:

wp =0pwo+ (1 — 0p)w, (1)

where 0 = %. For any portfolio w on the frontier, the following holds:

‘72[7‘11)] (Elrw] — A/O)2 .
yc ~ pjcr 2)

As Fig. 1(a) illustrates, portfolios on the frontier are represented in (E[r,], o[ry,]|) space by
a hyperbola.!® The dot (‘e’) plots wy, which has an expected return of A/C' as noted earlier
and a standard deviation of 1/1/C. The top and bottom half-lines show the asymptotes of

the frontier: E[r,] = A/C £ \/D/Co|ry|. As Fig. 1(b) illustrates, portfolios on the frontier

!The assumptions that short selling is allowed and asset weights are unbounded follow Merton (1972).

15While in general A can be negative, zero, or positive, Fig. 1(a) assumes that A is positive. Since A
is assumed to be positive in this figure and C is always positive, A/C is positive in the figure. Similar
observations apply to subsequent figures that use the value of A.



are represented in (E[ry], 0%[ry]) space by a parabola. The leftmost and rightmost dots plot,
respectively, wo and w;. While their respective expected returns are A/C and B/A as noted
earlier, their respective variances are 1/C and B/A% Note that w; is located at the point

where a ray from the origin that goes through w crosses the frontier; see Roll (1992).

2.3. The optimal portfolio
Consider an investor with an exogenously given amount of wealth. The investor’s prefer-
ences over portfolios are represented by the function U : R x R, — R defined by:

U(E[rw), olre]) = Elre] = (7/2)0°[14] (3)
where v > 0 is the investor’s risk aversion coefficient.'® Focusing on portfolios with the same
variance, the investor’s satisfaction is higher for portfolios with higher means. Focusing on
portfolios with the same mean, the investor’s satisfaction is higher for portfolios with lower
variances since v > 0. Noting that U(E[r,]—(7/2)0%[rw],0) = U(E[ry], o[rw]), the certainty-
equivalent return (CER) of portfolio w is U(E[ry], o[rw])-

The investor’s optimal portfolio solves:

max  Elry] = (7/2)0[ru] (4)

weRN
s.t. w'ly =1. (5)

Egs. (4) and (5) imply that this portfolio maximizes the function defined by Eq. (3) subject
to asset weights summing to one. Asset weights are constrained to sum to one because the
investor’s wealth is assumed to be fully invested.

The following result characterizes the composition, expected return, and standard devi-

ation of the investor’s optimal portfolio.

16The use of this function by expected utility maximizers leads to the selection of optimal portfolios if:
(1) risky asset returns have a multivariate elliptical distribution (such as the Normal or ¢-distributions) with
finite first and second moments; or (2) utility functions are quadratic; see Ingersoll (1987, Ch. 4) and Huang
and Litzenberger (1988, Ch. 3). When neither (1) or (2) holds, expected utility is under certain conditions
well approximated by such a function; see Markowitz (1959, 2010) and Levy and Markowitz (1979).
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Theorem 1. The optimal portfolio of an investor with a risk aversion coefficient of v € R,

18:
wy = 0 ,wo + (1 —0,)w, (6)
where 0., = %, its expected return is:
E,=A/C+(D/C)/, (7)
and its standard deviation is:
o, = v/1/C+ (DJC)/7. (8)

Using Egs. (1) and (6), the optimal portfolio of an investor with a risk aversion coefficient
of vy € Ry, w,, is on the mean-variance frontier. Egs. (7) and (8) imply that w,’s expected
return and standard deviation, respectively, E, and o, depend on g and X (through the
values of A, C, and D in the case of I/, and through the values of C' and D in the case of
0,) as well as 7. Given p and X, note that E, and 0., decrease in vy since D/C > 0.1

The next two corollaries examine the location of an investor’s optimal portfolio along the

mean-variance frontier.

Corollary 1. (i) The optimal portfolio of an investor with a risk aversion coefficient of
v € Ryy, w,, lies above the global minimum-variance portfolio, wo, in (E[ry], o[ry]|) space;

(ii) The former portfolio converges to the latter as vy converges to infinity.

Corollary 1(i) can be seen as follows. Consider an investor with a risk aversion coefficient
of y € Ry,. Since D/C > 0 and v > 0, Eq. (7) implies that the investor’s optimal portfolio,
w.,, has an expected return, E.,, that exceeds A/C. Recall that the global minimum-variance
portfolio, wy, has an expected return of A/C'. Hence, w., lies above wy in (E[r,], o[r,]) space.

The leftmost and rightmost dots (‘e’) in Fig. 2(a) illustrate the location of, respectively,

"Here, only partial equilibrium results are discussed. Black (1972) characterizes expected asset returns
in equilibria for economies where investors use Markowitz’s model for portfolio selection.
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wy and w, in (E[ry], o[ry]) space. By definition, wy lies at the leftmost point on the curve
representing portfolios on the mean-variance frontier. The two thin dashed indifference curves
are associated with v; see Eq. (3). Note that w, lies at the point where the top thin dashed
curve is tangent to the top half of the frontier. Hence, w, lies above wy.

Corollary 1(ii) can be seen as follows. Using Eq. (7), note that £, converges to A/C and
thus 6., converges to one as 7 converges to infinity. Hence, Eq. (6) implies that w. moves

down along the top half of the mean-variance frontier toward wg as v converges to infinity.

Corollary 2. The expected return of the optimal portfolio of an investor with a risk aversion

coefficient of v € Ry, E,, converges to infinity as v converges to zero.

Corollary 2 can be seen as follows. Since D/C > 0, Eq. (7) implies that E. converges to
infinity as v converges to zero. Hence, w, moves up unboundedly along the top half of the

mean-variance frontier as v converges to zero.

2.4. Loss in CER arising from the misspecification of the risk aversion coefficient
The loss in CER of an investor with a risk aversion coefficient of v € R, who uses an
erroneous risk aversion coefficient of v, € R, \{v} in seeking to find the optimal portfolio

Lyy, = U(Elruw,) olrw,]) = U(E[rw, |, orw, ])- (9)

Fig. 2(a) illustrates L., in (E[ry],o[rs]) space. As noted earlier, the rightmost dot (‘e’)
shows that the investor’s optimal portfolio, w., lies at the point where the top thin dashed
indifference curve associated with « is tangent to the top half of the mean-variance frontier.
The middle dot shows that the portfolio that the investor selects when using an erroneous
risk aversion coefficient of v, > v, w,_, lies at the point where the thick dashed indifference

curve associated with v, is tangent to the top half of the mean-variance frontier. Since v, > 7,



w,,_ lies below w,.'® The bottom thin dashed indifference curve is associated to v and goes
through w,_. Note that L, ,_is the vertical distance between the top and bottom thin dashed
curves.

The following result provides an analytical expression for the loss in CER.

Theorem 2. An investor with a risk aversion coefficient of v € R, who uses an erroneous
risk aversion coefficient of v. € Ry \{7v} in seeking to find the optimal portfolio has a loss

in CER of:
Loy, = (D/C) (7. =)/ (2972). (10)

Consider an investor with a risk aversion coefficient of v € R, who uses an erroneous
risk aversion coefficient of . € R, \{7} in seeking to find the optimal portfolio. Two
observations follow from Eq. (10). First, since D/C, |y. — 7|, 7, and 7. are positive, so is
L. . Second, L, depends on p and X (through the term D/C) as well as v and ..

Given p, X, and v € R, Fig. 2(b) illustrates how L, depends on 7_; see Eq. (10). If
0 <. <7, then L, : (a) decreases in 7,; (b) is unbounded from above since L., converges
to infinity as . converges to zero; and (c) is strictly convex on ~_.'? If 7. > ~, then L.
(a) increases in v.; (b) is bounded from above since L., converges to (D/C) /(2v) as 7.
converges to infinity; (c) is strictly convex on v, if v < 7y, < 37/2;*Y and (d) is strictly concave
on v, if v, > 3v/2. Importantly, the value of L, ., if ~, is less than v by an amount strictly
between zero and 7 exceeds the value of L, ,_if v, is greater than v by the same amount.
For example, L., = (D/C) /(2y) ify. =~/2 but L., = (D/C)/(187) if v, = 3v/2.

The intuition for why the loss in CER if v, is less than v by an amount strictly between

18Similar graphical results hold in the case where 0 < 7. < . In this case, however, w,_ lies above w,.

YNote that 0°L. _/0~v2 = (D/C)(3y — 2v.)/7%; see Eq. (10).

2USince 9L, . /072 = (D/C)(3y — 2v.)/7% and D/C > 0, the inflection point of L, occurs when
Y. =3y/2 and L, ,_= (D/C)/(187); see Eq. (10).



zero and vy exceeds the loss in CER if v, is greater than v by the same amount is as follows.
Since the difference between the expected returns of the optimal and global-minimum vari-
ance portfolios is inversely proportional to 7, the use of the former value of v, leads to the
selection of a portfolio on the mean-variance frontier with an expected return that deviates
more from that of the optimal portfolio than the use of the latter; see Egs. (6) and (7).*!
Hence, the use of the value of ~, less than «y results in a larger loss in CER than the use of
the value of ~y_ greater than ~.22

The next result examines the losses in CER when +, is either less than or greater than 7y

by some percentage.

Theorem 3. Consider an investor with a risk aversion coefficient of v € R, who uses an
erroneous risk aversion coefficient of v. € Ry \{v} in seeking to find the optimal portfolio.
(i) If v. =7, = (1 = K)y where k € (0,1), then the loss in CER is:
Lys..- = (D/C) /2] 5/ (1 = R)]*. (11)
(i) If 7. = .+ = (1 + )y where r € (0,00), then the loss in CER is:
Ly, = (D/C) [ @] 5/ (1 + 5)]. (12)
(i11) If k€ (0,1), then:
(Lo, -/ Ly, ) =1 =ROL, = [(1 4+ x)/(1 - R - 1. (13)
Consider an investor with a risk aversion coefficient of v € R, . In seeking to find the

optimal portfolio, suppose that the investor uses an erroneous risk aversion coefficient less

than v by some percentage x € (0,1), 7. .. Using Eq. (11), the loss in CER, L, ., depends

21For example, while the use of v, = /2 leads to the selection of a portfolio with an expected return
greater than that of the optimal portfolio by (D/C)/~, the use of v, = 3v/2 leads to the selection of a
portfolio with an expected return less than that of the optimal portfolio by (1/3)(D/C)/~.

22The CER of a portfolio on the mean-variance frontier can be seen of as a function of the expected return
of the portfolio. Since this function is symmetric around the expected return of the optimal portfolio, the
use of the value of v, less than « and the corresponding larger deviation from the expected return of the
optimal portfolio result in a larger loss in CER than the use of the value of 7, greater than .
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on g and X (through the term D/C) as well as v and k. Given p, ¥, and v € R, note
that L, _ increases in x. Given p, X, and « € (0,1), note that L, decreases in ~.23

In seeking to find the optimal portfolio, suppose now that the investor uses an erroneous
risk aversion coefficient greater than v by some percentage x € (0,00), 7. .+ The results for
the loss in CER, L%”/s,ﬁ ., are similar to the results noted for L%%’K?; see Eq. (12). However,
for any x € (0,1), Egs. (11) and (12) imply that L., _ > L,, .. Hence, the loss in CER
when 7y, is less than v by some percentage x strictly between zero and one exceeds the loss
in CER when 1, is greater than v by the same percentage.

Using Eq. (13), the relative change in the loss in CER arising from an investor using 7, .-
instead of 7, ,.+ in seeking to find the optimal portfolio, RCL,: (i) is positive (consistent with
the fact that L, _ > L., . ); (ii) increases in x; and (iii) does not depend on p or X or
7. Fig. 2(c) reports the values of RC'L, when k ranges from zero to 30%. Since these values
of RCL, are sizeable except if x is zero or very close to zero, a key practical implication
follows. In attempting to infer the preferences of an investor to implement Markowitz’s model,
practitioners should be aware that the loss in CER if the erroneous risk aversion coefficient
is less than the ‘true’ risk aversion coefficient by some amount can notably exceed the loss

in CER if the former coefficient is greater than the latter by the same amount.?*

2Das et al. (2010) assess the loss in CER in a numerical example. Fixing the value of x, they find that
the average loss in CER across two values of v, given by 7, .- and v, ,+ is larger for smaller values of 7.
However, they do not provide an analytical expression for the loss in CER nor the average loss in CER.
Using Egs. (11) and (12), the average loss in CER is [(D/C) /(27)] [3(1 + &2)]/[(1 — &?)?].

24For any risk aversion coefficient v € R, |, let ¢ = 1/ denote the corresponding risk tolerance coefficient.
Let L; ;. denote the loss in CER of an investor with a ‘true’ risk tolerance coefficient of t € R} who uses an
erroneous risk tolerance coefficient of t. € R4 \{t} in seeking to find the optimal portfolio. Eq. (10) implies
that L, = (D/C)t(1 —t./t)*/2. Letting t. ;- = (1 — )t and ¢, j+ = (1 +1)t where [ € (0,1), it can be seen
that Ly, = Ly . = (D/C) t1? /2. Hence, the loss in CER arising from using an erroneous risk tolerance
coefficient less than the ‘true’ risk tolerance coefficient by some amount equals the loss in CER arising from
using an erroneous risk tolerance coefficient greater than the ‘true’ risk tolerance coefficient by the same
amount. Since Das et al. (2010) parameterize the loss in CER by the erroneous risk aversion coefficient (not
by the erroneous risk tolerance coefficient), so does Section 2.4.
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3. The model of Das et al. (2010)

This section examines the model of Das et al. (2010).

3.1. Assumptions
In addition to the assumptions in Section 2.1 on assets and portfolios, suppose that asset

returns have a multivariate Normal distribution.2’

3.2. Optimal portfolios within accounts

Consider an investor with an exogenously given amount of wealth. This amount of wealth
is exogenously allocated to an exogenously given number of accounts denoted by M > 1.
Letting 1,; denote the M x 1 unit vector, the M x 1 vector of fractions of the investor’s
wealth in the accounts is y € RY., where y'1,; = 1. The mth entry of y is the fraction of
the investor’s wealth in account m. The investor allocates the wealth within each account
among the same set of assets that are available for trade. However, the fraction of wealth in
an account that the investor allocates to a given asset possibly depends on the account.

The optimal portfolio within account a given account m € {1, ..., M } solves:

Elry 14
max  Blry] (14)
s.t. wly =1 (15)

Plry < Hyl < ay, (16)
where P[] denotes probability, H,, € R is account m’s threshold return, and «,, € (0,1/2)
is account m’s threshold probability. Hence, this portfolio maximizes account m’s expected

return subject to: (i) fully investing the wealth in the account; and (ii) the probability of

25The results in Das et al.’s model hold more generally in the case where asset returns are assumed to have
a multivariate elliptical distribution with finite first and second moments. Moreover, these results hold as
an approximation if the multivariate distribution of asset returns is unknown but has finite first and second
moments; see O’cinneide (1990). Das and Statman (2013) examine the composition of optimal portfolios
within accounts when asset returns are assumed to have non-elliptical distributions. Additionally, the results
in Das et al.’s model extend to the case where a risk-free asset is assumed to be available for trade; see
Alexander et al. (2020) and references therein.
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the account’s return being less than or equal to H,, not exceeding «,,. Note that probability
constraint (16) loosens if «a,, increases but tightens if H,, increases. Therefore, the size of
thresholds «,,, and H,, reflects the investor’s goal for account m.

Probability constraint (16) can be seen as a restriction on account m’s tail risk. Some
notation is useful to formally write such a restriction. For any « € (0,1/2), let z, = —® ()
where ®(-) denotes the cumulative univariate standard Normal distribution function. Since
a € (0,1/2), note that z, is positive and decreases in a.

The Value-at-Risk (VaR) at confidence level 1 — « of portfolio w is:%0

V[l — a,ry| = 200[1rw] — E[rw). (17)
Note that portfolio w meets probability constraint (16) if and only if:
V[l — 7] < —H,p. (18)
Hence, probability constraint (16) restricts account m’s VaR at confidence level 1 — ay, to
be —H,, or less. Using Eqs. (17) and (18), probability constraint (16) is equivalent to:
Elry| > Hp + 2a,,0[Tw)- (19)
Hence, as Fig. 3(a) illustrates, portfolios that lie on or above a line with an intercept of
H,, and a slope of z,,, in (E[ry],o[ry]|) space meet probability constraint (16), whereas
portfolios that lie below the line do not meet the constraint.?” Given a threshold probability
of o, Fig. 3(b) shows that increasing the threshold return from H!°* to H"" tightens the
constraint because the intercept of the line associated with the constraint also increases from
H!*v to HM9" Given a threshold return of H,,, Fig. 3(c) shows that increasing the threshold

probability from «/% to a9 loosens the constraint because the slope of the line associated

26Like a portfolio’s VaR, a portfolio’s Conditional Value-at-Risk (CVaR) is a linear function of its mean
and standard deviation if asset returns have a multivariate Normal distribution. Here, a portfolio’s CVaR at
a given confidence level is the portfolio’s expected loss given that the loss equals or exceeds the portfolio’s

VaR at that confidence level. The results in Das et al.’s model extend to the case where CVaR is used instead
of VaR to set account goals. Hull (2023, Ch. 11) compares the theoretical properties of VaR and CVaR.

2TWhile threshold returns can in general be negative, zero, or positive, Fig. 3(a) assumes that H,, < 0.
Subsequent figures that use threshold returns similarly make an assumption on the sign of threshold returns.
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with the constraint decreases from z,iw to z nion (recall that z, decreases in a).

Optimal portfolios within accounts may or may not exist depending on the thresholds
and optimization inputs. In order to identify conditions on the thresholds and optimization
inputs under which these portfolios exist, a characterization of the existence of the global
minimum-VaR portfolio and its VaR if it exists is useful. The following notation is used to
describe such a characterization. Let:

a=a(-/D/C). (20)
Using Eq. (20), note that @ depends on g and ¥ (through the values of C' and D). Since

—+/D/C < 0, Eq. (20) implies that @ € (0,1/2). For any a € (0, @), let:

H,=A/C—\/(:2—-D/C)/C. (21)

Using Eq. (21), note that H, depends on « (through the value of z,) as well as p and 3
(through the values of A, C', and D).

Alexander and Baptista (2002) characterize the existence of the global minimum-VaR

portfolio as well as its composition, expected return, standard deviation, and VaR if it

exists.

Theorem 4. (i) The global minimum-VaR portfolio at confidence level 1 — « exists if and
only if a € (0,@); (i) If a € (0,@), then this portfolio is:
Wi_q = Hl_awg + (1 — Gl_a)wl (22)

Ei_a—B/A
where 0,_, = =52 /

= Ac B/ its expected return is:

By = A/C +\/(D?/C%) ] (% - DJO), (23)

its standard deviation is:

010 = V/(22/C) / (22 = D/C), (24)

and its VaR at confidence level 1 — «v is:

Viia = —H,. (25)
14



Using Theorem 4(i), the existence of the global minimum-VaR portfolio depends on the
confidence level 1 — v as well as p and ¥ (since @ depends on p and X). First, if 1 — «v is
less than or equal to 1 — @, then the portfolio does not exist. Its non-existence can be
seen by noting that the slope of the representation of the portfolios on the top half of the
mean-variance frontier in (E|ry|, o[ry]) space exceeds z, if 1 — a < 1 — @ (or, equivalently,
a > @).2 Using Eq. (17), the VaRs of such portfolios decrease when moving up along the
frontier. Hence, the problem of globally minimizing VaR does not have a solution.

Second, if 1 — « is greater than 1 — @, then the global minimum-VaR portfolio, w;_,,
exists. Egs. (1) and (22) imply that w;_, is on the mean-variance frontier. The leftmost
and rightmost dots (‘e’) in Fig. 4 illustrate the location of, respectively, wo and w;_, in
(E[rw],olrv]) space. While w;_, lies above wg, w;_, converges to wy as 1 — a converges
to 100% from below (or, equivalently, o converges to zero from above); see Eq. (23).2 Also,
wi_, lies at the point where a line with a slope of z, is tangent to the top half of the
mean-variance frontier. The intercept of this line is H, = —V}_,; see Eq. (25).

The following result characterizes the existence of the optimal portfolio within a given

account as well as its composition, expected return, standard deviation, and VaR if it exists.

Theorem 5. Consider an account m € {1, ..., M} with threshold probability ., and threshold
return H,,. (i) The optimal portfolio within account m exists if and only if «,, € (0,@) and
H,, € (—o00,H,, 1 (i) If a,, € (0,@) and H,, € (—o0, H,,,|, then this portfolio is:

wamyHm = eam,HmwO + (1 - GQMyHm)w]- (26)

28While the slope of the representation of the portfolios on the top half of the mean-variance frontier in
(E[rw)], olrw]) space exceeds y/D/C, z, is less than or equal to \/D/C if a > @; see Egs. (2) and (20).

29Note that 2z, and E;_, converge to, respectively, infinity and A/C as a converges to zero from above.

30The existence of optimal portfolios within accounts is closely related to Theorem 4. The global minimum-
VaR portfolio at the confidence level of 1 — «, exists if and only if «,,, € (0,@). Moreover, when «,, € (0, @),
there is a portfolio meeting probability constraint (16) if and only if (—oc, H,,,] where H,, equals minus
one multiplied by the VaR of the global minimum-VaR portfolio at the confidence level of 1 — a,,.
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Ea, —BJ/A . :
where Oy, H, = Xl/’g+B/A/, its expected return is:

Bapt, = AJC+/(D/C)2, 4, —1/C), (27)

its standard deviation 1s:

 Zan (A/C = Hp) + \/(D/C)[(A/C ~Hy)* — (22, — D/C)/C]

mydIm )
0 am,H 2
ZOL D/C

(28)

and its VaR at confidence level 1 — a, is:

Vam,Hm = _Hm (29)

Consider an account m € {1,..., M'} with threshold probability «,, and threshold return
H,,. Using Theorem 5(i), the optimal portfolio within account m exists if and only if «, €
(0,@) and H,, € (—o0, H,,,].3! Hence, its existence depends on «,, and H,, as well as p and
> (since @ and H,, depend on g and X). Its non-existence occurs in two cases. First, if
Q. € [@,1/2), then probability constraint (16) is overly loose regardless of the value of H,,.
As Fig. 5(a) illustrates, the optimal portfolio within account m does not exist in this case
because the set of expected returns of portfolios that meet this constraint does not have a
finite upper bound. While the curve represents portfolios on the mean-variance frontier in
(E[rw], olrv]) space, the line has an intercept of H,, and a slope of z,, . Since portfolios on the
frontier with sufficiently large expected returns lie above the line and thus meet probability
constraint (16), the set of expected returns of portfolios that meet this constraint does not
have a finite upper bound. Noting that the optimal portfolio within account m would have
the maximum expected return among the portfolios that meet such a constraint, the former
portfolio does not exist; see Eqgs. (14)—(16).

Second, if a,, € (0,@) and H,, € (H,,,,o0), then probability constraint (16) is overly

31'While Das et al. (2010, pp. 325 and 326) examine the problem of existence of the optimal portfolio within
a given account, they do not analytically identify the thresholds for which this portfolio exists. Specifically,
given the threshold probability of the account, they formulate the problem of finding the maximum threshold
return for which such a portfolio exists and note that this problem can be numerically solved.
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tight. As Fig. 5(b) illustrates, the optimal portfolio within account m does not exist in this
case because no portfolio meets probability constraint (16). By definition, all portfolios lie
either on or to the right of the curve that represents portfolios on the mean-variance frontier.
Any portfolio that would meet probability constraint (16) would lie on or above a line with
an intercept of H,, and a slope of z,,,. Since the line is above the curve, no portfolio meets
probability constraint (16). Hence, the optimal portfolio within account m does not exist.
If a,, € (0,@) and H,, € (—o0, H,, ], then the optimal portfolio within account m,

W, 1,,, €xists and is on the mean-variance frontier;*

see Theorem 5(ii) along with Egs.
(1) and (26). Its expected return and standard deviation, respectively, E,,, u,, and oq,, m,.,
depend on «,,, and H,, as well as p and ¥ (through the values of A, C', and D); see Egs. (27)
and (28). Given p, ¥, and o, € (0, @), note that E,, g, and o,,, g, decrease in H,, if H,,
€ (—o0,H,,,). Given u, ¥, and H,, € (o0, H,, ], note that E,, y, and 04, u, increase
in o, if a,, € (0,@). Its VaR at confidence level 1 — ay,,, Vi, m,,, is —H,; see Eq. (29).

The next four corollaries examine the location of optimal portfolios within accounts along

the mean-variance frontier.

Corollary 3. Consider an account m € {1,..., M} with threshold probability o, € (0,@)
and threshold return H,, € (—oo, H,, ]. (i) If H,, € (—o0, Hy,), then the optimal portfolio
within account m, w,,, m,,, lies above the global minimum-VaR portfolio at confidence level
1=, Wy_a,,, in (E[ry],olre]) space; (i) If H,, = H.,,,, then the former portfolio equals

the latter.

Consider an account m € {1,..., M } with threshold probability o, € (0, @) and threshold

return H,, € (—oo, H,,,]. Assuming that H,, < H,,, Fig. 6(a) illustrates Corollary 3(i). The

32Das et al. derive a semi-analytical expression for w,,, g, that requires a numerical approach.
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curve represents portfolios on the mean-variance frontier in (E[ry], o[ry]) space, whereas the
line has an intercept of H,, and a slope of z,,,. The rightmost dot (‘e’) shows that w,,, u,,
lies at the point where the line crosses the top half of the frontier. The leftmost dot shows
the global minimum-VaR portfolio at confidence level 1 — o, wi_,,,. Note that w,,, m,,
lies above w;_,, . Assuming that H,, = H, , Fig. 6(b) illustrates Corollary 3(ii). The dot
shows that w,,, m,, lies at the point where the line is tangent to the top half of the frontier.

Hence, w,,, #, equals wi_,,,.

Corollary 4. Consider an account m € {1,..., M} with threshold probability o, € (0,@).
The expected return of the optimal portfolio within account m, E,, . m, , converges to infinity

as H,, converges to minus infinity.

Corollary 4 can be seen as follows. Consider an account m € {1,..., M} with threshold
probability a, € (0,@). Since 22 > D/C > 0, Eq. (28) implies that the standard deviation
of the optimal portfolio within account m, o,,, m,,, converges to infinity as H,, converges to
minus infinity. It follows from Eq. (27) that the expected return of this portfolio, E,,, #,.,
also converges to infinity as H,, converges to minus infinity.

For any threshold return H,, € (—oo0, A/C), let:

ay = (—\/D/C T C(AJC — Hm)2> . (30)
Since C' and D are positive, Egs. (20) and (30) imply that ay € (0,@).
Corollary 5. Consider an account m € {1,..., M} with threshold probability o, € [ay ,@)
and threshold return H,, € (—oo,A/C). (i) If oy, € (ay ,@), then the optimal portfolio

within account m, W, m,,, lies above the global minimum-VaR portfolio at confidence level

1 =, Wi—g,,, in (Eryl,olre]) space; (ii) If am = ay , then the former portfolio equals
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the latter.

Consider an account m € {1, ..., M } with threshold probability a., € [ay , @) and thresh-
old return H,, € (—o00, A/C). Assuming that a,, € (ay ,@), Fig. 6(c) illustrates Corollary
5(1). The rightmost dot (‘e’) shows that w,,, g, lies in (E[ry],o[ry]) space at the point
where a line with an intercept of H,, and a slope of z,,, crosses the top half of the fron-
tier. The leftmost dot plots the global minimum-VaR portfolio at confidence level 1 — ay |
Wiq, - Hence, w,,, u,, lies above Wi—q, - Assuming that o, = ay , Fig. 6(d) illustrates
Corollary 5(ii). The dot shows that w,,, m,, lies at the point where the line is tangent to the

top half of the frontier. Hence, w,,, u,, equals Wiq, -

Corollary 6. Consider an account m € {1, ..., M} with threshold return H,, € (—oo0, A/C).
The expected return of the optimal portfolio within account m, E,, m, , converges to infinity

as the threshold probability o, converges to @ from below.

Corollary 6 can be seen as follows. Consider an account m € {1,..., M} with threshold
return H,, € (—oo, A/C). Using the definition of z,, and Eq. (20), 2, converges to \/D/C
as a,, converges to @ from below. Therefore, the assumption that H,, < A/C and Eq.
(28) imply that the standard deviation of the optimal portfolio within account m, o,,, m,,
converges to infinity as «,, converges to @ from below. It follows from Eq. (27) that the
expected return of this portfolio, E,, , m,., also converges to infinity as c, converges to a
from below.

Consider an account m € {1,..., M} with threshold probability «a,, € (0,@), threshold
return H,, € (—oo, H,,,], and optimal portfolio w,,, g,,. It turns out that there are infinitely

many pairs of thresholds that lead to the same optimal portfolio. Some notation is useful to
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identify such pairs. Let:*3

a=0(—/(D/OV, 1, /(0 —1/O)]) (31)
Since C' > 0, D > 0, and 02, 5 > 0, Egs. (20) and (31) imply that @ € (0,@). For any

a € (0,al, let:3
Ha = am,Hm — Za0a7n,Hm- (32)
Since z, decreases in «, z, > 0, and o,,, g, > 0, Eq. (32) implies that H, increases in .

Given an account for which the optimal portfolio exists, the following result identifies the

pairs of thresholds for another account with the same optimal portfolio.

Theorem 6. Consider an account m € {1, ..., M} with threshold probability o, € (0,@) and
threshold return H,, € (—oo, H,, . Another account with threshold probability o € (0, @] and

threshold return H, has the same optimal portfolio as account m.

Consider an account m € {1,..., M} with threshold probability «,, € (0,@), threshold
return H,, € (—oo, H,,, ], and optimal portfolio W, m,,- Consider another account with
threshold probability a € (0, @] and threshold return H,,. As Fig. 7(a) illustrates, if « € (0, @),
then the optimal portfolio within this account is w,,, u,, because it lies at the point where a
line with an intercept of H, and a slope of z, crosses the top half of the curve representing
portfolios on the mean-variance frontier. As Fig. 7(a) also illustrates, if o = @, then the
optimal portfolio within such an account is again w,,, m, because it lies at the point where
a line with an intercept of Hz and a slope of 2z is tangent to the top half of the curve. Hence,

W, 1, €quals the global minimum-VaR portfolio at confidence level 1 — @, w,_=.%

m

33While @ depends on «, and H,,, the notation ‘@’ (instead of, e.g., ‘@,,, m,,’) is used for brevity.

34While H, depends on «, and H,,, the notation ‘H,’ (instead of, e.g., ‘Hy.q,, #,,’) is used for brevity.

31f o € (@, @), then w, g, lies on the top half of the mean-variance frontier at the same point as or above
W]_q, which in turn lies above w,,, #,,; see Corollary 3. Therefore, an account with a threshold probability
of a € (@, @) cannot have an optimal portfolio equal to w.,, m,,. Hence, Theorem 6 imposes the condition
that « € (0, @l.
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Fig. 7(b) illustrates the pairs of thresholds {(«, Ha)},e(o 7 of an account with an optimal
portfolio equal to w,,, m, .*° Note that H,: (i) increases in «; (ii) converges to Hz as «
converges to @ from below; and (iii) converges to minus infinity as a converges to zero from
above.

Since w,,, #,, is on the mean-variance frontier, w,,, m,, solves:

m m

max  Elru] = (Yo, 1,,/2)0" 1] (33)
wERN my m
st wly=1 (34)

for some ~%, 5 > 0. Hereafter, 7,  is referred to as the risk aversion coefficient implied

by the optimal portfolio within account m. The following result characterizes this coefficient.

Theorem 7. Consider an account m € {1,..., M} with threshold probability c,, € (0,@)
and threshold return H,, € (—oo, H,, ]. The risk aversion coefficient implied by the optimal

portfolio within account m 1is:
”Yiym,Hm = (D/C) / (Eam,Hm - A/C) (35)

where E,,, m, is given by Eq. (27).

Consider an account m € {1,..., M} with threshold probability «,, € (0,@), threshold
return H,, € (—oo, H,, ], and optimal portfolio w.,,, z, . Using Eqs. (27) and (35), the risk
aversion coefficient implied by this portfolio, 72% 1,,» depends on o, and M, (through the
term E,,, g, ) as well as on g and X (through the terms D/C, E,,, u,, and A/C).3" Given
O, i, and X, recall that E, g, decreases in H,, and thus ’ng g, increases in H,,. Given
H,,, p, and 3, recall that E,, g, increases in c,, and thus me, g, decreases in ay,.

Consider an account m € {1,..., M} with threshold probability «,, € (0,@). Of interest

30Given the thresholds of an account, Das et al. (2010, Table 2) numerically identify selected pairs of
thresholds for another account with the same optimal portfolio in an example. However, they do not analyt-
ically identify all pairs of thresholds for the latter account.

3"Das et al. numerically solve a problem to jointly find the optimal portfolio within a given account and
the risk aversion coefficient implied by this portfolio but do not analytically characterize such a coefficient.
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are lower and upper bounds on fygm g, assuming a threshold return H,, for which the optimal

portfolio within account m exists. Let:

Ton =/ (2, - D/C) C. (36)

. . 2
Since z,,, decreases in ,,, 2

- D/C >0,C >0,and D > 0, Eq. (36) implies that 7,

decreases in «,,. The aforementioned bounds are identified next.

Corollary 7. Consider an account m € {1,..., M} with threshold probability o, € (0,@).
The risk aversion coefficient implied by the optimal portfolio within account m, 'yém a0 (1)

converges to zero as H,, converges to minus infinity; and (i) is 7, if Hy = H,,,.

Consider an account m € {1, ..., M} with threshold probability a,, € (0,@). Corollary
7(i) can be seen by recalling that the expected return of the optimal portfolio within account
m, E,,, m,, converges to infinity as H,, converges to minus infinity; see Corollary 4. Hence,

as Fig. 8(a) illustrates, 7"06"“ ;. converges to zero as H,, converges to minus infinity.

Corollary 7(ii) can be seen by recalling that w,,, ,, equals the global minimum-VaR
portfolio at confidence level 1 — ay,, Wi_g,, , if H,, = H,,,; see Corollary 3(ii). Hence, as Fig.
8(a) illustrates, 7., 5 is 7, if Hy = Ha,,.

As noted earlier, an increase in H,, tightens probability constraint (16) and decreases
W, H, S expected return, F,,  m, . Hence, ygm g, increases in H,, as Fig. 8(a) illustrates;
see Eq. (35). If H,, is notably (slightly) less than H,, , then E, g, notably (slightly)
exceeds A/C'; see Eqs. (27) and (28). Therefore, v/, 5 slightly (notably) increases in H,, if
H,, is notably (slightly) less than H, as Fig. 8(a) also illustrates. Intuitively, increasing H,,
moves the optimal portfolio within account m down along the top part of the mean-variance

frontier by a smaller extent when H,, is notably less than H,, .

Consider an account m € {1,.... M} with a threshold return H,, € (—o0, A/C). Of
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interest are lower and upper bounds on ’ygm’ g, assuming a threshold probability «,, for

which the optimal portfolio within account m exists. Let:
Vu, =A—CHy,. (37)
Since C' > 0, Eq. (37) implies that 7, decreases in H,,. The aforementioned bounds are

identified next.

Corollary 8. Consider an account m € {1, ..., M} with threshold return H,, € (—oo, A/C).
The risk aversion coefficient implied by the optimal portfolio within account m, ’fom, a0 (1)

converges to zero as the threshold probability o, converges to @ from below; and (ii) is ¥y

if o =ay .

Consider an account m € {1,..., M'} with threshold return H,, € (—oo, A/C). Corollary
8(i) can be seen by recalling that the expected return of optimal portfolio within account
m, E,,, m,, converges to infinity as the threshold probability «,, converges to @ from below;
see Corollary 6. Hence, as Fig. 8(b) illustrates, fyflm 1, converges to zero as a,, converges to
@ from below.

Corollary 8(ii) can be seen by recalling that w,,, u,, equals the global minimum-VaR
portfolio at confidence level 1 — v, wi_,,, if oy = a5 see Corollary 5(ii). Hence, as Fig.
8(b) illustrates, 7%, m. =g, if om =ay, .

As noted earlier, an increase in «,, loosens probability constraint (16) and increases
W,,, i, s expected return, E, g, . Hence, ygm’ m,, decreases in «a,, as Fig. 8(b) illustrates;

see Eq. (35). If a, is notably (slightly) less than @, then E, g, slightly (notably) exceeds

A/C; see Egs. (27) and (28). Therefore, 7}, notably (slightly) decreases in vy, if ay, is

notably (slightly) less than @ as Fig. 8(b) also illustrates. Intuitively, increasing v, moves

the optimal portfolio within account m wup along the top part of the mean-variance frontier
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by a larger extent when «, is notably less than .

The result that the risk aversion coefficients implied by optimal portfolios within accounts
are possibly very sensitive to thresholds has a key practical implication. In order to precisely
reflect the levels of risk aversion within the accounts, thresholds should be carefully set,
particularly when seeking to reflect relatively high levels of risk aversion.

Given a positive risk aversion coefficient for an investor in Markowitz’s model, there are
infinitely many pairs of thresholds for an account of a hypothetical investor in Das et al.’s
model such that the optimal portfolio within this account of the former investor equals the
optimal portfolio of the latter. Some notation is useful to identify these pairs of thresholds.

For any risk aversion coefficient v € R, ,, let:

@, =0 (—\/(D +12) /c) . (38)
Since C > 0, D > 0, and v > 0, Egs. (20) and (38) imply that @, € (0,@). For any

a, € (0,a,], let:
H,=E, — 24,0, (39)

Since z,., decreases in o, z,, > 0, and 0., > 0, Eq. (39) implies that H., increases in .

Theorem 8. Consider an investor with a risk aversion coefficient of v € Ry, . The optimal
portfolio within an account with threshold probability c., € (0,@,] and threshold return of

H., equals the optimal portfolio of the investor with a risk aversion coefficient of ~.*®

Consider an investor with a risk aversion coefficient of v € R, ,. Using Theorem 8, there
are infinitely many pairs of thresholds {(c, H,)}ac(0m,) for an account of a hypothetical
investor with the same optimal portfolio as an investor with a risk aversion coefficient of

. The existence of these pairs of thresholds can be seen by recalling that: (a) the optimal

38The condition that o, € (0,@,] is similar to Theorem 6’s condition that o € (0,@]; see footnote 35.
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portfolio of an investor with a positive risk aversion coefficient is located on the top half
of the mean-variance frontier above the global minimum-variance portfolio (Corollary 1(i));
(b) the global minimum-VaR portfolio converges to the global minimum-variance portfolio
as the confidence level converges to 100% (see the discussion of Theorem 4); (c¢) the optimal
portfolio within a given account lies on the top half of the mean-variance frontier at the
same point as or above the global minimum-VaR portfolio at the confidence level equal to
one minus the threshold probability (Corollary 3); and (d) infinitely many pairs of thresholds

lead to the same optimal portfolio within a given account (Theorem 6).

3.8. Aggregate portfolio

Suppose that threshold probability a,, € (0,@) and threshold return H,, € (—oo, H,, ]
for any account m € {1, ..., M }. Using Theorem 5(i), optimal portfolios within accounts exist
and so does the corresponding aggregate portfolio w, = Z%ﬂ YmWa,, H,,- Lhe next result

characterizes the composition, expected return, and standard deviation of this portfolio.

Theorem 9. If threshold probability o, € (0,@) and threshold return H,, € (—oo, H,,, ] for

any account m € {1,..., M}, then the aggregate portfolio is:
w, =0, wo+ (1 —0,)w; (40)
where 0, = Z%:l YmOar, H,» 18 expected return is:

Ea = Zﬂ]\le ymEam,Hm7 (41)

and its standard deviation 1s:

00 =\/1/C + (B. — AJCY /(D/C). (42)

Suppose that threshold probability a,, € (0,@) and threshold return H,, € (—oo, H,, ]
for any account m € {1, ..., M}. Using Egs. (1) and (40), the aggregate portfolio, w,, is on
the mean-variance frontier. The third dot (‘e’) from the left in Fig. 9 illustrates the location
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of w, in (E[ry],o[ry]) space when there are three accounts (i.e., M = 3). For simplicity,
Fig. 9 makes the assumption that Hy < Hy < H; and az > as > a;.%° Hence, probability
constraint (16) loosens when moving from account m = 1 to account m = 2 and then to
account m = 3. It follows that w,, g, lies above w,, m,, which in turn lies above w,, g, as
the first, second, and fourth dots from the left illustrate.

Since w, is on the mean-variance frontier, w, solves:

max Elru] = (7,/2)0"[ru] (43)
s.t. w’lN =1 (44)

for some ~! > 0. Hereafter, 7’ is referred to as the risk aversion coefficient implied by the

aggregate portfolio. The following result characterizes this coefficient.

Theorem 10. If threshold probability o, € (0,@) and threshold return H,, € (—oo, H,,)]
for any account m € {1,...., M}, then the risk aversion coefficient implied by the aggregate

portfolio is:

V= (S0 v/ Vo 1) (45)
where %, is given by Eq. (35).

Suppose that threshold probability «,, € (0,@) and threshold return H,, € (—oo, H,,,]
for any account m € {1,..., M'}. Using Eq. (45), the risk aversion coefficient implied by the
aggregate portfolio, 7', depends on the fractions of the investor’s wealth in the accounts
{ym}M_, and the thresholds {(c,, H,,)}_, as well as g and ¥ (through the risk aversion
coefficients implied by optimal portfolios within accounts, {72[% H, M ). Moreover, 7' is a

weighted harmonic average of {7}y })_, with respective weights of {ym }a_;.

39 Graphical results can similarly be obtained if this assumption is not made.
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3.4. Differences between the models of Markowitz and Das et al.

Table 1 lists six crucial differences between the models of Markowitz and Das et al. First,
an investor in Markowitz’s model has one account but an investor in Das et al.’s model has
two or more accounts. Second, while the preferences of the former investor are specified by a
risk aversion coefficient, the preferences of the latter within a given account are specified by
thresholds. Third, the optimal portfolio in Markowitz’s model always exists, whereas optimal
portfolios within accounts in Das et al.’s model might not exist depending on the thresholds
and optimization inputs. Fourth, the optimal portfolio of an investor in the former model
(with a positive risk aversion coefficient) lies on the mean-variance frontier above the global
minimum-variance portfolio but the optimal portfolio within an account of an investor in
the former model (for thresholds such that the portfolio exists) lies on the mean-variance
frontier at the same point as or above the global minimum-VaR portfolio at a confidence level
equal to one minus the account’s threshold probability. Fifth, while different risk aversion
coefficients lead to different optimal portfolios in Markowitz’s model, infinitely many pairs
of thresholds lead to the same optimal portfolio within an account in Das et al.’s model.
Sixth, the investor in Markowitz’s model has a unique risk aversion coefficient that does
not depend on the optimization inputs, whereas the risk aversion coefficients implied by the
optimal portfolios within accounts of an investor in Das et al.’s model possibly differ across
accounts and depend on the optimization inputs. The risk aversion coefficient implied by the
aggregate portfolio of the latter investor (the combination of the investor’s optimal portfolios

within accounts) also depends on the optimization inputs.

4. Example

This section uses a numerical example to illustrate the theoretical results uncovered in
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Sections 2 and 3 for the models of Markowitz and Das et al. It considers the same assets,
optimization inputs, and investors as the numerical example of Das et al. By applying the
aforementioned theoretical results to their example, numerical results that complement theirs

are obtained.

4.1. Assets and optimization inputs

As the first column of Table 2(a) notes, three assets (1, 2, and 3) are available for trade.
Asset 1 is analogous to a risky bond, whereas assets 2 and 3 are analogous to, respectively,
low- and high-risk stocks. The next two columns indicate that the expected return and
standard deviation of asset 3 (high-risk stock) respectively exceed those of asset 2 (low-risk
stock), which in turn respectively exceed those of asset 1 (risky bond). The last three columns
indicate that the return on asset 1 is uncorrelated with the returns of assets 2 and 3, whereas

the returns of assets 2 and 3 are positively correlated.

4.2. Optimal portfolios in Markowitz’s model

Consider four investors (1, 2, 3, and 4) in Markowitz’s model. As Table 2(b) shows, their
risk aversion coefficients are assumed to range from 0.8773 for investor 3 to 3.7950 for in-
vestor 1, whereas investor 2 and 4 have risk aversion coefficients of, respectively, 2.7063 and
2.1740. Table 3(a) provides the asset weights, expected returns, and standard deviations of
their optimal portfolios. The optimal portfolios of investors with larger risk aversion coef-
ficients have: (i) larger weights in asset 1 (risky bond); (ii) smaller weights in assets 2 and
3 (respectively, low- and high-risk stocks); and (iii) smaller expected returns and standard
deviations.

The thin dashed curve in Fig. 10 shows the loss in CER, L arising from investor 1

V:Ye?

using an erroneous risk aversion coefficient of v_ € (0, 10] instead of the ‘true’ coefficient of

28



v = 3.7950 in seeking to find the optimal portfolio. Note that L., mnotably decreases in -,
if 7. < v but increases in v, if v, > 7. The thick dashed, thin solid, and thick solid curves
show similar results for, respectively, investors 2, 3, and 4.1 Given a sufficiently large value
of 7., it can be seen that L., decreases in 7v; compare the values of L, ,_for the values of
v of the four investors if, e.g., 7. = 10. This result can be understood by noting that: (i)
given v > 0, Eq. (10) implies that L., converges to (D/C)/(2v) as vy, converges to infinity

as mentioned earlier; and (ii) (D/C)/(27) decreases in .

4.3. Optimal portfolios within accounts and aggregate portfolio in Das et al.’s model

Consider an investor in Das et al.’s model with three accounts (1, 2, and 3). Table
2(c) shows the fractions of the investor’s wealth in the accounts (second column) and the
thresholds (last two columns).

Fig. 11 examines the existence of optimal portfolios within accounts. The dashed vertical
line goes through a,, = @ = 33.40%; see Eq. (20). The curve plots H,,, as a function of
am € (0,@);* see Eq. (21). The dots (‘e’) plot the pairs of thresholds of accounts 1, 2, and
3, {(m, Hi)}2,_1; see the last two columns of Table 2(c). For any account m € {1,2,3},
note that the pair of thresholds (., H,,) plots both: (a) strictly between the y-axis and the
dashed vertical line so that a,, € (0,@); and (b) below the curve so that H,, € (—oo, H,,, ).
Hence, optimal portfolios within accounts exist; see Theorem 5(i).

The first three rows of Table 3(b) provide the asset weights, expected returns, standard

deviations, and VaRs of the optimal portfolios within accounts as well as the risk aversion

coefficients implied by such portfolios.*> The optimal portfolios within accounts 1, 2, and

*0The four curves in Fig. 10 are truncated so that L. _is 10% or less.
“1This curve is truncated so that H,,, is —16% or more.
42While the numerical results in Table 3 reproduce those in Table 1 of Das et al. for completeness, the

numerical results in all figures in Section 4 are novel and illustrate the usefulness of the theoretical results
uncovered in Sections 2 and 3.
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3 equal the optimal portfolios of, respectively, investors 1, 2, and 3 in Markowitz’s model;
see the second, third, and fourth columns of Tables 3(a) and 3(b). Hence, the risk aversion
coefficients implied by these portfolios equal the risk aversion coefficients of such investors;
see the last column of Tables 2(b) and 3(b). Since the VaR of the optimal portfolio within
a given account is reported at a confidence level equal to one minus the account’s threshold
probability, the VaR of this portfolio equals minus one multiplied by the account’s threshold
return; see the last two columns of Table 2(c) and the next to last column of Table 3(b).
For example, since account 1 has a threshold probability of 5% and a threshold return of
—10%, the optimal portfolio within account 1 has a VaR at the confidence level of 95%
[=100% — 5%)] of 10% [= (—1) x (—=10%)].

The last row of Table 3(b) provides the asset weights, expected return, and standard
deviation of the aggregate portfolio of the investor in Das et al.’s model (the combination
of the investor’s optimal portfolios within accounts) as well as the risk aversion coefficient
implied by this portfolio. The aggregate portfolio of the investor in Das et al.’s model equals
the optimal portfolio of investor 4 in Markowitz’s model; see the second, third, and fourth
columns of Tables 3(a) and 3(b). Hence, the risk aversion coefficient implied by the aggregate
portfolio of the former investor equals the risk aversion coefficient of the latter; see the last
column of Tables 2(b) and 3(b).

The thin dashed, thick dashed, and solid curves in Fig. 12 plot the pairs of thresholds
{(a, Ha)}ae(0,5) Of three accounts with the same optimal portfolios as, respectively, accounts
1, 2, and 3; see Egs. (31) and (32) as well as Theorem 6.** The dots (‘e’) represent the pairs
of thresholds of accounts 1, 2, and 3; see the last two columns of Table 2(c). Two results

can be seen. First, the thin dashed curve lies above the thick dashed curve, which in turn

43The solid curve is truncated so that H,, is —100% or more.
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lies above the solid curve. This result can be understood by noting that: (a) given «,, the
optimal portfolio within account m moves down the top half of the mean-variance frontier
as H,, increases; and (b) the optimal portfolio within account 1 lies on the top half of the
mean-variance frontier below the optimal portfolio within account 2, which in turn lies below
the optimal portfolio within account 3.

Second, the curves are close to each other for relatively large thresholds. This result can
be understood by noting that H, is less sensitive to the account m used in the right-hand
side of Eq. (32) if « is relatively large. For example, the values of H, for accounts 1, 2, and
3 are, respectively: (i) —5.53%, —9.06%, and —36.61% if a = 10%; and (ii) 3.78%, 3.49%,
and 0.59% if a = 30%. The fact that the curves are close to each other for relatively large
thresholds implies that three accounts with certain slightly different pairs of thresholds would
have the same optimal portfolios as, respectively, accounts 1, 2, and 3. For example, three
accounts with threshold probabilities of 30%, 31%, and 32% as well as threshold returns of
3.78%, 3.95%, and 3.37% would have the same optimal portfolios as, respectively, accounts 1,
2, and 3. Since the optimal portfolios within the latter accounts notably differ as Table 3(b)
shows, so do the optimal portfolios within the former. A key practical implication follows.
In attempting to infer the preferences of an investor with thresholds to implement Das et
al.’s model, practitioners should be aware that the use of relatively large thresholds leads to
optimal portfolios within accounts that are very sensitive to the thresholds. Hence, thresholds
should be carefully chosen so that these portfolios are properly identified.

Given a threshold probability of ay = 5%, Fig. 13(a) plots the risk aversion coefficient
implied by the optimal portfolio within account 1, ’ygl’ m,» as a function of threshold return

H;. Note that 7%,y : (i) is strictly between zero and 7, = 32.78; and (ii) slightly (notably)
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increases in H; for relatively small (large) values of H;. Given a threshold return of H; =
—10%, Fig. 13(b) plots v, 5, as a function of threshold probability of a;. Note that v}, 4
(i) is strictly between zero and 7y, = 65.52; and (ii) notably (slightly) decreases in «; for
relatively small (large) values of «;. Similar results hold for account 2 in Figs. 13(c) and
13(d) as well as for account 3 in Figs. 13(e) and 13(f).** In sum, the risk aversion coefficients
implied by optimal portfolios within accounts are very sensitive to the thresholds if such

coefficients are relatively large but notably less so if the coefficients are relatively small.

5. Conclusion

Following the insights of Markowitz (1952), modern portfolio theory considers investors
whose preferences are represented by a function defined over the means and variances of
portfolio returns and specified with a risk aversion coefficient. In Das et al. (2010), however,
Markowitz and three co-authors note that modern portfolio theory does not address the
practical fact that an investor might have: (i) various investing motives such as retirement and
bequest; (ii) preferences that are difficult to precisely specify with a risk aversion coefficient;
and (iii) different goals for different investing motives. Accordingly, their model considers
an investor whose wealth is divided among mental accounts (hereafter, ‘accounts’) with
different investing motives. The investor’s preferences within a given account are specified
by a threshold probability and a threshold return (hereafter, ‘thresholds’). Formally, the
optimal portfolio within the account maximizes the account’s expected return subject to
the constraint that the probability of the account’s return being less than or equal to the
threshold return does not exceed the threshold probability. Hence, the account’s Value-at-

Risk (VaR) at the confidence level of one minus the threshold probability cannot exceed

HSince o < az < ag, Figs. 13(a), 13(c), and 13(e) show that 7, > 7,, > 7,,; recall that 7,
decreases in a,, (see Eq. (36)). Similarly, since H3 < H; < Hj, Figs. 13(b), 13(d), and 13(f) show that
Ve, > Vr, > Y, recall that 75 decreases in H,, (see Eq. (37)).
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minus one multiplied by the threshold return. Reflecting the fact that different accounts
have different investment motives, thresholds possibly vary across accounts.

The models of Markowitz and Das et al. are closely related if asset returns are assumed
to have a multivariate Normal distribution and thresholds are such that optimal portfolios
within accounts exist in Das et al.’s model. Since the VaR of a portfolio is a linear function of
its mean and standard deviation under this distribution, optimal portfolios within accounts
are on the mean-variance frontier. A portfolio is on the mean-variance frontier if there is
no portfolio with the same mean and a smaller variance. The optimal portfolio within a
given account of an investor in Das et al.’s model would be selected by a hypothetical
investor in Markowitz’s model with some (implied) risk aversion coefficient. Conversely, the
optimal portfolio of an investor in the latter model would be selected within an account of a
hypothetical investor in the former with some (implied) thresholds. The aggregate portfolio
of an investor in Das et al.’s model (the combination of the investor’s optimal portfolios
within accounts) is also on the mean-variance frontier if short selling is allowed.

Bridging Markowitz’s contributions, results along three dimensions are here uncovered.
First, consider the loss in certainty-equivalent return (CER) arising from an investor using
an erroneous (instead of the ‘true’) risk aversion coefficient in seeking to find the optimal
portfolio in Markowitz’s model. An analytical expression for the loss in CER is derived.
Importantly, the loss in CER in the case where the erroneous coefficient is less than the
‘true’ coefficient by some amount exceeds the loss in CER in the case where the erroneous
coefficient is greater than the ‘true’ coefficient by the same amount. Moreover, the loss in
CER is unbounded (bounded) from above in the former (latter) case.

Second, consider the impact of using thresholds instead of a risk aversion coefficient to
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specify investor preferences on portfolio selection. For any positive risk aversion coefficient,
the optimal portfolio in Markowitz’s model lies on the mean-variance frontier above the
global minimum-variance portfolio. In comparison, for any pair of thresholds such that the
optimal portfolio within a given account exists in Das et al.’s model, this portfolio lies on
the mean-variance frontier at the same point as or above the global minimum-VaR portfolio
at the confidence level of one minus the threshold probability, which in turn lies above the
global minimum-variance portfolio. While different risk aversion coefficients lead to different
optimal portfolios in Markowitz’s model, infinitely many pairs of thresholds lead to the same
optimal portfolio within an account in Das et al.’s model.

Third, consider the risk aversion coefficients implied by optimal portfolios within accounts
when these portfolios exist. Using an analytical characterization of such coefficients, key
observations are made. Assuming thresholds such that the optimal portfolio within a given
account exists, the risk aversion coefficient implied by this portfolio: (i) is strictly between
zero and a positive value associated with the global minimum-VaR portfolio at the confidence
level of one minus the threshold probability; (ii) decreases in the threshold probability; (iii)
increases in the threshold return; and (iv) is very sensitive to the thresholds if the coefficient
is relatively large but notably less so if the coefficient is relatively small.

The results uncovered here have two key practical implications. First, in attempting to
infer the preferences of an investor with a risk aversion coefficient to implement Markowitz’s
model, practitioners should be aware that the loss in CER arising from using an erroneous
coefficient less than the ‘true’ coefficient by some amount exceeds the loss in CER arising
from using an erroneous coefficient greater than the ‘true’ coefficient by the same amount.

Second, in attempting to infer the preferences of an investor with thresholds to implement
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Das et al.’s model, practitioners should be aware that optimal portfolios within accounts and
the risk aversion coefficients implied by such portfolios are very sensitive to the thresholds

for relatively large coefficients but notably less so for relatively small coefficients.
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Fig. 1. The mean-variance frontier

In Fig. 1(a), the hyperbola plots portfolios on the mean-variance frontier in (E[ry], o[ry])
space. The dashed half-lines show the asymptotes of the frontier: E[r,,] = A/C+\/D/Coc[ry).
The dot (‘e’) represents the global minimum-variance portfolio, wy. Its expected return
and standard deviation are, respectively, A/C and /1/C. In Fig. 1(b), the parabola plots
portfolios on the frontier in (E[ry], 0%[r.,]) space. The leftmost and rightmost dots represent,
respectively, portfolios wo and w;. While their respective expected returns are A/C' and B/A,
their respective variances are 1/C and B/A?. Note that w; lies in (E[ry],o%[r,]) space at
the point where a ray from the origin that goes through wq crosses the frontier; see Section
2 for the definition of A, B, C, and D.

(a) The mean-variance frontier in (E|ry|,olry]|) space
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Fig. 2. The optimal portfolio and the loss in CER arising from using an
erroneous risk aversion coeflicient instead of the ‘true’ risk aversion coefficient

Consider an investor with a risk aversion coefficient of v € R, . In Fig. 2(a), the rightmost
dot (‘e’) shows that the investor’s optimal portfolio, w., lies in (E[ry], o[ry]) space at the
point where the top thin dashed indifference curve associated with ~ is tangent to the top
half of the curve representing portfolios on the mean-variance frontier. The leftmost dot
plots the global minimum-variance portfolio, wy. The middle dot shows that the portfolio
selected by the investor when using an erroneous risk aversion coefficient of v, > v, w,_,
lies in (E[ry], o[ry]) space at the point where the thick dashed indifference curve associated
with ~,. is tangent to the top half of the mean-variance frontier. The bottom thin dashed
indifference curve associated to y goes through w.,_. The loss in CER arising from the investor
selecting w,,_ instead of w,, L, ,_, is the vertical distance between the top and bottom thin
dashed curves. Given vy € R, ;, Fig. 2(b) illustrates how L. ,_depends on .. Fig. 2(c) reports
the relative change in the loss in CER if 7, is less than 7 by some percentage x € (0,30%)
instead of being greater than ~ by the same percentage, RC'L,.

(a) The optimal portfolio with a risk aversion coefficient of v and the loss in CER

arising from using an erroneous coefficient vy, instead of the ‘true’ coefficient
E[ry] ’

Ly,
0
o[rw]
c e relative change in the loss in
The relative ch n the loss i
CER, RCL,, if v, is less (instead of
(b) The loss in CER, L,.,_, and 7, being greater) than ~ by percentage k
Ly e RCLy; 250%
200%
150%
(D/C)/(27) -~ 100%
' Inflection point
! 50%
l 0%
(D/C)/(IS’YO) L (())O/o 5% 10% 15% 20% 25% 30%
K
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Fig. 4. The global minimum-VaR portfolio

The curve represents portfolios on the mean-variance frontier in (E|ry]|, o[ry]) space. The
leftmost dot (‘e’) plots the global minimum-variance portfolio, wy. Its expected return and
standard deviation are, respectively, A/C' and \/1/C. The rightmost dot plots the global
minimum-VaR portfolio, w;_,, when the confidence level is 1 —« and « € (0, @); see Eq. (20).
Its expected return, standard deviation, and VaR at confidence level 1 — a are, respectively,
E1_ o, 01-a, and Vi_,; see Egs. (23), (24), and (25). Portfolio w;_, lies at the point where
a line with slope z, [= AE[ry]/Aoc(ry]] is tangent to the top half of the mean-variance

frontier. The intercept of this line is H, = —V]_,; see Egs. (21) and (25).

Elrw] _AE[r,]
o= Aory)

Ho= Viea J1/C o1 -a olru]
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Fig. 5. Non-existence of the optimal portfolio within a given account

The curve represents portfolios on the mean-variance frontier in (E[ry], o[ry,]) space. Con-
sider an account m € {1,..., M} with threshold probability «,, € (0,1/2) and threshold
return H,, € R. The line has an intercept of H,, and a slope of z,, [= AE[ry|/Ao[ry]]-
Portfolios that meet probability constraint (16) lie on or above this line. In Fig. 5(a), the
constraint is overly loose. Since the portfolios on the frontier with sufficiently large expected
returns lie above the solid line, the set of expected returns of portfolios that meet the con-
straint does not have a finite upper bound and thus the optimal portfolio within account
m does not exist. In Fig. 5(b), the constraint is overly tight. Since the solid line lies above
the curve, no portfolio meets the constraint and thus the optimal portfolio within account
m does not exist.

(a) Probability constraint (16) is overly loose
E[Tw]

Hp,

(b) Probability constraint (16) is overly tight

42



w 'H \Em

[Tu]0 [na]0

0 0

Eﬁ@\aSHEm,EdS
[®a]og [Pu)rg
(0/v ‘o0—) > g puv "HD = "0 (p) (O/V ‘0o—) 3 "y puv (v "HD) > *“o (9)
wyy

[0 H="H [0

0 0

ﬁx@‘ﬂa
[®a]og (]

("PH ‘oo—) > " puv (0°0) > “0 (v)

SO = “H MY m syueserdel jop oty pue (/7 ‘0o—) 3y <“HD = “p
‘(p)9 "Siq Uy SHO-1m CMHD — T [oAd] 90ULPIUO0D Je o1[0j110d R NN [Rqo]S o) syuesardor j0p jsounyje[ o) pue ‘“H“Cm
squesoxdor jop jsowySut oy (H/y ‘0o—) > ¥y ‘(v "HD) > o (9)g 81 Ul *“PIm= "H"°m sjyuosoidol j0p oy pue ‘“Crr = Uy
‘(0‘0) > "o (q)9 S ul ““PTIm ‘“n — T [9A9] POULPYUOD Je O1[0J3I0d YA -WNWIUTI [R(O[3 O} SHUSEIdol 0P JSOUIYo] o) pue
CUHTMm syuesordal ((e,) 0p jsounyySLr oty (P ‘oo—) 3 i (0 ) D “o ‘(e)9 "S1 uf “[["u]ovy /[y =] “P% Jo odo]s e pue “[ Jo
jdeoequr e sey oul] o) sealoym ‘@0eds ([™.]o ‘[™.]s7) Ul I91jUO0I} SoURLIBA-URSW oY) UO SOT[0j1I0d sjuesaidal aaImd o1} ‘(P)9 Ysnoiys
(®)g 's81,1 ur *“H“°m orjojyrod rewrydo pue ‘“fr wmjal proysaIyy ‘o Lriqeqord proyseryy Y {py T} S w JUNodoe Ue I9PISUo))

w yunodde uryiym orjoyyrod rewrydo ayJ, ‘9 *Siq

43



Fig. 7. Thresholds of accounts with the same optimal portfolio as account m

Consider an account m € {1, ..., M'} with threshold probability «,, € (0, @), threshold return
H,, € (—o0, H,, ], and optimal portfolio w,,, g, . As the dot (‘e’) in Fig. 7(a) shows, w,,, .,
lies in (E[ry], o[rw]) space at the point where a line with an intercept of H,,, and a slope of z,,
crosses the top half of the curve representing portfolios on the mean-variance frontier. The
optimal portfolio within an account with thresholds o € (0, @) and H,, is w,,, u,, because it
lies at the point where a line with an intercept of H, and a slope of z, crosses the top half
of the frontier. The optimal portfolio within an account with thresholds @ and Hz is again
W,,, i, because it lies at the point where a line with an intercept of Hz and a slope of z5
is tangent to the top half of the frontier. Hence, w,,, m,, equals the global minimum-VaR
portfolio at confidence level 1 — @, w,_5. Fig. 7(b) plots the thresholds {(a, Ha)},c(oz Of
all accounts with the same optimal portfolio as account m; see Egs. (31) and (32).

(a) Thresholds of two accounts with the same optimal portfolio as account m
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Fig. 8. Impact of the thresholds on the risk aversion coefficient implied by the
optimal portfolio within account m
Consider an account m € {1,..., M}. Given a threshold probability «,, € (0,@), Fig. 8(a)
plots the risk aversion coefficient implied by the optimal portfolio within account m, 71@, H,
as a function of threshold return H,, € (—oc0, H,,,]; see Eqs. (20) and (21). Note that v/, -
(i) converges to zero as H,, converges to minus infinity; and (ii) is 7, if H,, = H, :see Eq.
(36) and Corollary 7. Given a threshold return H,, € (—oo, A/C), Fig. 8(b) plots v} .
as a function of threshold probability ,, € [ay, ,@); see Eq. (30). Note that v/, » : (i)
converges to zero as a,, converges to @ from below; and (ii) is ¥y  if s, = ap ; see Eq.

(37) and Corollary 8.

(a) Impact of threshold return H,, on implied risk aversion coefficient 72% H,

,YamaHm

,Ya"l ---------

I

[}

[}

|

[}

[}

[}

[}

[}

|

[}

st} I

[}

0 H,, H,
(b) Impact of threshold probability o, on implied risk aversion coefficient 7y, g
,yéﬂ'ldHﬂ’L
YH, "__'l
|
[
I
)
[}
[}
[}
[}
[}
}
}
[}
[}
[}
[}
[}
[}
[}
[}
[}
0 am. a O

45



Fig. 9. The aggregate portfolio

The curve represents portfolios on the mean-variance frontier in (E[r,], o[rw]) space. Suppose
that there are three accounts (m = 1,2,3). For any account m € {1,2,3}, the threshold
probability is o, € (0,@), the threshold return is H,, € (—oo, H,, ], the optimal portfolio
is wa,, m,,, and its expected return is E,,, m,,. The figure assumes that as > ay > «o; and

Hs < Hy < Hy. Given a vector of fractions of wealth in the accounts y € R3 | the aggregate

portfolio is w, = 30 | YmWa,, m, and its expected return is B, = > _ ymFa,, i, The
first, second, third, and fourth dots (‘e’) from the left plot, respectively, wa, ,, Way.m,,
W,, and W,, g,. For any account m € {1,2,3}, w,,, g, lies at the point where a line with
intercept H,, and slope z,,, crosses the top half of the frontier. Since the figure assumes that
a3 > ag > a1 and Hy < Hy < Hjp, probability constraint (16) loosens when moving from
account m = 1 to account m = 2 and in turn to account m = 3. Hence, w,, z, lies above

W, iy, Which in turn lies above wq, m,.

Elrw]

E,gb-—=mrmmrrcerrc e e e e e =
o Note that

EahH1 __________ ]\gote that
wa = Z’ﬂl:l yn]'wawnH

m

olrw]
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Fig. 10. Loss in CER arising from using an erroneous risk aversion coefficient

An investor with a risk aversion coefficient of v € R, who uses an erroneous risk aversion
coefficient of v, € R, | in seeking to find the optimal portfolio has a loss in CER of L, ,_; see
Eq. (9). The thin dashed, thick dashed, thin solid, thick solid curves show how L. ,_depends
on 7. € (0,10] for, respectively, investors 1, 2, 3, and 4. These curves are truncated so that
L, is 10% or less. Recall that investors 1, 2, 3, and 4 have risk aversion coefficients of,
respectively, 3.7950, 2.7063, 0.8773, and 2.1740; see the last column of Table 2(b).

L, 10%7 | 1
| ||| Investor 3 (y=0.8773)
1
oot | |V}
I
|
6% 1 |
4% 1
Investor 4 (y=2.1740)
2% 1 -
~ - = T T e
- ee=me-mTTTT Investor 1 (y=3.7950)
0% === + + + + {
0 1 2 3 4 5 6 7 8 9 10
Ve
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Fig. 11. Existence of optimal portfolios within accounts

The dashed vertical line goes through a,, = @ = 33.40%; see Eq. (20). The curve plots H,,,
as a function of o, € (0,@); see Eq. (21). This curve is truncated so that H,,, is —16% or
more. The dots (‘e’) plot the pairs of thresholds of accounts 1, 2, and 3, {(ay,, Hn)}3,_1;
see the last two columns of Table 2(c). For any account m € {1,2,3}, note that the pair
of thresholds (a,, H,,) plots both: (a) strictly between the y-axis and the dashed vertical
line so that a,,, € (0,@); and (b) below the curve so that H,, € (—oo, H,, ). Hence, optimal

portfolios within accounts exist; see Theorem 5(i).

H, 16%7 .
" Thresholds for which the optimal :
1906 + port folio within account m does not exist !
A :
I
8% 1 !
|
4% 1 !
I
|

00/0 X + + : — i

10% 20% 0% | ;¢ 40%
1 Account 2 | Oy,

4% I
{ I
I
I
8%  Account 1 Thresholds for which the optimal !
] port folio within account m exists !
-12% 1 !
Account 3 :
[ ) I
-16% L '
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Fig. 12. Thresholds of three accounts with the same optimal portfolios as
accounts 1, 2, and 3

The thin dashed, thick dashed, and solid curves identify pairs of thresholds {(, Ha)}ye07)
of three accounts with the same optimal portfolios as, respectively, accounts 1, 2, and 3; see
Egs. (31) and (32) as well as Theorem 6. The solid curve is truncated so that H, is —100%
or more. The dots (‘e’) on the thin dashed, thick dashed, and solid curves plot the pairs of
thresholds of, respectively, accounts 1, 2, and 3; see the last two columns of Table 2(c).

H, 20% T
10% 20% 30% 40%

0% f——————=—= I a—-_—-;"
Account 1 _oa==~, - = = o
O S
.- -
17 -
-20% I,/ Account 3

)

)

-40% 1
-60% T

-80% T

-100% -~
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Fig. 13. Impact of the thresholds on the risk aversion coefficients implied by
the optimal portfolios within accounts 1, 2, and 3

Given a threshold probability a; = 5%, Fig. 13(a) plots the risk aversion coefficient implied
by the optimal portfolio within account 1, v, x,, as a function of threshold return H; €
[—40%, H,,]; see Eq. (21). Given H, = —10%, Fig. 13(b) plots 7% p, as a function of
o € [ag,,20%]; see Eq. (30). Given oy = 15%, Fig. 13(c) plots 7%, p, as a function of
Hy € [-40%, H,,). Given Hy = —5%, Fig. 13(d) plots 7}, 5, as a function of ay € [ay,, 20%).
Given ag = 20%, Fig. 13(e) plots %, ;. as a function of Hy € [—40%, Hq,]. Given Hs =
—15%, Fig. 13(f) plots 7}, z, as a function of as € [ay,, 20%].

‘ Part I: Account 1 ,
(a) Impact of Hy on 7., p, if ar=5% (b) Impact of ay on 7, g, if Hi =—10%

YooH, 140 Yo, Hy 90
75
30
60
20 45
30
10
15 L
0
-40% -30% -20% -10% 0% 10% 0% 5% 10% 15% 20%
H [e3]

‘ Part II: Account 2 '
(¢) Impact of Hy on v, y, if aa = 15% (d) Impact of oy on i, g, if Hy = —5%

Vo, Hy 40 Voo, Hy 90
75
30
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20 45
30
10
4/ 1
0
-40% -30% -20% -10% 0% 10% 0% 5% 10% 15% 20%
Hy a9

‘ Part III: Account 3 ,
(e) Impact of Hz on v, y, if az=20% (f) Impact of oz on e, y, if Hz=—15%

'7(213,Hg 40 fyzv:sst 90
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30
60
20 45
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Table 2. Optimization inputs and values of the parameters used to specify the
preferences of investors in the models of Markowitz and Das et al.

Table 2(a) contains the optimization inputs for three assets (1, 2, and 3). Table 2(b) shows
the risk aversion coefficients of four investors (1, 2, 3, and 4) in Markowitz’s model. Table
2(c) shows the fractions of wealth and thresholds of three accounts (1, 2, and 3) of an investor
in Das et al.’s model. The values in Tables 2(a), 2(b), and 2(c) are the same as the values
used in the numerical example of Das et al.

(a) Optimization inputs

Expected | Standard Correlation coefficient
Asset return | deviation Asset 1 Asset 2 Asset 3
1 (risky bond) 5% 5% 1.0 0.0 0.0
2 (low-risk stock) 10% 20% 1.0 0.2
3 (high-risk stock) 25% 50% 1.0

(b) Risk aversion coefficients of
inwvestors in Markowitz’s model

Investor Risk aversion coefficient
1 3.7950
2 2.7063
3 0.8773
4 2.1740

(¢) Fractions of wealth and thresholds of the accounts of
an investor in Das et al.’s model

Fraction of Threshold Threshold
Account wealth probability return
1 60% 5% —10%
2 20% 15% —5%
3 20% 20% —15%

02
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Online Appendix

Table Al. Summary of notation

Table Al(a) summarizes the notation used for Markowitz’s model, which is also used for the

Das et al.’s model. Table A1(b) summarizes additional notation used for the latter model.

(a) Notation used for Markowitz’s model

N Number of assets
n N x 1 vector of expected asset returns
by N x N variance-covariance matrix for asset returns
w N x 1 vector of asset weights in a portfolio
Tw Random return of portfolio w
E[ry] Mean or expected return of portfolio w
02 [T Variance of portfolio w
o[rw] Standard deviation of portfolio w
A B,C,D Constants used to analytically characterize the mean-variance frontier
wy Global minimum-variance portfolio
wy Portfolio located in (E|[ry], 02[ry]) where a ray from the origin
that goes through portfolio w, crosses the mean-variance frontier
wWg Portfolio on the mean-variance frontier with an expected return of E
Op,1—0g Weights of portfolios wy and w; in portfolio wg
0% Risk aversion coefficient
w, Optimal portfolio with a risk aversion coefficient of
0,,1—10, Weights of portfolios wy and w; in portfolio w,
E, o, Expected return and standard deviation of portfolio w.,
Ve Erroneous risk aversion coefficient
Ly, Loss in CER arising from an investor using . instead of ~y
Vems Vet Erroneous risk aversion coefficients, respectively,
below and above v by percentage k
K Percentage that v, and v, .+ are, respectively, below and above

L

’7775,;{7 ’ L’Y7’Ys,m+

Losses in CER for an investor using, respectively,

Ve and 7, .+ instead of y

RCL,

Relative change in the loss in CER

for an investor using v, ,_ instead of v, .,
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(b) Additional notation used for Das et al.’s model

M Number of accounts
Y M x 1 vector of fractions of wealth allocated to the accounts
O, Hy, Threshold probability and threshold return of account m
11—« Confidence level to compute VaR
() Cumulative univariate standard Normal distribution function
Za Minus the inverse of ®(-) evaluated at «
VI[1 — a,ry] VaR at confidence level 1 — « of portfolio w
a Threshold probability at or above which optimal portfolios within
accounts do not exist
H, Threshold return at or below which the optimal portfolio within
a given account exists when threshold probability a € (0, @)
Wi_g Global minimum-VaR portfolio at confidence level 1 — «
01—, 1 —01_¢ Weights of portfolios wy and w; in portfolio wy_,,
Wa,, H,, Optimal portfolio within account m
Ocrn iy L — Oa,, 1, Weights of portfolios wy and w; in portfolio w,,, #,,

Eam,Hm 1 O, Hpn,

Expected return and standard deviation of portfolio w,, m,,

Ve Hm VaR at confidence level 1 — o, of portfolio w,,, m,,
vflm o, Risk aversion coefficient implied by portfolio w,,, #,,
a, H, Thresholds of account with optimal portfolio equal to w,, #,,
1—a Confidence level at which w,,, u, equals w, 3
Ve Risk aversion coefficient implied by portfolio w, 7
Qg Threshold probability below which the optimal portfolio within
account m does not exist when threshold return H,, € (—oo, A/C)
T, Risk aversion coefficient implied by portfolio wa,,  m,,
ay, H, Thresholds of account with an optimal portfolio equal to w.,
w, Aggregate portfolio
0,,1—10, Weights of portfolios wy and w; in portfolio w,
E, o0, Expected return and standard deviation of portfolio w,
o Risk aversion coefficient implied by portfolio w,
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Proofs of theoretical results

Proof of Theorem 1. Consider an investor with a risk aversion coefficient of v € R, ..
Using Eq. (2), the following holds:

o*[ru] = 1/C + (E[ro] — A/C)*/(D/C) (A.1)

for any portfolio w on the mean-variance frontier. Since w,, is on the top half of the mean-
variance frontier, Eq. (A.1) implies that £, solves:

max E — (v/2) [1/C + (E — A/C)2/(D/C)] . (A.2)

EeR

E,—A/C
5 = 0.

Therefore, Eq. (7) holds. Using Eq. (1) as well as the facts that w, is on the mean-variance

A first-order condition for E, to solve maximization problem (A.2) is 1 — v

frontier and has an expected return of £, Eq. (6) holds. Eq. (8) follows from Egs. (7) and
(Al).m

Proof of Corollary 1. First, consider part (i). Fix an investor with a risk aversion coefficient
of y € Ry Since D/C > 0 and v > 0, Eq. (7) implies that E, > A/C. Recall that w, has
an expected return of A/C'. Hence, w., lies above wy in (E|[ry], o[ry]) space. This completes
the proof of part (i).

Second, consider part (ii). Eq. (7) implies that £, converges to A/C and thus 6., converges
to one as y converges to infinity. It follows from Eq. (6) that w. converges to w, as 7

converges to infinity. This completes the proof of part (ii). B

Proof of Corollary 2. Since D/C > 0, Eq. (7) implies that E. converges to infinity as v

converges to zero. B

Proof of Theorem 2. Consider an investor with a risk aversion coefficient of v € R, ; who
uses an erroneous risk aversion coefficient of v, € R \{7} in seeking to find the optimal
portfolio. It follows from Egs. (3), (7), and (8) that:

U(Elrv,],olrw,]) = A/C+(D/C)/(27) = (v/C)/2. (A.3)
Using Eqgs. (7) and (8) with v = 7_:
E, =A/C+(D/C)/. (A4)

and:

0., = IO+ (DJO)/72. (A.5)
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It follows from Egs. (A.4) and (A.5) that:

U(E[rw, ] 0lrw, ]) = A/C+(D/C)/v. — (v/C)/2 = (v/2)(D/C) /~Z. (A.6)

Using Eqgs. (A.3) and (A.6):

U(Elra,],olre,)) =U(E[rw, ], 0[re, ]) = (D/C)/(27) = (D/C) /7. +(v/2)(D/C) /7Z. (A.T)
Eq. (10) follows from Egs. (9) and (A.7) as well as elementary algebra. B

Proof of Theorem 3. Fix an investor with a risk aversion coefficient of v € R,, who
uses an erroneous risk aversion coefficient of v, € R, \{7} in seeking to find the optimal
portfolio. First, consider part (i). Suppose that v, =7, .- = (1 —x)y where x € (0, 1). Since
7. = (1 — k)7, Eq. (11) follows from Eq. (10). This completes the proof of part (i).

Second, consider part (ii). Suppose that 7, = v, .+ = (1 + &)y where x € (0, 00). Since
7. = (14 k)7, Eq. (12) follows from Eq. (10). This completes the proof of part (ii).

Third, consider part (iii). Suppose that x € (0,1). Eq. (13) follows from Egs. (11) and
(12). This completes the proof of part (iii). B

Proof of Theorem 4. The proof is similar to the Proof of Proposition 1 in Alexander and
Baptista (2002). In particular, Egs. (23), (24), and (25) follows from, respectively, Egs. (A.8),
(A.6), and (11) in Alexander and Baptista. B

Proof of Theorem 5. The proof of follows by replacing symbols with a superscript ‘¢’
with symbols without this superscript in the Proof of Theorem 1 in the Online Appendix of
Alexander et al. (2017).4! m

Proof of Corollary 3. Fix an account m € {1, ..., M} with threshold probability «,, € (0, @)
and threshold return H,, € (—oo, H,, ]. It is convenient to first show part (ii). Suppose that
H,, = H,,,. Using Eq. (21) with a = ay,:

Ha, = A/C—\/(z3, - D/C)/C. (A.8)

[0}

Substituting H,, in the right-hand side of Eq. (28) with the right-hand side of Eq. (A.8) and

using elementary algebra:

Gomitn = (2,/C) /22, = D/C). (A.9)

AlGQee Alexander, G. J., A. M. Baptista, and S. Yan. 2017. “Portfolio Selection with Mental Accounts and
Estimation Risk.” Journal of Empirical Finance 41, 161-186. doi: 10.1016/j.jempfin.2016.07.012. The Online
Appendix of Alexander et al. (2017) is available at: <blogs.gwu.edu/alexbapt/files/2017/03/JEFAppendix-
2m65ivr.pdf>>. In Alexander et al., the symbols with superscript ‘e’ are associated to the use of estimated
optimization inputs p® and X° (instead of the ‘true’ optimization inputs g and X). In comparison, the
subscript ‘¢’ in “y,’ is used here to denote the erroneous risk aversion coefficient of an investor in Markowitz’s
model.
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Egs. (24) and (A.9) imply that o, 5, = 01-a,,. Since W,,, g, and wi_,,, lie on the top
half of the frontier, w,,, m,, =W1i_a,,. This completes the proof of part (ii).
Next, consider part (i). Suppose that H,, € (—oc, H,, ). Since H,, < H,,, Eq. (21)
implies that:
H, <A/C—(zl —D/C)/C. (A.10)

(07

It follows from Eq. (A.10) that:

(22 —DJ/C)/C < A/C — Hy,. (A.11)

«

Since a,, € (0,@), note that 22 > D/C. The fact that 22 > D/C and Eq. (A.11) imply
that A/C — H,,, > 0. It follows from Eq. (28) that:

—D/C(A/C—H,,)

900,y _ " D/ONA/C—Hu)~(2,,~D/O)/C] (A12)
0H,, 22 —D/C ' '
Since z,,, >0, D/C >0, and A/C — H,,, > 0:
(?aa H
T~ ()., A.13
OH.. (A.13)

Using the assumption that H,, < H,,,, Corollary 3(ii), and Eq. (A.13), 0w, H,, > 01 -
Since w,,, g, and wi_,,, lie on the top half of the frontier w,,, p, lies above wi_,, in

(E[ry],olrv]) space. This completes the proof of part (i). B

Proof of Corollary 4. Fix an account m € {1,..., M} with threshold probability «,, €
(0,@). Since z2 > D/C > 0, Eq. (28) implies that the o4, g, converges to infinity as H,,
converges to minus infinity. It follows from Eq. (27) that E,,, g, also converges to infinity

as H,, converges to minus infinity. B

Proof of Corollary 5. Fix an account m € {1,..., M} with threshold probability «,, €
lay @) and threshold return H,, € (—oo0, A/C). It is convenient to first show part (ii).
Suppose that a,, = ay . It follows from Eq. (30) that:

Zay, = V/D/C 4+ C(A/C — H,,)2 (A.14)

Egs. (21) and (A.14) imply that:

H., = H,. (A.15)

Using Corollary 3(ii), wa,, #,, =Wi—a,,. This completes the proof of part (ii).

Consider now part (i). Suppose that a,, € (ay ,@). For brevity, let:

F=\/(D/C)[(A/C ~ H,)? - (:2, - D/C)/C]. (A.16)

[0}
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Egs. (28) and (A.16) imply that:

. (A)C — Hyp)+ P« zen | (2 Doy 9z e (AJC — Hy) + F)
am,Hm
0za,, (22 — D/C)2

«

(A.17)
It follows from Eq. (A.17) that:

«

00t  (A/C — Hp) F —(D/C?) 24,] (22, — D/C) — 2z, [2a,, (A/C — Hy) + F| F

0o (22, —D/C)’F
(A.18)
Simplifying Eq. (A.18):

900, ., —(A/C—Hy)F(D/C) = z,, (D/C?) (22 — D/C) =22 (A/C — Hyp) F — 224, F?

0z, (2. —DJC)’F
(A.19)
Since z,,, > /D/C >0, A/C — H,, >0, and F > 0, it follows from Eq. (A.19) that:

(9aa H,

™ < (), A.20

. (A.20)
Noting that % < 0, Eq. (A.20) implies that:
8aa H,

— ™ S (). A.21

e (A.21)

Using the fact that a,, > ap , Corollary 5(ii), and Eq. (A.21), 04, #, > O1-a,- Since
W, m,, and wi_,, lie on the top half of the frontier, w,,, g, lies above wi_,,, in (E[ry], o[ry])

space. This completes the proof of part (i). B

Proof of Corollary 6. Fix an account m € {1,..., M} with threshold return H,, €
(—00, A/C). Using the definition of z,, and Eq. (20), z,, converges to \/D/C as a,, con-
verges to @ from below. Therefore, the assumption that H,, < A/C and Eq. (28) imply that
T H,, CONverges to infinity as a,, converges to @ from below. It follows from Eq. (27) that

E,, m, also converges to infinity as «,, converges to @ from below. B

Proof of Theorem 6. Fix an account m € {1, ..., M } with threshold probability «,, € (0, @)
and threshold return H,, € (—oo, H,, ]. Fix another account with threshold probability
a € (0,a] and threshold return H,. Egs. (27) and (32) imply that:

A[C = Ho = 200, =/ (D/C)G2, 1, = 1/C). (A.22)
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Using Eq. (28) with (ay,, Hy,) = (o, Hy,) as well as Eq. (A.22):

% 20001, = /(DIOVGE, 4, —1/C)]

Catla = 22— D/C
2
/)| [satasn. = \[(DIONGE, 1, ~1/0)] = (2= DJCYIC}
(A2
i 2-DJC (4.23)

It follows from Eq. (A.23) and elementary algebra that:

o |Za0anitn = \[(DJC)G2, = 1/C)]

Tetle = 22-DJC
2
\/(D/C) (za\/aimHm -1/C — \/D/C’aamﬂm)
+ 7 D70 . (A.24)

Simplifying Eq. (A.24), 04,1, = 0a,,.H,,- Since Wy g, and w,,, g, lie on the top half of the

m* m

mean-variance frontier, w, g, =Wa,,. m,,- W

Proof of Theorem 7. Fix an account m € {1, ..., M } with threshold probability a,, € (0, @)
and threshold return H,, € (—oo, H,,,]. Using Eq. (7) with v = (D/C) / (Ea,, n,, — A/C),

E, = FE,,, u,,- Hence, Eq. (35) holds. ®

Proof of Corollary 7. Fix an account m € {1,..., M} with threshold probability «,, €
(0,@). First, consider part (i). It follows from Corollary 4 that E,,, g, converges to infinity
as H,, converges to minus infinity. Hence, Eq. (35) implies that ygm’ 1, converges to zero as
H,, converges to minus infinity. This completes the proof of part (i).

Second, consider part (ii). Suppose that H,, = H,,,. It follows from Corollary 3(ii) that
W, H, =Wi_q,,- Bgs. (23) and (35) imply that:

Vot = (D/C) [\ (D2/C?)] (22, ~ D/C). (A.25)

Using Eq. (A.25), ’Yim,Hm =7%,, - This completes the proof of part (ii). m

«

Proof of Corollary 8. Fix an account m € {1,..., M} with threshold return H,, €
(=00, A/C). First, consider part (i). Using Corollary 6, E,., g

moytim

converges to infinity as
&, to @ from below. Hence, Eq. (35) implies that PYQm, [, converges to zero as oy, to a from
below. This completes the proof of part (i).

Second, consider part (ii). Suppose that a,, = ay; . Using Corollary 5(ii), wa,, #,, =Wi—a,,-

Since o, = ayy , it follows from Eq. (30) that:

2o, = /D/C + C(A/C — H,,)2. (A.26)
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Egs. (23), (35), and (A.26) imply that:

Vot = (D/C) [v/(D?/C3)/[C(A/C — Hy)?). (A.27)
It follows from Eq. (A.27) that 4., =7y . This completes the proof of part (ii). m

Proof of Theorem 8. Fix an investor with a risk aversion coefficient of v € R, as well
as an account with threshold probability «., € (0, @,| and threshold return of H.,. It follows
from Egs. (2) and (7) that:

B, = A/C+ \/(D/o)(ag —1/0). (A.28)
Egs. (A.28) and (39) imply that:

AJC—H, =20 00— \/(D/C)(ag —1/0) (A.29)

Using Eq. (28) with (o, Him) = (o, Hy) as well as Eq. (A.29):

2a 20,00 = (D/C) (0% = 1/C)]
zz —D/C

Oay,Hy =

\/ (D/0) { 20,00 = (DIOYE ~1/C)] — (2, - D/O)/o}
22 —D/C

(67

+

. (A.30)

It follows from Eq. (A.30) and elementary algebra that:

Za., [z%a7 - \/(D/C)(G% — l/C')J
Gamtly = 22 —DJC

\/(D/C) (207f02 —1/C — /DJTo)

22 —D/C

+

(A.31)

«

Simplifying Eq. (A.31), 04, #, = 0. Since w,_ g, and w, lie on the top half of the mean-

variance frontier, W, 1, =W, B

Proof of Theorem 9. Suppose that threshold probability «,, € (0,@) and threshold return
H,, € (—o0, H,,] for any account m € {1,..., M}. Using Theorem 5(i), {w,,, m, }M_, exist
and so does w,. Egs. (40) and (41) follow the definition of w, as well as Eqs. (26) and (27).
Using Egs. (1) and (40), w, is on the mean-variance frontier. Hence, Eq. (42) follows from
Egs. (2) and (41). m
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Proof of Theorem 10. Suppose that threshold probability «,, € (0, @) and threshold return
H,, € (—o0, H,,, ] for any account m € {1,..., M }. Using Eq. (7) withy = (D/C) / (E, — A/C),
E, = E,. It follows that:

Yo = (D/C) [ (E. — AJC). (A.32)

Since "My, =1and E, = Y y,.Fu, .., Bq. (35) implies that:

> Y/, = (Ba = A/C) [ (D/C). (A3)

m=1

Eq. (45) follows from Egs. (A.32) and (A.33). ®
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