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Abstract

We introduce interbank asset markets into the Diamond and Dybvig (1983) banking model.

This market allows a bank facing a bank run to sell its assets rather than physically liquidating

them. The introduction of this market significantly alters the set of equilibria. In particular,

equilibria exist in which the first-best allocation obtains and bank runs never occur. Moreover,

for some parameter values, asymmetric equilibria exist in which some banks hold a portfolio

that exposes them to a bank run, while other banks hold a portfolio that makes them immune to

runs. Finally, the asset market is a new source of multiplicity of equilibria as beliefs about as-

set prices influence banks’ portfolio choices, which in turn determine equilibrium asset prices.

This multiplicity gives liquidity regulation a new role as a mechanism to select the most desir-

able equilibrium.
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1 Introduction

Sharp falls in asset prices are sometimes, but not always, accompanied by the failure of a significant

number of financial intermediaries. In such instances, the drying-up of market liquidity often

coincides with a sudden deterioration of the funding liquidity for some financial intermediaries,

which then fail as a result of poor overall liquidity conditions. Aiming to promote the resilience

of the banking sector to liquidity shocks, the Basel Committee has introduced global liquidity

standards, effective as of 2018. They require banks to hold a minimum stock of liquid assets

to withstand stressed funding scenarios, for example in form of massive deposit withdrawals or

problems to roll-over existing short-term debt.

While the intentions of the regulator seem clear, there are still substantial limits to our under-

standing of the mechanisms through which the possibility of a liquidity crisis influences the inter-

action of asset prices and the portfolio choice of banks (Basel Committee on Banking Supervision,

2016). Such interaction is the focus in our paper, where we adapt the banking model of Diamond

and Dybvig (1983) to include interbank asset markets. Banks serve as financial intermediaries that

provide liquidity insurance for consumers. Liquidity shocks come in form of coordination failures,

i.e. when a depositor withdraws her deposits from a bank only because she expects everyone else

to do so. Such bank runs are triggered by an extrinsic random variable that is unrelated to the fun-

damentals, or sunspot for short. On secondary interbank asset markets, banks can trade reserves

for long-term productive investments. Hence, in a bank run, a bank’s productive investments can

not only be unwound and physically liquidated but also sold. Interbank asset markets thus matter

as to how a bank can transform its assets into consumption in a bank run.

Interbank asset markets also have an effect on a bank’s portfolio choice between holding re-

serves and making productive investments. This is an important aspect of the interaction between

banks and asset markets as it determines the susceptibility of a bank to bank runs. Specifically, the

bank is immune to coordination failures provided the value of a bank’s portfolio of reserves and

productive investments allows the bank to meet the withdrawal demands of depositors indepen-
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dently of whether depositors run. A bank that is immune to runs is run-proof, otherwise a bank is

run-prone.

The values of bank assets are equilibrium outcomes and potentially state-dependent. This

endogeneity of asset values alters significantly the set and the characteristics of equilibria. For one,

there are equilibria in which asset prices depend on the extrinsic state while bank runs do not occur

and the first-best allocation obtains. Such equilibria with trivial sunspots exist provided the sunspot

probability is not too large, and the range of probabilities supporting trivial sunspots converges to

the unit interval if the physical liquidation value of the productive investments converges to zero.

The endogeneity of asset values is also a new source of multiplicity of equilibria, as beliefs

about asset prices influence banks’ portfolio choices, which in turn determine equilibrium asset

prices. A necessary condition for equilibria with run-prone banks to exist is that beliefs are such

that asset prices in the extrinsic state, in which consumers contemplate to run, will be lower than in

the other state. For those prices, sunspots are necessarily non-trivial because banks never provide

optimal liquidity insurance and equilibria feature either the occasional failure of (some) banks or

real indeterminacy. If the sunspot probability is very low, only equilibria without run-proof banks

(risky banking sector) exist, in which banks physically liquidate their productive investments in the

sunspot state. If the sunspot probability is very high, only equilibria without run-prone banks (safe

banking sector) exist, in which asset prices ensure that the value of run-proof banks’ portfolios is

sufficient to deter consumers from running. In general, if there is a safe banking sector, a range

of asset prices supports such equilibrium. Asset prices can thus be indeterminate, implying real

indeterminacy since allocations depend on asset prices in equilibria with non-trivial sunspots. If

the sunspot probability is neither very high nor very low, asymmetric equilibria may exist where

some banks are run-prone and others are run-proof (mixed banking sector). Having a mixture

of bank types is what allows for an active asset market in equilibrium, where run-prone banks

hold an illiquid portfolio and will be the sellers of productive investments, while run-proof banks

hold a liquid portfolio and will be the buyers. Also for intermediate sunspot probabilities, there
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is potentially more than one equilibrium with non-trivial sunspots. These equilibria differ in the

share of run-prone banks, asset prices and thus allocations.

Finally, the endogeneity of asset values affects the share banks allocate to productive invest-

ments. We show that with safe banking sectors, aggregate productive investments are larger than

their efficient level, and with risky banking sectors, aggregate productive investments are smaller

than their efficient level. The reason is that in the absence of run-proof banks, asset markets are

illiquid. Banks have to physically liquidate production in system-wide bank runs. Hence, holding

reserves is rather valuable in providing liquidity insurance. In equilibria without run-prone banks,

asset markets are liquid. However, since banks offer less than the efficient liquidity insurance,

fewer reserves are needed for providing this level of liquidity insurance. Therefore, there is a

trade-off between market liquidity and bank reserves: while a safe banking sector is characterized

by liquid asset markets and banks holding relatively small reserves, a risky banking sector features

illiquid asset markets and banks with large reserves.

The possibility of multiple equilibria is a feature of our model that helps to understand the real

economic implications of financial stability. The structure of the banking sector and asset prices are

both equilibrium outcomes. Without multiplicity of equilibria, a necessary condition for a different

banking sector and different asset prices would be that the fundamentals of the economy, such as

preferences and technologies, or sunspot probabilities are different. Accordingly, differences in

the real outcomes associated with different banking sectors and asset prices are, ultimately, due

to differences in these characteristics of economies. Comparing equilibria from a set of multiple

equilibria for a given economy, however, is like conducting a controlled experiment that allows

to attribute any differences in real outcomes exclusively to differences in the financial sector. For

example, while fluctuations of asset prices unrelated to fundamentals can be without adverse real

economic consequences if the economy is in an equilibrium with trivial sunspots, they can also be

associated with equilibria in which the allocation is inefficient and where drops in asset prices may

even coincide with the failure of a significant number of banks. In those equilibria with non-trivial

sunspots, overinvestment in production occurs if the banking sector is safe and underinvestment if
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the banking sector is risky. We provide an example where consumers’ expected utility is higher

with a safe banking sector than with a risky banking sector. Hence, our model supports the notion

that financial stability is associated with higher welfare and more productive investment. As these

differences are solely due to differences in the structure of the equilibrium banking sector, not due

to different underlying fundamentals or sunspot probabilities, they can be directly attributed to

financial stability.

Against this background, our findings have interesting implications for bank regulators. Pro-

vided there are multiple equilibria, they differ in terms of expected utilities for consumers and with

respect to banks’ portfolio choices. Therefore, a new potential role for liquidity regulation arises as

a mechanism to select the most desirable equilibrium by requiring banks to hold a certain stock of

liquid reserves. We consider different liquidity ratios and find that designing an appropriate policy

can be difficult. Either those liquidity measures are non-informative or they have a non-monotonic

relationship with welfare. Moreover, if liquidity requirements are set too high, the economy may

be forced into an equilibrium without run-proof banks. The liquidity requirement, which is meant

to promote the resilience of the banking sector, may then actually lead to greater financial fragility.

The papers closest to ours are Allen and Gale (2004a,b), Cooper and Ross (1998, 2002) and

Ennis and Keister (2006). Allen and Gale (2004a,b) analyze economies with interbank asset mar-

kets.1 There are risks to fundamentals but no coordination failures, and productive investments

cannot be physically liquidated. Shocks to fundamentals have disproportionately large effects on

banks and asset prices in that there are either bank failures, asset price volatility or both, causing

allocative ineffciencies. If fundamentals become asymptotically deterministic, however, the equi-

librium uniquely converges to one with trivial sunspots. Although asset prices are indeterminate

in those equilibria, there is no real indeterminacy as the efficient allocation obtains. In our paper,

we look at economies that can be regarded as the limit economy in Allen and Gale (2004a), aug-

mented by the possibility of sunspots to trigger coordination failures. We show that equilibria with

trivial sunspots still exist in these economies but the set of asset prices supporting such equilibria

1Starting with Allen and Gale (2000), others consider interbank deposits. For example, Skeie (2008) studies
nominal contracts and Freixas et al. (2011) explore the role of monetary policies in absence of coordination failures.
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is more limited. Moreover, other equilibria exist in which banks do not provide optimal liquidity

insurance. In these equilibria, either (some) banks fail occasionally or there is real indeterminacy.

Also in contrast to Allen and Gale (2004a), we analyze the conditions under which different types

of equilibria exist and show that the endogeneity of asset values can be a source of multiplicity of

equilibria.2

Cooper and Ross (1998, 2002) and Ennis and Keister (2006) allow for coordination failures but

the value of productive investments is exogenous and does not depend on whether bank runs occur.

There is a unique threshold such that a bank is run-proof if and only if the sunspot probability is

above this threshold; otherwise a bank is run-prone. In equilibria where banks are run-proof, banks

hold more reserves and make less productive investments than banks in equilibria where they are

run-prone. In our paper, introducing a secondary interbank asset market implies a richer set of

equilibrium outcomes, including multiple equilibria. In equilibria with trivial sunspots, all banks

provide the first-best liquidity insurance, which cannot occur in Cooper and Ross (1998, 2002) and

Ennis and Keister (2006). Also in contrast to those papers, the banking sector holds fewer reserves

and makes more productive investments if all banks are run-proof, not if all are run-prone.

Starting with Jacklin (1987), a literature has developed that studies the relationship between

banking mechanisms and opportunities for consumers to trade directly on markets. In Jacklin and

Bhattacharya (1988) consumers can trade on equity markets, in Farhi et al. (2009) they borrow

from and lend to each other, and in Diamond (1997) some consumers can trade productive assets

with banks. In this literature, trading opportunities are considered to have the potential to adversely

affect, or be superior to, allocations implementable by banks. We show that the allocation in any

equilibrium with interbank markets for productive investments is better for consumers than if there

is no market at all, and even the first-best allocation can be achieved. This suggests that it is not

so much the mere existence of markets which harms efficiency of banking mechanisms but rather

who is trading there. To make this point, we turn off other trading opportunities by building on two

frictions. First, only banks possess the specific skills necessary to collect the returns on productive

2Matsuoka (2013) suggests that asymmetric equilibria may exist in environments like ours. We provide a compre-
hensive characterization of different equilibria including the possibility of multiple equilibria and indeterminacy.
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investments (as suggested by Diamond and Rajan, 2001). Lacking such skills, consumers are not

willing to buy productive investments. Second, consumers cannot commit to repay loans. Since

they live for either two or three dates, penalties like future exclusion from credit markets (as in

Kehoe and Levine, 1993) are ineffective for enforcing loan repayments.

Understanding bank runs as coordination failures has greatly benefited from taking an optimal

contracts approach. A major conclusion from this line of research is that whether optimal contracts

protect a bank from coordination failures depends on the specific combination of technologies and

frictions that characterize the environment in which the bank operates (see the survey by Ennis

and Keister, 2010b). Seminal papers in this field include Wallace (1988), Green and Lin (2003),

Peck and Shell (2003), and Ennis and Keister (2009, 2010a). There, optimal contracts have been

specified under two assumptions. First, the values of productive investments at every date are

exogenous and independent from the occurrence of a sunspot. Second, it is possible to write

contracts which allow payments to a consumer to be conditional on any new piece of information

in the order its arrival, in particular on how many other consumers have been already served before.

We consider the values of productive investments as equilibrium outcomes. With regards to

contracts, in our paper it is a bank’s portfolio choice that determines whether it is immune to liq-

uidity shocks, while the contract it offers to consumers is restricted to a simple deposit contract.

With a simple contract, the bank is either able to make the fixed payment that has been promised or

a prespecified rationing mechanism applies.3 We follow this approach partly because bank regula-

tion primarily considers a bank’s portfolio structure, not so much the specific design of contracts,

as decisive for how banks perform their functions. Moreover, simple contractual arrangements are

justified in environments where contracts are incomplete ex ante and renegotiating them ex post

is costly. Incompleteness arises as consumers often do not obtain (almost) perfect and verifiable

information about the state of the world at (almost) no cost. Renegotiating deposit contracts is

3Cooper and Ross (1998, 2002), Ennis and Keister (2006), and particularly Allen and Gale (2004a,b) and Allen
et al. (2018) also restrict attention to such simple contracts. Cooper and Ross (1998, 2002) and Ennis and Keister
(2006) assume random rationing, while Allen and Gale (2004a,b) and Allen et al. (2018) consider equal rationing.
Provided consumers have to agree on a rationing mechanism ex ante, equal rationing is efficient as it maximizes
expected utility conditional on a bank run.
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costly as it takes time, which is exactly what consumers with urgent liquidity needs often do not

have. Therefore, payments are not made contingent on certain variables, even if they are observable

(Rajan, 1998).4

In section 2 we lay out the model. In section 3 we study the properties of equilibria. In section

4 we discuss implications of our findings. Section 5 concludes.

2 The model

2.1 Setup

There are three dates t ∈ {0,1,2} with a single good at every date and extrinsic risk at date t = 1.

At this date there are two possible states s ∈ {1,2}. With probability p ∈]0,1[ the state is s = 1 and

with probability 1−p the state is s = 2.

There are two constant-returns-to-scale technologies, storage and production. Storage of the

good is a short asset, also referred to as reserves. It can be used at dates t ∈ {0,1} and yields a

gross return of one per unit at the next date t+1. Production of the good is a long asset, also called

productive investment. It has to be initiated at date t = 0 and can be physically liquidated for some

arbitrarily small gross return ε > 0 at the interim date t = 1. Provided it is not liquidated, it yields

a gross return of R > 1 per unit at the final date t = 2.

There is a continuum of identical consumers with mass one. A consumer has direct access to

storage, but does not have the skills to initiate productive investments or to collect their returns.

She is described by her endowment (1,0,0) and her consumption set X = R2
+. A consumer is

either impatient and values consumption at date t = 1 or patient and values consumption at date

t = 2. At date t = 1 consumers learn their type, which is private information. Patience among

consumers is uncorrelated and the share of impatient consumers λ ∈]0,1[ is deterministic and

common knowledge. Let xt,s denote what a consumer gets at date t in state s. Then, her expected

4Experiments show that simple deposit contracts make banks indeed susceptible to coordination failures (Garratt
and Keister, 2009; Arifovic et al., 2013; Arifovic and Jiang, 2014; Chakravarty et al., 2014).
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utility is

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2)) . (1)

The Bernoulli utility function u is twice differentiable with u′ > 0, u′′ < 0, and limx→0 u′ (x) = ∞.

Like in many varieties of the Diamond and Dybvig (1983) model, relative risk aversion k(x) =

−xu′′ (x)/u′ (x) is supposed to be larger than one. Consumers cannot commit to repay loans such

that there is no credit market on which consumers can borrow from or lend to each other.

There is a continuum of identical banks with unit mass. A bank has access to storage at dates

t ∈{0,1}, and possesses the skills to initiate productive investments at date t = 0 and to collect their

returns at date t = 2. Banks can also access a perfectly competitive interbank market for productive

investments at date t = 1. The asset price on that market in state s is Ps. A bank offers simple

deposit contracts in exchange for consumer endowments at date t = 0. Such contracts specify

the amount a consumer is entitled to withdraw. It is not possible to write complete contracts, i.e.

complex conditional payment schedules are excluded, and renegotiating contracts is prohibitively

costly. Deposit contracts are therefore bound to have a simple structure. If a consumer withdraws

at date t = 1, her claim on the bank is d, and if she withdraws at date t = 2, her claim is D.

Following Allen and Gale (2004a,b) and Allen et al. (2018), we assume that a prespecified rationing

mechanism applies once a bank is not able to meet all withdrawal demands. Given that consumers

are risk averse, equal rationing maximizes expected utility. Accordingly, whenever the total claims

of consumers who want to withdraw exceed the value of the bank’s assets at that date, the bank

splits the total asset value pro-rata among consumers and the bank ceases to exist. Without loss of

generality, D can thus be set to infinity.

The market for deposits is perfectly competitive. A consumer chooses in which bank to de-

posit her endowment, but she has to put all her endowments in the same bank. A bank attracts a

representative subset of consumers with a share of impatient consumers equal to λ , stores a share

y∈ [0,1] of its deposits and invests a share 1−y in production. There is no asymmetric information

about how the bank allocates deposits at date t = 0.
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Impatient consumers always withdraw at date t = 1. Patient consumers can leave their deposits

in the bank, but can also pretend to be impatient and withdraw. If state s = 1 materializes, a

patient consumer compares what she gets by withdrawing at date t = 1 with the payoff associated

with holding on until date t = 2, assuming all other patient consumers withdraw early at date

t = 1. If the former is higher, everyone withdraws at t = 1. If state s = 2 materializes, there is

no such coordination failure, yet there can be a bank failure. If a patient consumer expects that,

even without other patient consumers withdrawing early, the value of bank assets at date t = 2

will not allow the bank to pay at date t = 2 at least as much as the promised payment to impatient

consumers, she is better off by pretending to be impatient and withdraw early. The incomplete

deposit contract is, therefore, not generally incentive compatible in the sense that patient consumers

may find it optimal to withdraw at date t = 1 and not to wait until date t = 2.

As standard, first-best consumption for patient and impatient consumers is R(1− y∗)/(1−λ )<

R and y∗/λ > 1, respectively, and optimum storage y∗ satisfies

u′ (y∗/λ ) = Ru′
(

R(1−y∗)
1−λ

)
. (2)

2.2 Bank behavior

Let x = (x1,1,x1,2,x2,1,x2,2) denote the bundle of consumption xt,s at date t in state s. Moreover, let

N(Ps) = max{Ps,ε} be the value of a unit of the long asset at date t = 1 in state s, and M(Ps) =

max{R/Ps,1} be the rate of return on a bank’s assets between dates t = 1 and t = 2 in state s.

Banks can either take their chances, or they make provisions to prevent a possible bank run.

Accordingly, banks are either run-prone or run-proof. Given perfect competition for deposits, a

bank’s objective is to maximize expected utility (1) subject to its constraints. These constraints are

different for run-proof and run-prone banks. For a bank to be run-proof, the value of its assets at

date t = 1 must at least cover all outstanding deposits in state s = 1. It is not necessary that the

reserves of a run-proof bank cover all outstanding deposits. As long as depositors expect that by

selling or liquidating its assets, a bank will always be able to satisfy everyone’s withdrawal demand
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at once and in full, patient consumers do not have an incentive to run. In state s = 2, impatient

consumers withdraw d. Patient consumers are willing to wait only if they expect to get at least d at

date t = 2, for otherwise they would be better off withdrawing from the bank already at date t = 1.

For the bank, which realizes a return M(Ps) on its asset between dates t = 1 and t = 2, the present

value of paying all patient consumers d at date t = 2 is (1−λ )M(Ps)
−1d. Therefore, for a bank to

be run-proof, the value of its assets at date t = 1 needs to satisfy

d ≤ y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d ≤ y+N(P2)(1− y) .

(3)

The resource constraints on consumption with a run-proof bank are

x1,s ≤ d,

x2,s ≤ M(Ps)
y+N(Ps)(1− y)−λd

1−λ
.

(4)

The first line reflects that a run-proof bank always repays its deposits at date t = 1. The second

requires that consumption of patient consumers is at most the pro-rata share of the future value of

the bank’s assets net of its liabilities to impatient consumers. Provided the asset price in state s = 1

satisfies P1 ≤ 1, a coefficient of relative risk aversion larger one has two implications. First, as the

first-best consumption for impatient consumers y∗/λ is larger one, it cannot be offered by a run-

proof bank. Second, a run-proof bank does not hold more reserves than needed to deter consumers

from running. Consumers are simply too risk averse to be interested in speculating on fire-sales,

as this would only benefit patient consumers at the expense of impatient consumers.5

As for a run-prone bank, there is a run caused by coordination failures in state s = 1 if the

value of the bank’s assets is not sufficient to fully pay all depositors the promised amount. There

is a bank failure in state s = 2 unrelated to coordination failures if bank assets do not generate a

5See Appendix A.
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sufficient return during the second period. A bank is thus run-prone if either

d > y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d ≤ y+N(P2)(1− y) .

(5)

or
d ≤ y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d > y+N(P2)(1− y) .

(6)

Provided a bank is prone to failure, it can fail only in one state, either in state s = 1 or in state

s = 2. If a bank would fail in state s = 1 as well as in state s = 2, the marginal rate of substitution

between early and late consumption would be one, regardless in which state the economy is. Since

the ex-ante marginal rate of transformation is R−1, this cannot be optimal.

Let θ denote the state in which a run on a run-prone bank occurs. If θ = 1 the run is due to a

coordination failure, if θ = 2 it is caused by asset returns being too low. In state s = θ , everyone

gets a pro-rata share of the value of a bank’s assets. In state s 6= θ , impatient consumers get what

the deposit contract entitles them to and patient consumers equally share the future value of the

bank’s assets net of its liabilities to impatient consumers. The budget constraints are thus

x1,s ≤

 y+N(Ps)(1− y) if s = θ ,

d if s 6= θ ,

x2,s ≤


y+N(Ps)(1− y) if s = θ ,

M(Ps)
y+N(Ps)(1− y)−λd

1−λ
if s 6= θ .

(7)

2.3 Interbank asset markets

Asset prices are such that arbitrage opportunities do not exist. At date t = 0 banks have access to

two assets with identical costs: the productive investment with values (P1,P2) and reserves with

values (1,1), both at date t = 1. If P1,P2 ≥ 1 with P1 +P2 > 2, arbitrage opportunities for banks
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would exist. By initiating production at date t = 0 and selling the productive investment at date

t = 1, banks could realize a profit in at least one state without making a loss in the other state.

However, as all banks would then invest only in production at date t = 0, there would be no stored

goods at date t = 1 and thus productive investments cannot be sold for these prices. Similarly, if

P1,P2 ≤ 1 with P1 +P2 < 2, arbitrage opportunities for banks would also exist. Holding reserves

at date t = 0 and buying productive investments at date t = 1, banks could again realize a profit in

at least one state without making a loss in the other state. However, as all banks would hold only

reserves and none would invest in production at all at date t = 0, there would be no productive

investments to buy for these prices. Therefore, P1 < 1 < P2, P2 < 1 < P1 or P1 = P2 = 1. Moreover,

if Ps < ε , there would be arbitrage opportunities in that all banks could buy productive investments

in state s at date t = 1 only to liquidate them. If Ps > R all banks would sell productive investments

in state s at date t = 1. As there would be no bank buying them, banks could not sell at this price

and to divest productive assets they would have to be physically liquidated. Neither can be in

equilibrium. Therefore, prices additionally satisfy P1,P2 ≥ ε and P1,P2 ≤ R.

Let superscript R denote the solution to a run-prone bank’s problem and superscript S the

solution to a run-proof bank’s problem. Abusing terminology slightly, liquidity demand qD of run-

prone banks of unit size (supply of investments) and liquidity supply qS of run-proof banks of unit

size (demand for investments) are

qD
s=θ ∈


[−Ps=θ (1− yR),Ps=θ (1− yR)] for Ps=θ = ε ,

{Ps=θ (1− yR)} for Ps=θ > ε ,

(8a)

qD
s 6=θ ∈


{λdR− yR} for Ps 6=θ < R,

[λdR− yR ,Ps 6=θ (1− yR)] for Ps 6=θ = R,

(8b)
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and

qS
s ∈



[
yS −λdS ,yS +Ps(1− yS )−λdS

]
for Ps = ε ,

{yS −λdS } for ε < Ps < R,

[
−Ps(1− yS ),yS −λdS

]
for Ps = R.

(9)

In state s = θ , bank runs occur and run-prone banks sell all their assets (1− yR) if the asset

price is larger than the liquidation value, else they are indifferent between selling and liquidating.

In state s 6= θ they possess reserves of yR and pay λdR to impatient consumers. Hence, they

sell assets if doing so is necessary to pay the promised amounts to their impatient consumers.

Provided storage exceeds promised payments, they either buy assets if Ps 6=θ < R or are indifferent

between holding, buying or selling productive assets if Ps 6=θ = R. Regarding run-proof banks,

since patient consumers have no incentive to ever withdraw early, the actual outflow in both states

is λdS . Moreover, since the bank’s decision about yS and dS is made at date t = 0, i.e. before

the extrinsic risk is resolved, net reserves at date t = 1, yS −λdS , are state-independent if prices

in both states satisfy ε < Ps < R. In principle, this amount can be positive or negative. For Ps = R

run-proof banks are indifferent between buying and selling and for Ps = ε they are indifferent

between holding on to their own productive assets and liquidating them for the purpose of buying

productive assets from run-prone banks.

Let ρ be the share of consumers who put their endowments in run-prone banks, or the share

of run-prone banks for short. Then, QD
s and QS

s denote aggregate liquidity demand and aggregate

liquidity supply, respectively, with

QD
s = ρqD

s ,

QS
s = (1−ρ)qS

s .
(10)
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3 Equilibrium banking sectors

3.1 Equilibrium concept and existence

It is convenient to simplify some notation. A consumption plan (xτ ,dτ ,yτ) for a consumer who

deposits her endowments with a bank of type τ ∈ {S ,R} is a consumption bundle xτ and a bank

portfolio (dτ ,yτ) satisfying the constraints (3) and (4) for τ = S , and either (5) or (6) together

with (7) for τ = R. Moreover, for given prices P = (P1,P2), let V τ (P) denote the indirect utility

offered to consumers by a bank of type τ .

Definition 1 For a given probability distribution of the extrinsic state, an equilibrium is a set of

consumption plans, asset prices and the share of run-prone banks

(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)

with the following properties:

• Banks maximize expected utility: (yS ,dS ,xS ) is a solution to the consumer problem for

run-proof banks, and (yR ,dR ,xR) is a solution to the consumer problem for run-prone

banks.

• The interbank market clears:

QD
s = QS

s for s = 1,2.

• Consumers are not better off by going to another operating bank:

V S (P) = V R (P) if ρ ∈]0,1[,

V S (P) ≥ V R (P) if ρ = 0,

V S (P) ≤ V R (P) if ρ = 1.
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Our first result is that equilibria exist.

Theorem 1 There is an equilibrium for every probability distribution.

Proof: See Appendix B.1 �

An equilibrium always exists, although solving for it is difficult. However, key insights arise

from the solutions to the banks’ problems. No-arbitrage implies that prices are such that N(Ps) =Ps

and M(Ps) = R/Ps. Non-satiation implies that the budget constraints (4) and (7) hold with equality.

For a run-proof bank, for which the first line in condition (3) is binding, replacing d by y+P1(1−y)

allows to express the objective function solely in terms of y. As the problem is convex, its solution

is unique and, if interior, solves the first-order condition

(
1
R

λ

1−λ
u′ (y+P1(1− y))+ p

P1
u′
(
(y+P1(1− y)) R

P1

))
(1−P1)

−1−p
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
1−λ

)(
P2−1+ λ

1−λ
(P2−P1)

)
= 0.

(11)

As for a run-prone bank, we replace xt,s accordingly in the objective function, which is then ex-

pressed in terms of y and d. Again, the problem is convex and the solution (dR ,yR) is thus unique.

The probability of the state in which the bank fails is Pr(s = θ) = p if it fails in state s = 1 and it

is Pr(s = θ) = 1− p if the bank fails in state s = 2. The first-order conditions then read

u′ (d)

u′
(

R
Ps 6=θ

y+Ps6=θ (1−y)−λd
1−λ

) − R
Ps 6=θ

= 0, (12a)

u′ (y+Ps=θ (1− y))

u′
(

R
Ps 6=θ

y+Ps6=θ (1−y)−λd
1−λ

) − Pr(s 6= θ)

Pr(s = θ)

Ps 6=θ −1
1−Ps=θ

R
Ps 6=θ

≤ 0, (12b)

with strict inequality in the second line if yR = 0. Finally, the solution to the unconstrained op-

timization problem, that is ignoring conditions (3), (5) and (6), satisfies the following first-order
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conditions

u′ (d) = R
(

u′
(

R
P1

y+P1(1−y)−λd
(1−λ )

) p
P1

+u′
(

R
P2

y+P2(1−y)−λd
(1−λ )

) 1− p
P2

)
, (13a)

u′
(

R
P1

y+P1(1−y)−λd
(1−λ )

)
=−1− p

p
P1

1−P1

1−P2

P2
u′
(

R
P2

y+P2(1−y)−λd
(1−λ )

)
. (13b)

3.2 Equilibria with trivial sunspots

In accordance with Allen and Gale (2004a), equilibria with trivial sunspots are defined as follows.

Definition 2 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium. It is an equilibrium

with trivial sunspots if asset prices differ across extrinsic states and the first-best allocation ob-

tains.

The first-best allocation requires that the consumption of patient and impatient consumers does not

depend on the extrinsic state. Suppose banks can make an unconstrained choice. According to the

first-order condition (13b), consumption of patient consumers is state-independent provided prices

satisfy p/P1+(1− p)/P2 = 1, or equivalently P2 = (1− p)/(1− p/P1), which has two immediate

effects. First, one unit invested in storage at date t = 0 and used to buy productive investments

at date t = 1 has the same expected return at date t = 2 as one unit invested in production at

date t = 0. Second, the banks’ liquidity supply is zero as for those prices condition (13b) only

holds if λdS = yS . These effects together imply that for p/P1 +(1− p)/P2=1, condition (13a)

is equivalent to u′
(
dS
)
= Ru′

(
R(1−λdS )/(1−λ )

)
, i.e. the first-best allocation dS = y∗/λ

obtains.

State-independent consumption for impatient consumers can only be provided by run-proof

banks. Consumption offered through run-prone banks necessarily depends on the extrinsic state as

there will be a run in exactly one of the extrinsic states. According to condition (3), however, run-

proof banks can implement the efficient allocation only if y∗/λ ≤ y∗+P1(1− y∗), or equivalently

if P1 ≥ (1/λ −1)(1/y∗−1)−1. We conclude:
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Theorem 2 Let pT := (1−ε)/(1−ε
λ

1−λ

1−y∗
y∗ ). Equilibria with trivial sunspots exist if and only if

p≤ pT . In such equilibrium asset prices are indeterminate and satisfy

P1 ∈
[
(1/λ −1)(1/y∗−1)−1 ,R

]
,

P2 = (1− p)/(1− p/P1) .

Proof: See Appendix B.2. �

Several interesting implications arise. First, the mere possibility of coordination failures does

not necessarily entail bank runs or that banks cannot provide efficient liquidity insurance. Second,

because run-prone banks cannot make consumers better off in a bank run than by splitting asset

values equally, those banks cannot offer contracts that give consumers higher expected utility and

hence do not exist in equilibria with asset prices as in Theorem 2.6 Third, since pT is below

but arbitrarily close to one as ε is arbitrarily close to zero, there can be a wide range of probability

distributions for which equilibria with trivial sunspots exist. Finally, while such equilibria also exist

in economies where coordination failures are ruled out (Allen and Gale, 2004a), in our economies

where coordination failures are possible asset prices not only have to satisfy the first condition

P2 = (1− p)/(1− p/P1) but additionally P1 ≥ (1/y∗−1)−1 (1/λ −1). As relative risk aversion

is greater one, we have y∗ > λ . Therefore, neither equilibria with stable asset prices P1 = P2 = 1

nor with state-dependent asset prices satisfying P1 < 1 support the efficient allocation.

That equilibria with trivial sunspots are inconsistent with P1 ≤ 1 means that with trivial

sunspots, consumers contemplate to run in the extrinsic state in which the asset price is strictly

larger than in the other state. One would expect, however, that consumers consider to run particu-

larly when the value of bank assets is low. This bears the question whether other types of equilibria

exist, of which there are potentially three.

6Also, deviating from our setup by imposing a sequential service constraint, Theorem 2 implies that such a con-
straint is not necessarily binding in equilibrium.

17



Definition 3 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium in which P1 ≤ P2 ob-

tains. It is an equilibrium with a safe banking sector if ρ = 0; with a risky banking sector if

ρ = 1; and with a mixed banking sector if ρ ∈]0,1[.

3.3 Safe banking sectors

We begin with equilibria with a safe banking sector and stable asset prices.

Theorem 3 There is a p̌ < 1 such that an equilibrium with a safe banking sector and stable asset

prices exists if and only if p≥ p̌. In such equilibrium

• banks’ reserves satisfy yS = λ ;

• consumers’ expected utility is strictly lower than the first-best expected utility.

Proof: See Appendix B.3 �

Arbitrage-free asset prices are equal across states only if P1 = P2 = 1. As structuring its portfo-

lio at t = 0 is then as good for any bank as structuring it at t = 1, an individual bank’s reserves are

indeterminate. If at date t = 1, an individual bank’s reserves are less than required to pay impatient

consumers a total of λdS the bank will sell productive investment, and if an individual bank holds

reserves above λdS it will buy productive investment. In aggregate, however, all run-proof banks

together hold just sufficient reserves to pay out all depositors at t = 1, i.e. λdS = yS . Note that

trade of assets at t = 1 does not affect the consumption for impatient or patient consumers. For

P1 = P2 = 1, run-proof banks pay one unit of the good to impatient consumers, and R units to

patient consumers. Feasibility thus requires that banks’ aggregate reserve holdings are equal to the

share λ of impatient consumers.

Safe banking sectors may not only exist for P = (1,1). In any equilibrium without run-prone

banks there is no liquidity demand from those banks. Hence, qS = 0 must hold for ρ = 0. Accord-

ing to equation (9), provided asset prices are bounded away from the return of production R as well

as from its liquidation value ε , a necessary and sufficient condition for qS = 0 is λdS = yS . As
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banks are run-proof provided dS = yS +P1(1− yS ), the liquidity supply by run-proof banks is

therefore zero if yS = λP1/(λP1 +1−λ ) and dS =P1/(λP1 +1−λ ). Let h be a correspondence

such that for P1 ∈ [ε ,1]

h(P1) =
{

P2 ∈ [1,R]
∣∣∣P2 satisfy (11) and yS = λP1/(λP1 +1−λ )

}
. (14)

Then, the solution to the optimization problem of run-proof banks implies a that their liquidity

supply is zero provided asset prices satisfy P2 = h(P1). If h(P1) = /0 then P1 is incompatible with a

zero-liquidity supply. For h(P1) 6= /0, the correspondence h satisfies

h(P1) =
λP1 +(1−λ )

1− 1
1−p

1−P1
P1

(
λ

u′
(

P1
λP1+1−λ

)
u′
(

R
λP1+1−λ

) P1
R + p(1−λ )

) , (15)

that is, it becomes a continuous and monotonically decreasing function for P1 ∈ [h−1(R),1], with

h(1) = 1, h−1(R)> ε and limp→1 h−1(R) = 1. Liquidity supply from the group of run-proof banks

is positive for all P1 < h−1(P2) and negative for all P1 > h−1(P2).7

Theorem 4 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium with a safe banking sec-

tor and stable asset prices. Provided V S (P) > V R (P) for P = (1,1), there are other equilibria

with a safe banking sector and P1 < 1. In such equilibrium

• asset prices and consumption are indeterminate;

• banks’ reserves satisfy yS < λ ;

• banks’ reserves are the lower the lower the asset price P1 is.

Proof: See Appendix B.4 �

7This is because the first-order condition (11) implicitly defines yS as a function of P2 for any given P1. Evaluated
at yS = λP1/(λP1 +1−λ ), this function satisfies dyS /dP2 < 0. For every P1 ∈ [h−1(R),1] there is a unique P2 such
that qS = 0. Therefore, yS > λP1/(λP1 +1−λ ) and thus qS > 0 for all P1 < h−1(P2) (and vice versa).
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A sufficient condition for V S (1,1) > V R (1,1) is p > p̌. According to the Theorem, a con-

tinuum of prices, bank balance sheets and consumption allocations then exists that is supported by

a safe banking sector. Asset prices are indeterminate because if run-proof banks offer a strictly

better expected utility than run-prone banks for P = (1,1), asset prices can deviate somewhat from

P = (1,1) and run-proof banks are still the better choice. This also applies to any combination

of asset prices in some neighborhood of P = (1,1) that satisfy the zero-liquidity supply condi-

tion (14). Note, there is no trade with run-prone banks at date t = 1 because there are none, and

trade among run-proof banks does not affect the total value of resources available to each one of

them. Therefore, with (yS ,dS ) being set at date t = 0, consumption does not depend on the extrin-

sic state. Consumption depends, however, on asset prices and is thus also indeterminate. Impatient

consumers get P1/(λP1 +1−λ ) and patient consumers get R/(λP1 +1−λ ).

3.4 Risky banking sectors

Without run-proof banks, there is no supply of reserves upon which run-prone banks could rely at

the interim date, regardless in which state they are. Hence, for banking sectors to be risky, liquidity

demand by the group of run-prone banks is necessarily zero in both states. In state s = 1, liquidity

demand is zero if and only if the asset price is not larger than the physical liquidation value of

assets: banks weakly prefer to liquidate production over selling. In state s = 2, liquidity demand

is zero if and only if the asset price is such that reserves held by a run-prone bank exactly cover

its total payout to impatient consumers. However, the optimal consumption plan requires that the

marginal rate of substitution between consumption when patient and when impatient is equal to the

rate of return on holding the long asset between date 1 and date 2; see first-order condition (12a).

No-arbitrage implies that there is a lower bound for this rate of return. Hence, for given reserves,

consumption of patient consumers has an upper bound. Therefore, we obtain the following result.
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Lemma 1 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium and let

p̂ :=
R−1

R−1+u′
(

λR
λR+1−λ

)
/u′
(

R
λR+1−λ

) .

Then the banking sector cannot be risky in equilibrium if p > p̂.

Proof: See Appendix B.5 �

The upper bound p̂ on the sunspot probability is smaller than (R− 1)/R < 1 and depends on

the fundamentals of the economy. It is the lower the smaller the share of early consumers λ is. The

effects of the return on the long asset R on p̂ are generally not clear-cut. On the one hand, for given

prices a larger R increases the rate of return on holding the long asset between date 1 and date 2.

On the other hand, a larger R also changes the optimum consumption profile for consumers in case

of a run compared to what they get as late consumers in case there is no run. If the coefficient of

relative risk aversion is constant, k(x) = κ , we have p̂ = (R−1)/(R−1+λ−κ) and the net effect

is clear since d p̂/dR > 0. Moreover, we also obtain d p̂/dκ < 0.

Zero liquidity demand in both states is necessary but not sufficient for risky banking sectors to

exist. Run-prone banks must also offer deposit contracts which generate a higher expected utility

than deposit contracts offered by run-proof banks. This leads to our next main result.

Theorem 5 There is a p̄> 0 with p̄≤ p̂ such that for all p≤ p̄ an equilibrium with a risky banking

sector exists. In such equilibrium

• asset prices and consumption are determinate;

• banks’ reserves satisfy yR > y∗;

• consumers’ expected utility is strictly lower than the first-best expected utility.

Proof: See Appendix B.6 �

In an equilibrium with a risky banking sector, all banks survive in one state and none survives

in the other state. If the extrinsic state with coordination failure materializes, all banks are forced to
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give up their long assets. As there is no run-proof bank supplying any reserves, run-prone banks as

a group have to physically liquidate all their assets. This is an equilibrium if coordination failures

are sufficiently unlikely: For a run-proof bank, prospects of buying assets at fire sale prices are

slim while fending off a bank run to be able to buy assets from distressed banks is costly because

it requires a bank to hold large reserves relative to what it promises to impatient consumers. With

a risky banking sector, the first-order conditions (12a) and (12b) read

0 = pu′(yR)+(1− p)
(

u′
(

yR

λ

)
−Ru′

(
R(1−yR)
(1−λ )

))
, (16a)

P2 = R
u′
(

R(1−yR)
(1−λ )

)
u′
(

yR

λ

) . (16b)

The first equation uniquely defines the reserves yR , and for given reserves the second equation

defines a unique P2. The consumption plan is the same as in the absence of an asset market.

3.5 Mixed banking sectors

If run-prone banks sell their assets in a bank run, no productive investment will ever go to waste.

If run-proof banks can buy additional productive investments, their excess reserves are not idle but

available to run-prone banks without jeopardizing the stability of run-proof banks. There are thus

potentially gains from trading the extrinsic risk with each other. In an equilibrium with a mixed

banking sector, such trades take place. It arises as the result of an equilibrium in mixed strategies.

With probability ρ a consumer goes to a run-prone bank and with probability 1−ρ to a run-proof

bank. Whether such an equilibrium exists depends on whether there are feasible asset prices for

which liquidity supply is positive, liquidity demand is positive and state-independent, and both

types of banks are equally good to consumers. State-independent liquidity demand is required

because liquidity supply is state-independent and markets have to clear in all states.

According to the demand schedules (8a) and (8b), liquidity demand is state-independent if and

only if dR = (P1(1− yR)+ yR)/λ . Since P1 > 0 we conclude:
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Corollary 1 A run-prone bank never holds reserves larger than the withdrawal demands in the

state in which no bank run occurs.

Moreover, for a run-prone bank, consumption by patient consumers is xR
2,2 = R

P2

(P2−P1)(1−yR)
1−λ

according to the budget constraint (7). Consumption is thus positive only if P1 < P2. According to

conditions (5) and (6), this implies:

Corollary 2 If bank runs occur in equilibrium, then only because of coordination failures and not

because of returns on bank assets being too low.

To derive feasible prices that induce run-prone banks to find it optimal to set yR and dR such

that liquidity demand is state-independent, we define a correspondence f such that for P1 ∈ [ε ,1]

f (P1)=


{
(yR ,P2) ∈ {0}× [1,R]

∣∣(yR ,dR) satisfy (12a) and dR=P1/λ
}

,

{
(yR ,P2) ∈]0,1]× [1,R]

∣∣∣(yR ,dR) satisfy (12a), (12b) and dR=yR+P1(1−yR)
λ

}
.

(17)

If f (P1) = /0, then P1 is incompatible with state-independent liquidity demand. For f (P1) 6= /0, let

(yR ,P2) denote a solution to equation (17). Then, (yR ,dR) is a solution to a run-prone bank’s

optimization problem and the implied liquidity demand is state-independent provided yR = yR

and dR =
(
P1(1−yR)+yR

)
/λ . There are potentially many solutions for a given P1.
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As for the indifference of consumers between banks of different types, note first that according

to the Envelope theorem, indirect utilities V R(P) and V S (P) are characterized by

dV R (P)
dP2

= (1− p)u′
(

xR
2,2

) R
P2

qD
2

P2
∈


R++ if qD

2 > 0,

{0} if qD
2 = 0,

R− if qD
2 < 0,

(18a)

dV S (P)
dP2

=−(1− p)u′
(

xS
2,2

) R
P2

qS

P2
∈


R− if qS > 0,

{0} if qS = 0,

R++ if qS < 0,

(18b)

dV R (P)
dP1

= p(1− yR)u′
(

xR
1,1

)
> 0. (18c)

The sign of dV S (P)/dP1 is not clear. Let g be a correspondence such that for P1 ∈ [ε ,1]

g(P1) =
{

P2 ∈ [1,R]
∣∣∣qD

2 > 0,qS > 0 and V R(P)−V S (P) = 0
}

. (19)

If P2 = g(P1), a consumer is indifferent between run-proof and run-prone banks. Provided g(P1) =

/0 for a given P1, there is no P2 such that run-prone and run-proof banks are equally good from a

consumers perspective. Either run-prone banks are strictly better than run-proof banks or run-proof

banks are strictly better than run-prone banks for this P1 regardless P2.

Provided g(P1) 6= /0, the above characteristics of the indirect utilities imply that the correspon-

dence g is an injective function and a consumer strictly prefers a run-prone bank over a run-proof

bank if and only if P2 > g(P1). A higher asset price in state s = 2 makes a run-prone bank more at-

tractive because it can offer more consumption to patient consumers while holding fewer reserves.

It makes a run-proof bank less attractive because its patient consumers get less as the bank cannot

buy as many long assets in state s = 2 in exchange for a given amount of excess reserves.
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Let φ be the projection of f , as defined in equation (17), on the P2-coordinate. Then, a mixed

banking sector is characterized by asset prices (P1,P2) and a share of run-prone banks ρ for which

P1 ∈]ε ,1], φ(P1) = g(P1) 6= /0, P2 = φ(P1) and

ρ =
yS −λdS(

yS −λdS
)
−
(
yR−λdR

) . (20)

Unfortunately, it is difficult to explicitly state the circumstances under which a mixed banking

sector exists. However, we are able to specify two conditions that are sufficient to rule out a

mixed banking sector. Recall Theorem 3 which has established p ≥ p̌ as necessary and sufficient

condition for an equilibrium with run-proof banking sectors and stable asset prices. Satisfying this

condition does not exclude though that other equilibria with run-prone banks may also exist.

Theorem 6 There is a p̃ ∈ [p̌,1[ such that for all p > p̃, run-prone banks cannot coexist with

run-proof banks in equilibrium.

Proof: See Appendix B.7 �

Suppose there is scope for run-prone banks to exist for some p > p̌. A sufficient condition that

there is some larger probability p̃ above which no run-prone bank operates is that run-prone banks

do not exist if the sunspot probability converges to one. To begin with, risky banking sectors do

not exist then (see Lemma 1). Moreover, market clearing in both states implies that the asset price

in state s = 1 converges to one. Hence, given the (almost) certainty of coordination failures, even

if run-prone banks make productive investments, their returns are (almost) never collected and the

total asset value of run-prone banks is (almost) always equal to one. Accordingly, run-prone banks

do not provide any meaningful liquidity insurance and the best they can do for consumers is just

about as good as storage. Run-proof banks, however, always collect the returns on the productive

investments they make. They also offer at least some liquidity insurance. Hence, only run-proof

banks will exist in equilibrium.

Similarly, satisfying the conditions in Lemma 1 and Theorem 5 does not rule out other equilib-

ria in which run-proof banks exist.
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Theorem 7 There is a p̆ ∈]0, p̄] such that for all p < p̆, run-proof banks cannot coexist with run-

prone banks in equilibrium.

Proof: See Appendix B.8 �

Suppose there is scope for run-proof banks to exist for some p ≤ p̄. A sufficient condition

that there is some smaller probability p̆ below which no run-proof bank operates is that run-proof

banks never exist if the sunspot probability converges to zero. Clearly, safe banking sectors cannot

exist then. As for mixed banking sectors, state-independent liquidity demand by run-prone banks

holding at least some reserves themselves requires that P2 converges to one regardless which P1

holds. Run-prone banks provide (almost) the first-best liquidity insurance. Run-proof banks do

not make any productive investments and thus cannot match the expected utility offered by a run-

prone bank. If run-prone banks would not hold any reserves, prices that ensure state-independent

liquidity demand also imply that run-prone banks offer an expected utility higher than the first-

best. Since all banks offering better contracts than in the first-best is not feasible, only run-prone

banks exist in equilibrium.

To sum up, mixed banking sectors require that run-prone and run-proof banks coexist in equi-

librium. Therefore, mixed banking sectors are feasible only for probability distributions of the ex-

trinsic state for which neither run-prone banks nor run-proof banks are ruled out, i.e. for p ∈]p̆, p̃[.

3.6 Numerical examples

The following examples illustrate two features we cannot prove in general. One is that mixed

banking sectors may exist, the other that multiple equilibria potentially exist of which at least two

feature non-trivial sunspots. Let the Bernoulli utility function be u(x) = −x−1, i.e. relative risk

aversion is k(x) = 2, and the physical liquidation value be ε = 10−29.8 Liquidity demand is state-

independent for (yR ,P2) = f (P1) with f as defined in equation (17). The projection φ of f on the

8We chose an arbitrary, small value. It is strictly positive to rule out an infinite return on bank assets at t = 1.
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P2-coordinate thus satisfies

φ
−1(P2) =


1− 1−p

p λ 2 (P2−1) if yR ∈]0,1[,

P2

(
1+ 1−λ

λ

(
P2
R

)0.5
)−1

if yR = 0.

(21)

Liquidity supply is zero for P2 = h(P1) with h as defined in equation (14), i.e.

h(P1) =
1−λ +λP1

1− 1
1−p

1−P1
P1

(λR/P1 +(1−λ ) p)
. (22)

The condition for indifference between bank types is P2 = g(P1) with g as defined in equa-

tion (19). Instead of deriving g explicitly, we calculate and compare indirect utilities with run-

proof and run-prone banks, respectively, for prices satisfying P1 = min
{

φ−1(P2),h−1(P2)
}

. For

min
{

φ−1(P2),h−1(P2)
}
= φ−1(P2), price combinations for which indirect utilities are equal con-

stitute an equilibrium with a mixed banking sector. We then calculate dτ and yτ for τ ∈ {R,S },

and the implied individual liquidity demand and supply determine the share ρ of run-prone banks

according to equation (20).

Example 1 For R = 5, λ = 0.7 and p = 0.17, there are equilibria with trivial sunspots and a mixed

banking sector is an equilibrium with non-trivial sunspots:

ρ = 0, P1 ∈
[√

5,5
]

P2 =
0.83

1−0.17/P1
, V (P) =−0.696;

ρ = 0.836239, P1 = 0.306249, P2 = 1.289987, V (P) =−0.767.
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Example 2 For R = 5, λ = 0.4 and p = 0.13275, there are equilibria with trivial sunspots and a

safe as well as a risky banking sector are equilibria with non-trivial sunspots:

ρ = 0, P1 ∈
[√

5,5
]

P2 =
0.86725

1−0.13275/P1
, V (P) =−0.447;

ρ = 0, P1 = 1, P2 = 1, V (P) =−0.520;

ρ = 1, P1 = ε , P2 = 1.956688, V (P) =−0.603.

Example 3 For R = 5, λ = 0.4 and p = 0.132, there are equilibria with trivial sunspots and a risky

banking sector is an equilibrium with non-trivial sunspots:

ρ = 0, P1 ∈
[√

5,5
]

P2 =
0.868

1−0.132/P1
, V (P) =−0.447;

ρ = 1, P1 = ε , P2 = 1.950461, V (P) =−0.594.

Comparing example 2 with example 3 reveals that a higher sunspot probability (up from

p=0.132 in example 3 to p=0.13275 in example 2) can change the set of equilibria in a way such

that the maximum expected utility obtained in non-trivial sunspot equilibria is larger (up from

V (P) = −0.594 in example 3 to V (P) = −0.520 in example 2). This is because with the higher

sunspot probability a safe banking sector becomes another possible equilibrium which outperforms

the risky banking sector in either of the examples.

4 Comparing equilibria

The first immediate conclusion from our analysis is that while banks could be run-proof and pro-

vide the efficient level of liquidity insurance, other equilibria potentially coexist in which the al-

location is inefficient and, occasionally, (some) banks may fail when asset prices drop. In the first

type of equilibrium, sunspots are trivial but asset prices are indeterminate. In equilibria with safe

banking sectors and non-trivial sunspots, asset prices are also indeterminate but so is consumption.
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In equilibria with at least some run-prone banks, the allocation is inefficient but asset prices and

consumption are determinate.

In equilibria in which run-prone banks operate, expected utility for depositors of a run-proof

bank is equal to the expected utility for depositors of a run-prone bank if the share of run-prone

banks is ρ ∈]0,1[, or smaller if the share is ρ = 1. To compare any two equilibria with run-prone

banks, it thus suffices to look at the indirect expected utility for depositors of a run-prone bank at

prices for which liquidity demand is state-independent. For (yR ,P2) = f (P1), this indirect utility

is

V R(P) = pu
(
yR +P1(1−yR)

)
+(1− p)λu

(
yR+P1(1−yR)

λ

)
+(1− p)(1−λ )u

(
R
P2

P2−P1
1−λ

(1−yR)
)

.

(23)

We therefore conclude9

Corollary 3 Suppose relative risk aversion is non-increasing. Comparing any two equilibria in

which run-prone banks exist, expected utility is higher in the equilibrium in which the asset price

P1 is higher.

In equilibria with non-trivial sunspots, no run-prone banks exist and there is real indeterminacy

of equilibria if the sunspot probability is above some threshold p̌. Comparing any two such equi-

libria, it suffices to consider the expected indirect utility for price combinations for which liquidity

supply is zero. For P2 = h(P1), this indirect utility is

V S (P) = λu
(

P1

λP1 +1−λ

)
+(1−λ )u

(
R

λP1 +1−λ

)
. (24)

Theorem 4 thus leads to the following conclusion.

Corollary 4 Comparing any two equilibria with non-trivial sunspots in which no run-prone bank

exists, expected utility is higher in the equilibrium in which the asset price P1 is higher.
9See Appendix D.
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Given that equilibria differ in terms of expected utilities for consumers and with respect to

banks’ portfolio choices, a well chosen policy might be able to help consumers to select the most

desirable of them. Imposing simple liquidity ratios is a frequently suggested instrument to regulate

banks potentially suffering from liquidity problems. However, our analysis suggests to exercise

caution.

To back this claim, we consider three liquidity ratios. The first takes aggregate reserves relative

to the total amount banks have promised to pay depositors, ȳ/d̄ with ȳ = ρyR +(1− ρ)yS and

d̄ = ρdR +(1−ρ)dS . This measure has the same value ȳ/d̄ = λ in all equilibria. This is because

run-proof banks do not speculate on fire sale prices. Therefore, in every equilibrium the banking

sector as a whole has just enough reserves to satisfy all impatient consumers provided there is no

bank run. This holds regardless which asset prices prevail and how many banks are run-prone.

A simple aggregate reserve ratio, which measures total reserves relative to what banks raise

from depositors, ȳ = ρyR +(1−ρ)yS is also of only limited usefulness for regulators. This time

it is because the relationship between this measure and welfare is non-monotonic. Consider an

economy for which a risky banking sector as well as safe banking sectors constitute equilibria,

and where the safe banking sector provides higher expected utility (as in Example 2). Then, an

aggregate reserve ratio ȳ = λ (which holds with a safe banking sector and stable asset prices) is

associated with a higher expected utility for consumers than a ratio ȳ > y∗ > λ (which holds with

a risky banking sector). The former is also associated with a higher expected utility than a ratio

ȳ < λ (which holds with a safe banking sector and volatile prices when sunspots are non-trivial).

The problem of non-monotonicity is aggravated by the fact that equilibria with trivial sunspots

often also exist where liquidity insurance is efficient and the aggregate reserve ratio is between the

one associated with a risky banking sector and the one with a safe banking sector.

The third liquidity ratio is taken from the new Basel Framework which stipulates that the

amount of available stable funding has to cover at least 100% of the required stable funding. In the

context of our model the required stable funding is given by the share of productive investments,

1− ȳ. The amount of available stable funding are the funds expected to be normally kept in the
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bank. It is given by what depositors are entitled to withdraw at the interim date t = 1 but, provided

there is no crisis, do not withdraw from the banking sector. Expressing both in present value terms

as of date t = 0, this liquidity ratio is given by d̄(1−λ )/(1− ȳ). Since ȳ/d̄ = λ for all equilibria,

this ratio is equivalent to (ȳ/(1− ȳ))((1−λ )/λ ), which is strictly increasing in the amount of

aggregate reserves held in the banking sector. It therefore contains the same information as the

simple aggregate reserve ratio. Moreover, this ratio is larger than one if and only if aggregate re-

serves are larger than λ . Therefore, this ratio is strictly larger than one with a risky banking sector

and in equilibria with trivial sunspots, but at most one with a safe banking sector and non-trivial

sunspots. Ratios larger than one are thus not necessarily an indicator for a safe banking sector but

can also indicate that an economy is headed towards a rather wide-spread banking crisis.

5 Concluding remarks

Simultaneous asset market crashes and bank failures can be the result of coordination failures

among bank depositors triggered by sunspots. In equilibrium, run-prone banks which expose

themselves to such bank runs may exist. There are other types of equilibria in which at least some

run-proof banks exist. These banks hold portfolios that take away the incentives for consumers

to coordinate on bank runs. Consumption by at least some patient and impatient consumers is

stochastic if run-prone banks exist and the financial sector may provide too little liquidity insur-

ance when run-proof banks exist.

The possibility of multiple equilibria, which differ in terms of both, expected utilities and

banks’ reserve holdings, together with the finding that market liquidity and banks’ reserve holding

are substitutes, lends itself to the issue of optimal liquidity regulation. However, we leave it for

further research to analyze how to design optimum liquidity requirements for economies like those

in this paper.

We have considered a rather limited set of options for consumers to interact with banks. A key

feature in the world financial crisis has been that funds withdrawn from one bank were re-deposited
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in another bank. This migration of deposits when banks get into distress is a channel through which

the available aggregate liquidity is distributed in times of systemic crises. As this channel would

work parallel to, and possibly interacts with, asset markets, the implications of deposit migration

on asset prices and the risk-taking behavior of banks in equilibrium remains to be explored.
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A Speculation on fire-sales

This appendix shows that for relative risk aversion k(x) =−xu′′ (x)/u′ (x)> 1, run-proof banks do

not speculate on buying assets from run-prone banks by holding more reserves than necessary to
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deter consumers from running. In section 3.5 it has been shown that a necessary condition for run-

prone banks and thus a positive supply of productive assets to exist is that prices satisfy P1 ≤ P2.

For P1 ≤ P2, suppose the constraint (3) would never be binding. The associated FOC are

u′ (d) = R
(

u′ (x2,1)
p

P1
+u′ (x2,2)

1−p
P2

)
,

u′ (x2,1) = −1−p
p

P1
1−P1

1−P2
P2

u′ (x2,2) .

with x2,1 = R
P1

y+P1(1−y)−λd
(1−λ ) and x2,2 = R

P2

y+P2(1−y)−λd
(1−λ ) . There is a d which maximizes expected

utility and satisfies d < y+P1 (1− y) if

u′ (y+P1 (1− y))< p R
P1

u′
(

R
P1
(y+P1 (1− y))

)
+(1− p) R

P2
u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
.

To show that this cannot be, we argue that

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
> u′ (y+P1 (1− y)) , (A1)

and

R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
> u′ (y+P1 (1− y)) , (A2)

cannot be true. Condition (A1) cannot hold for −u′′(x)
u′(x) x > 1 since

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
= u′ (y+P1 (1− y))+ 1

y+P1(1−y)

∫ R
P1
(y+P1(1−y))

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

As regards condition (A2), consider first the differential equation

u′ (y+P1 (1− y)) = R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.
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Condition (A2) would hold if

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
R
P2

> R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

Rearranging terms gives

R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)(
(P2−P1)(1−y)

(1−λ )

)
<
∫ R

P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

However, this cannot be for −u′′(x)
u′(x) x > 1 if P1 ≤ P2.

B Proofs

This appendix contains the formal proofs of our main results.

B.1 Proof of Theorem 1

In order for a bank to be run-proof it needs to be able to pay the relevant depositors at date t = 1,

i.e.
d ≤ y+N(P1)(1− y) for s = 1,

λd ≤ y+N(P2)(1− y) for s = 2,

and patient depositors are better off withdrawing their funds at date t = 2 than at date t = 1, i.e.

d ≤ M(P1)

1−λ
(y+N(P1)(1− y)−λd) for s = 1,

d ≤ M(P2)

1−λ
(y+N(P2)(1− y)−λd) for s = 2,
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or equivalently

d ≤ M(P1)

1−λ +λM(P1)
(y+N(P1)(1− y)) for s = 1,

d ≤ M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y)) for s = 2.

It is easily seen that

y+N(P1)(1− y) ≤ M(P1)

1−λ +λM(P1)
(y+N(P1)(1− y)),

y+N(P2)(1− y) ≥ λM(P2)

1−λ +λM(P2)
(y+N(P2)(1− y)).

Let the correspondences B1,B2 : R++→ [0,1]×R+ be defined by

B1(P1) = {(y,d) | d ≤ y+N(P1)(1− y)},

B2(P2) =

{
(y,d) | d ≤ M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y))

}
.

For the function b : R2
++→ R+ defined by

b(P1,P2) = max
y∈[0,1]

{
y+N(P1)(1− y),

M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y))

}
,
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consider the consumer problem

max
(y,d,x)

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2))

s.t.



x1,1 ≤ d

x2,1 ≤
M(P1)

1−λ
(y+N(P1)(1− y)−λd)

 for (y,d) ∈ B1(P1),

x1,1 ≤ y+N(P1)(1− y)

x2,1 ≤ y+N(P1)(1− y)

 for (y,d) /∈ B1(P1),

x1,2 ≤ d

x2,2 ≤
M(P2)

1−λ
(y+N(P2)(1− y)−λd)

 for (y,d) ∈ B2(P2),

x1,2 ≤ y+N(P2)(1− y)

x2,2 ≤ y+N(P2)(1− y)

 for (y,d) /∈ B2(P2),

y ∈ [0,1],

d ∈ [0,b(P1,P2)].

For all (P1,P2) ∈ R2
++ there is a solution because the set of alternatives is compact. According

to Berge’s maximum theorem the solution correspondence F : R2
++→ [0,1]×R+×R4

+ is upper

hemi-continuous with non-empty values because expected utility is a continuous function and the

set of alternatives is a continuous correspondence.
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Let the correspondence G : R2
++ → R2 be defined as follows: for (y,d,x) ∈ F(P1,P2) with

(y,d) ∈ Bs(Ps),

Gs(P1,P2) =



{
y+ ε(1− y)−λd

Ps

}
for Ps < ε

[
y−λd

Ps
,
y+ ε(1− y)−λd

Ps

]
for Ps = ε

{
y−λd

Ps

}
for ε < Ps < R

[
−(1− y),

y−λd
Ps

]
for Ps = R

{−(1− y)} for Ps > R

for both s; and, for (y,d,x) ∈ F(P1,P2) with (y,d) /∈ Bs(Ps),

Gs(P1,P2) =


{0} for P1 < ε

[−(1− y),1− y] for P1 = ε

{−(1− y)} for P1 > ε .

Then G is upper hemi-continuous.

For (P1,P2) ∈ R2
++ and (y,d,x) ∈ F(P1,P2), if Ps < ε and (z1,z2) ∈ G(P1,P2), then zs ≥ 0. For

(P1,P2) ∈ R2
++ and (y,d,x) ∈ F(P1,P2), if Ps > R and (z1,z2) ∈ G(P1,P2), then zs ≤ 0. Therefore

prices are bounded from below by ε − δ and from above by R+ δ for some δ ∈]0,ε[, (P1,P2) ∈

[ε−δ ,R+δ ]2.

For A⊂ R2 being the convex hull of the range of G with prices restricted to the set [ε−δ ,R+

δ ]2,

A = co{(z1,z2) ∈ R2 | ∃(P1,P2) ∈ [ε−δ ,R+δ ]2 : (z1,z2) ∈ G(P1,P2)}

let the correspondence H : A→ [ε−δ ,R+δ ]2 be defined by

H(z1,z2) = {(P1,P2) ∈ [ε−δ ,R+δ ]2 | ∀(P′1,P′2) ∈ [ε−δ ,R+δ ]2 : P1z1 +P2z2 ≥ P′1z1 +P′2z2 }.
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Then H is upper hemi-continuous.

The correspondence (coG,H) : [ε − δ ,R + δ ]2× A→ [ε − δ ,R + δ ]2× A has a fixed point

according to Kakutani’s fixed point theorem, because [ε−δ ,R+δ ]2×A is convex and compact and

(coG,H) is convex valued and upper hemi-continuous. Suppose (P1,P2,z1,z2)∈ [ε−δ ,R+δ ]2×A

is a fixed point, so (z1,z2)∈ coG(P1,P2) and (P1,P2)∈H(z1,z2). Suppose zs 6= 0, then Hs(z1,z2) =

ε−δ in case zs < 0 and Hs(z1,z2) = R+δ in case zs > 0. Suppose Ps = ε−δ , then either zs = 0 or

zs > 0 contradicting Ps = ε−δ , so zs = 0. If Ps = R+δ , then either zs = 0 or zs < 0 contradicting

P1 = R+δ , so zs = 0. Therefore zs = 0 for both s.

For every (z1,z2) ∈ coG(P1,P2) there are at most three points (zi
1,zi

2)i with (zi
1,zi

2) ∈ G(P1,P2)

for every i and at most three weights (wi)i with wi > 0 for every i and ∑i wi = 1 such that (z1,z2) =

∑i wi(zi
1,zi

2) according to Caratheodory’s theorem. Hence (P1,P2,z1,z2) is an equilibrium.

B.2 Proof of Theorem 2

Because P2 ≥ ε , we have ε ≤ (1− p)/(1− p/P1). Together with P1 ≥ (1/λ −1)(1/y∗−1)−1,

there is thus an upper bound for p given by pT := (1− ε)/(1− ε
λ

1−λ

1−y∗
y∗ ). pT > 0 because

ε < 1 and pT < 1 because λ < y∗ for relative risk aversion larger one. Run-prone banks have no

incentive to enter the market because the allocation obtained by run-proof banks is the solution to

the unconstrained problem. Being subjected to the additional constraints associated with a failure

in one of the extrinsic states would imply that run-prone banks offer less than the first-best expected

utility.

B.3 Proof of Theorem 3

ρ = 0 requires qS = 0. Absence of asset price volatility requires P1 = P2 = 1. For run-proof banks,

the budget constraints (4) then imply xS
1,1 = xS

1,2 = dS = 1, xS
2,1 = xS

2,2 = R and yS = λ . For

run-prone banks, P1 = P2 = 1 implies xR
1,1 = xR

2,1 = 1 while dR solves

u′(dR) = Ru′
(

R1−λdR

1−λ

)
,
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implying xR
1,2 = dR = y∗/λ and xR

2,2 = R(1−λdR)/(1−λ ) = R(1− y∗)/(1−λ ). Let

X(p) = (1− p)λu
(

y∗
λ

)
+(1− p)(1−λ )u

(
R(1−y∗

1−λ

)
+ pu(1) ,

and p̌ be a solution to

λu(1)+(1−λ )u(R) = X(p).

Note that y∗ maximizes expected utility in absence of sunspots. Therefore, λu(1)+(1−λ )u(R)<

λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). u′ > 0 implies u(1) < λu(1) + (1−λ )u(R). Since

X ′ < 0, there is a unique p̌ < 1 such that V S (P)≥V R(P) for P = (1,1) if and only if p≥ p̌.

B.4 Proof of Theorem 4

ρ = 0 requires P2 = h(P1). Continuity of h implies there exists a continuum of equilibrium prices

which support equilibria with safe banking sectors provided V S (1,1)>V R(1,1). In an arbitrage-

free equilibrium, P2 ≤ R. Hence, P1 is strictly bounded away from ε since h−1(R)> 0.

Indirect utility is given by

V S (P) = λu
(

P1

λP1 +1−λ

)
+(1−λ )u

(
R

λP1 +1−λ

)
,

With P2 = h(P1), applying the Envelope theorem yields

dV S (P)
dP1

= λu′
(

P1

λP1 +1−λ

)
1−λ

(λP1 +1−λ )2

−(1−λ )u′
(

R
λP1 +1−λ

)
λR

(λP1 +1−λ )2 .

Since k(x) > 1 implies y∗/λ > 1 and thus 1−λ

λ

y∗
1−y∗ > 1, it follows dV S (P)/dP1 > 0 for all

P1 ∈
[
h−1(R), 1−λ

λ

y∗
1−y∗

]
because u′(x) ≥ Ru′

(
R(1−λx)

1−λ

)
for all x ≤ y∗/λ (since k(x) > 1) and

d
dP1

(u′( P1
λP1+1−λ

)−Ru′( R
λP1+1−λ

))< 0 (since u′′ < 0) together imply u′( P1
λP1+1−λ

)≥ Ru′( R
λP1+1−λ

)
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for all P1 ∈
[
h−1(R), 1−λ

λ

y∗
1−y∗

]
. Finally, according to Theorem 3, yS = λ for P1 = 1. Since

yS = λP1/(λP1 +1−λ ) with d
dP1

λP1/(λP1 +1−λ )> 0, we have yS < λ for P1 < 1.

B.5 Proof of Lemma 1

ρ = 1 implies QS = 0. Accordingly, for equilibria with ρ = 1 it requires λdR− yR = 0 and either

1− yR = 0 or P1 ≤ ε . We rule out 1− yR = 0 because state-independence of liquidity demand

requires yR to solve
u′
(

yR+P1(1−yR)
λ

)
u′
(

R
P2

P2−P1
1−λ

(1− yR)
) − R

P2
= 0,

and concavity of u implies yR ≤ λR/(λR+1−λ )< 1. Hence, an equilibrium exists only if P1≤ ε

and f (ε) 6= /0, i.e. there is some (yR ,P2) ∈ [0,λR/(λR+1−λ )]× [1,R] satisfying

u′
(
yR/λ

)
u′
(

R(1−yR)
1−λ

) =
R
P2

,

u′
(
yR
)

u′
(

R(1−yR)
1−λ

) =
R
P2

1− p
p

(P2−1) .

Let Y1 be the solution to the first equation for a given P2. Then, limP2→1Y1 = y∗, limP2→RY1 =

λR/(λR+(1−λ )) and dY1/dP2 > 0. Let Y2 be the solution to the second equation for a given P2.

Then, limP2→1Y2 = 1, limP2→RY2 = ỹ ∈ (0,1) and dY2/dP2 < 0 where ỹ is implicitly defined by

u′ (ỹ)

u′
(

R(1−ỹ)
1−λ

) =
1− p

p
(R−1) .

Since y∗ < 1, there is no f (ε) ∈ [0,λR/(λR+1−λ )]× [1,R] if

u′
(

λR
λR+(1−λ )

)
u′
(

R
λR+(1−λ )

) >
1− p

p
(R−1) ,

or, equivalently, if p > p̂.
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B.6 Proof of Theorem 5

According to Lemma 1, provided p≤ p̂ there is some (yR ,P2) ∈ [0,λR/(λR+1−λ )]× [1,R] for

which liquidity demand in either state is zero. By the implicit function theorem, (12a) and (12b)

imply for P1 = ε that limp→0 P2 = 1 and limp→0 yR = y∗. Therefore, for P1 = ε ,

lim
p→0

V R(P) = λu
(

y∗

λ

)
+(1−λ )u

(
R

1− y∗

1−λ

)
.

For P1 = ε and p→ 0 the first-order condition for run-proof banks becomes

u′(y)≤ Ru′
(

R
1−λy
1−λ

)
,

which would hold with equality only if some y ∈ (0,1) were a solution. However, since k(x)> 1,

there is no y ∈ (0,1) to meet the first-order condition with equality. Hence, yS = 1 which implies

lim
p→0

V S (P) = λu(1)+(1−λ )u(R).

k(x)> 1 further implies lim
p→0

V R(P)> lim
p→0

V S (P). Therefore, provided P1 = ε and qD
1 = qD

2 = 0,

either is V R(P) > V S (P) for all p ≤ p̂, or by the intermediate value theorem there is a p̄ ≤ p̂

such that V R(P)>V S (P) for all p < p̄. The equilibrium is locally isolated because for p < p̄ the

solution to the bank’s problem, satisfying (16a) and (16b), is unique. (16a) implies yR > y∗ and

thus V R(P)< λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )).

B.7 Proof of Theorem 6

qD
1 = qD

2 ≥ 0 and thus d = (y+P1(1− y))/λ hold in any equilibrium with ρ ∈]0,1]. For a given

P2 ∈ [1,R], a necessary condition is that there is a (P1,y) ∈ [ε ,1]× [0,1] such that condition (12a)

is met. If there is such a pair, it satisfies dy/dP1 < 0. Note, if R < λ−1 there is no P2 ∈ [1,R] such
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that liquidity demand is state-independent for P1 = 1. Condition (12b) reads

(1−P1)
u′ (y+P1(1− y))

u′
(

R
P2

y+P2(1−y)−λd
1−λ

) ≤ (P2−1)
1− p

p
R
P2

.

The right side converges to 0 if p→ 1. The marginal rate of substitution in condition (12b) con-

verges to u′ (1)/u′
(

R
P2

(P2−1)(1−y)
1−λ

)
> 0 if P1→ 1, where y is either zero or satisfies

u′ (1/λ )

u′
(

R
P2

(P2−P1)(1−y)
1−λ

) =
R
P2

.

Therefore, if p→ 1 then either P1 converges to 1 for a given P2 ∈ [1,R], or liquidity demand cannot

be state-independent.

As for liquidity supply, note that lim
p→1

h−1(P2) = 1 for all P2 ∈ [1,R]. Therefore, if p→ 1 and

P1→ 1, qS ≥ 0 for all P2 ∈ [1,R]. Provided qD
1 = qD

2 ≥ 0 for p→ 1 and P1→ 1, V R(P) converges to

u(1) while V S (P) converges to λu(1)+(1−λ )u(R)> u(1). However, if liquidity demand cannot

be state-independent, run-prone banks cannot exist anyway whilst qS = 0.

Therefore, either there is no P ∈ [ε ,1]× [1,R] for which qS ≥ 0, qD
1 = qD

2 ≥ 0 and V S (P) ≤

V R(P) for all p≥ p̌. Or, if there is some p > p̌ for which some P ∈ [ε ,1]× [1,R] exists such that

qS ≥ 0, qD
1 = qD

2 ≥ 0 and V S (P)≤V R(P), then there is some p̃∈]p̌,1[ such that for all p > p̃ there

is no P for which qD
1 = qD

2 ≥ 0 and V S (P)≤V R(P) according to the intermediate value theorem.

B.8 Proof of Theorem 7

Again, qD
1 = qD

2 ≥ 0 and thus d = (y+P1(1− y))/λ hold in any equilibrium with ρ ∈]0,1]. Con-

dition (12b) reads

p
u′ (y+P1(1− y))

u′
(

R
P2

y+P2(1−y)−λd
1−λ

) ≤ (1− p)
P2−1
1−P1

R
P2

,
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with strict inequality only if y = 0. The left hand side converges to zero for p→ 0, whereas the

right hand side converges to P2−1
1−P1

R
P2

> 0. Hence, as long as yR > 0 such that above condition holds

with equality, it follows for a given P1 that P2→ 1.

Provided P2→ 1 and P1 ∈ [ε ,y∗[, condition (12a) implies xR
1,2 = y∗/λ , xR

2,2 = R(1−y∗)/(1−λ ),

yR = (y∗−P1)/(1−P1)> 0, and V R(P) = λu(y∗/λ )+(1−λ )u(R(1−y∗)/(1−λ )). For P2→ 1

and P1 ∈ [ε ,y∗[, run-proof banks optimally store yS = max{1,(y∗/λ −P1)/(1−P1)} = 1 such

that V S (P) = λu(1)+(1−λ )u(R)< λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )).

Concavity of u together with the budget constraints (7) imply that the left side in (12a) is a

continuous, monotone and decreasing function of yR and continuous, monotone and increasing in

P2. Hence, for yR = 0, there is at most one P2 satisfying (17). The projection φ1 of f on the P2-

coordinate provided yR = 0 is a bijective function φ1 : [φ−1
1 (1),min{1,λR}]× [1,min{R,φ1(1)}]

with

dP2

dP1
=

k2,2 +
(

P2
P1
−1
)

k1,1

k2,2 +
(

P2
P1
−1
) P2

P1
> 0,

where kt,s = k(xR
t,s) is relative risk aversion at xR

t,s. For ρ ∈]0,1[ it must be that V R(P) = V S (P).

However, according to (18a) and (18c), V R(P)> λu(y∗/λ )+(1−λ )u(R(1−y∗)/(1−λ )). Hence,

V R(P)>V S (P). Therefore, ρ ∈]0,1[ cannot be an equilibrium.

Finally, according to Theorem 4, V S (P)≤ λu(1)+(1−λ )u(R)< λu(y∗/λ )+(1−λ )u(R(1−

y∗)/(1− λ )) for all P2 = h(P1). Since (i) φ−1(P2) ≤ h−1(P2) for φ−1(P2) 6= /0, (ii) V R(P) ≥

λu(y∗/λ )+ (1− λ )u(R(1− y∗)/(1− λ )) for P1 = φ−1(P2), and (iii) dV R(P)/dP1 > 0 we have

V R(P)> λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). Hence, ρ = 0 cannot be an equilibrium.

C State-independent liquidity demand

This appendix shows that non-increasing relative risk aversion is a sufficient condition that all

combinations of asset prices for which liquidity demand is state-independent is described by a

continuous function that maps P1 onto P2. For any (yR ,P2), equation (17) defines P2 and yR
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as implicit functions of P1 in some neighborhood of (yR ,P2) according to the general implicit

function theorem. Provided yR ∈]0,1[, each of these solutions satisfy

dP2

dP1
=−

(k1,1− k1,2)k2,2
P2−1
P2−P1

+ k1,2 + k2,2
yR+P1(1−yR)
(1−P1)(1−yR)

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

P2
P2−1 + k1,1

P2

1−P1

and

dyR

dP1
=−

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

1
P2−1 + k1,1 +

1
1−P1

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

P2
P2−1 + k1,1

1− yR

1−P1
.

For any P1, equation (12a) defines P2 as a monotone and increasing function of yR . Then, a

sufficient condition that there is at most one (yR ,P2) satisfying (17) and yR > 0 is that the left

side in (12b) is strictly monotone in yR while taking into account the relation between yR and P2

according to (12a). Let

Φ1 :=
(

k1,2
k2,2

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+

k1,1
k2,2

P2−1
P1

)
P2−P1
P2−1 ,

Φ2 :=
(

k1,2
k2,2

+
(

yR

1−yR +P1

)
1

1−P1

)
P2−P1
P2−1 .

This monotonicity holds if for all P1 either Φ1 > k1,2−k1,1 or Φ1 < k1,2−k1,1. The sign of dP2/dP1

is positive if and only if Φ1 > k1,2− k1,1 > Φ2. Hence, with non-increasing risk aversion, i.e.

k1,1 ≥ k1,2, the projection φ2 of f on the P2-coordinate provided yR ∈]0,1[ is a bijective function

φ2 : [max{ε ,φ−1
2 (R)},min{φ−1

1 (1),φ−1
2 (1)}]× [1,R] satisfying dφ2(P1)/dP1 < 0. Hence, for P2 =

φ2(P1) we have qD
1 = qD

2 and yR > 0. Similarly, the projection of f on yR satisfies dyR/dP1 < 0

for k1,1 ≥ k1,2.

Continuity of the projection of f on P2 holds because (12a) implies that φ1(P1) = 1 for some

P1 ∈]0,1[, where φ1 is the projection of f on the P2-coordinate provided yR = 0 as defined in the

proof of Theorem 7. Moreover, (12a) and (12b) imply that φ2(P1) > 1 for all P1 ∈]0,1[. Hence,

there is a unique P1 ∈]0,1[ such that φ1(P1) = φ2(P1) and φ1(P1) ∈]1,R].
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D Indirect utility and asset prices

This appendix derives the condition under which the indirect utility consumers get in equilibria

in which run-prone banks exist is strictly increasing in P1. Consider indirect utility as given in

equation (23). With (yR ,P2) = f (P1), applying the Envelope theorem yields

dV R(P)
dP1

=



( k2,2
1−P1

+
k1,1
P1

+
P2−1
1−P1

1
P1

)
(1−p)(1−yR)(P2−P1)u′(xR

2,2)

k2,2+
P2−P1

P1

for yR = 0,

(1−p)(1−yR)
(

k1,2+

(
k2,2

(
yR

1−yR +P1

)
1

1−P1
+k1,1

)
P2−1
1−P1

)
u′(xR

2,2)

(k1,1−k1,2)k2,2
P1

P2−P1
+k1,2

1
P2−1+k2,2

(
yR

1−yR +P1

)
1

1−P1

P2
P2−1+k1,1

for yR > 0.

For yR = 0 we have dV R(P)/dP1 > 0. For yR > 0 it is positive if and only if

(
k1,2
k2,2

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+

k1,1
k2,2

P2−1
P1

)
P2−P1
P2−1 > k1,2− k1,1,

for which a sufficient condition is non-increasing relative risk aversion.

47


