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Abstract 

We examine dealer conduct at the London 4 pm fix, a major financial market benchmark. Our findings 
are potentially relevant to benchmarks in Treasury securities, interest rate derivatives, NDFs, and 
precious metals. We develop a model that identifies the fix dealers’ optimal trading strategies in three 
competitive contexts: independent trading, information sharing, and collusion. The model explains 
documented fix dealer strategies including front-running, executing client orders before the fix, and 
banging-the-close. It also explains documented fix-price dynamics including high pre-fix volatility, post-
fix retracements, and the persistence of those dynamics after reforms to the benchmark. A statistical 
test provides further support for the model.  
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Late in the afternoon of every London trading day, Thompson-Reuters calculates a critical exchange-

rate benchmark known as the WM/Reuters 4 pm Fix. High volatility just before this “London Fix” and 

quick trend reversals just after it were common by 2008, generating suspicions of dealer misconduct. 

These suspicions were reinforced in 2013 when Bloomberg reported that foreign exchange dealers were 

using private electronic chatrooms to collude on manipulative strategies (Vaughan et al., 2013). Legal 

and regulatory investigations ensued and in 2015 five major foreign exchange dealing banks pleaded 

guilty to collusion and market manipulation (U.S. Department of Justice, 2015). Fines and settlements to 

date exceed $11 billion and lawsuits continue to move forward (Maton and Gramhir, 2015).  

Trading at the fix is poorly understood, despite these legal fireworks, in part because research on 

benchmarks remains thin. This paper develops a model in which rational risk-averse fix dealers face the 

incentives and constraints actually imposed by the market. We consider three competitive settings: 

independent trading among dealers, information-sharing, and outright collusion. The model identifies a 

single optimal strategy that applies generally to all competitive settings. Under this strategy dealers 

engage in behaviors documented by regulatory investigations in the UK and the US (FCA, 2014b–f; CFTC, 

2015) that include front-running their client orders, executing client trades before the fix, and banging 

the close. The model also predicts documented fix-price dynamics, specifically high volatility before the 

fix and partial trend retracements after the fix (Michelberger and White, 2016; Evans, 2017; Ito and 

Yamada, 2017b). Predictions from other models of dealer behavior at the fix do not conform to most of 

this evidence (Evans, 2017; Saakvitne, 2017). The paper closes by analyzing the practical implications of 

our analysis.  

The London 4 pm fix was established in 1993 and quickly became an integral and important feature 

of the forex market. This benchmark is used to value cross-border portfolios and to construct 

international equity and bond market indexes, including the dominant MSCI indexes, among other 

functions. Many market participants execute trades at the fix price, most notably institutionally-

managed funds that need to adjust hedge positions (Melvin and Prins, 2015) or to minimize tracking risk 

(Financial Stability Board, 2014). To trade at the fix a client sends the dealer a “fill-at-fix” order indicating 

how much to buy or sell. Opportunities for misconduct arise because these orders must be received well 

before the fix.  
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In the model a finite number of rational risk-averse dealers receive random, positively-correlated 

client fix orders before trading begins. These dealers then trade in the interbank market against an 

atomistic fringe of other dealers during three trading periods, two before and one after the fix. The 

dealers begin and end with the same inventory level; in between they fulfill client fix orders at the fix 

price, which is set at the period-2 interdealer price. The trades of fix dealers have positive price impact, 

consistent with the literature on optimal trading strategies (Bertsimas and Lo, 1998; Almgren, 2012; 

Obizhaeva and Wang, 2013). 

In equilibrium each fix dealer adopts the following optimal trading strategy: In period 1 the dealer 

opens a proprietary position.1 This generates a rising (falling) trend if he buys (sells) the base currency, 

other things equal.2 In period 2 the dealer executes his client-service trades, thereby extending the 

period-1 trend in expectation. He simultaneously moderates that trend by liquidating part of his 

proprietary position. The period-2 trend appreciates his proprietary position and is the source of his fix 

profits. In period 3, after the fix price is set, the pre-fix trend reverses in expectation as the dealer 

liquidates the rest of his proprietary position. Because fix orders are correlated across dealers, the 

dealer rationally expects the other fix dealers to trade in parallel with himself, on average, thereby 

magnifying this and other trends associated with his own trading. 

Our analysis introduces to the literature a new form of free-riding. A fix dealer makes two 

adjustments to his overall optimal strategy in response to the anticipated trades of other fix dealers: he 

takes a bigger initial proprietary position and he liquidates a larger share of that position before the fix. 

These adjustments prove critical to an observable feature of fix prices during the period of known 

collusion: an acceleration of the pre-fix trend as the fix moment approaches. We label this “convexity” 

and for modeling purposes we measured it as the ratio of the second-period price change to the first-

period price change. Free-riding reduces convexity because the additional proprietary trading magnifies 

the first-period price change and the accelerated liquidation moderates the second-period price change. 

Convexity is higher with risk-averse dealers than risk-neutral dealers because risk averse dealers take 

 
1 We associate dealers with male pronouns because it is convenient to pick one gender and most dealers are male. 
2 This paper presents a positive analysis, not a normative analysis, and does not advocate misconduct.  
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smaller initial proprietary positions; in this case their behavior becomes consistent with common 

strategy of banging-the-close. Convexity is highest under collusion, when the dealers jointly shut down 

free-riding, a prediction on which we rely in providing a preliminary test of the model. 

Free-riding determines the relative profitability of trading across competitive settings. In 

equilibrium, each dealer’s decision to free-ride on the other dealers reduces expected profits for all 

dealers. Compared to independent trading, information-sharing leads dealers to free-ride more 

intensely and thus minimizes expected joint profits. Collusion enables dealers to shut down free-riding 

and maximize expected joint profits. The finding that profits are reduced by information sharing and 

magnified by collusion is not unique to this context: it often arises in traditional models of oligopoly with 

Cournot competition (e.g., Clark, 1983). Nonetheless, the economic forces behind these results are 

fundamentally different. Fix profits depend on the price path over time while traditional oligopoly 

profits depend on the price level at a specific time.  

We evaluate the model according to its consistency with the evidence. Regulatory reports document 

four unusual features of dealer behavior: proprietary trading, executing client-service trades before the 

fix, collusion (FCA, 2014b–f; CFTC, 2015), and banging-the-close (Evans, 2017). Earlier studies document 

two unusual features of fix-price dynamics: high pre-fix volatility and post-fix retracements 

(Michelberger and White, 2016; Evans, 2017; Ito and Yamada, 2017b). Section VI documents a third 

unusual feature of fix-price dynamics: higher convexity during the period of alleged collusion.  

Our model is consistent with all this evidence. Proprietary trading, executing client-service trades 

before the fix, and collusion are unconditionally optimal. Banging the close is optimal when competition 

is limited, as it was at the London 4 pm fix prior to June 2013. High pre-fix volatility emerges in response 

to the dealers’ proprietary and client-service trades, and post-fix retracements arise when the dealers 

liquidate their proprietary positions, and the pre-fix price trend will accelerate when risk-averse dealers 

collude.  

These price dynamics are also visible to the eye. Figure 1 plots the average paths of EUR, JPY, GBP 

and four other liquid currencies vs. USD during 3:30 to 4:15 GMT for the years 1996 through May 2013, 

just before Bloomberg revealed forex dealer misconduct (Vaughan et al., 2013). We include only end-

month dates, following Melvin and Prins (2015). The data comprise tick-by-tick best quotes from a 
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Reuters currency aggregator that covers EBS, Reuters Dealing, and Reuters Matching and other 

platforms. High pre-fix volatility is visible throughout the sample. Figure 1 also shows that retracements 

and convexity are more pronounced after 2007, when the banks admit that collusion became 

commonplace. Both changes are predicted by the model. The prediction that convexity rises under 

collusion provides a relatively clear statistical test of the model because convexity itself is least sensitive 

to the implicit assumption that “other things are equal.” We develop a rigorous measure of convexity 

which is indeed higher after 2007 for all seven exchange rates. The null hypothesis that convexity was 

unchanged after 2007 is rejected statistically. 

Note that neither high pre-fix volatility nor post-fix retracements can provide reliable evidence for 

collusion in an antitrust context because both of them arise even if dealers trade independently. 

Nonetheless, the model does not imply that fix trading is free from misconduct. The dealers’ proprietary 

trading is essentially front-running, which is universally considered unethical because it worsens prices 

for client (Comerton-Forde and Putniņš, 2011). Front-running is also illegal in most financial markets. In 

forex markets front-running is technically discouraged (B.I.S., 2017) but nonetheless legal, because 

regulators know any prohibition would likely be unhelpful. Limits on forex dealer behavior are difficult 

to enforce because dis-satisfied dealing banks can simply move to another country. And forex trading it 

is lucrative and non-polluting and thus an attractive source of local employment. 

The paper closes by examining three practical questions. First: Are fix-price dynamics consistent with 

an efficient market? Our answer is Yes. Second: Why were fix-price dynamics qualitatively unchanged 

after the fix process was reformed in 2015? We suggest that as fix dealers ceased to exploit the fix non-

dealers began to adopt similar strategies. Third: Could an alternative structure for fix trading achieve 

better outcomes for the market as a whole? We provide reasons for skepticism.  

Our analysis is likely relevant to other benchmarks in which collusion and market manipulation are 

alleged. These include the ECB’s foreign exchange reference rate calculated at 1:15 C.E.T., now 

discontinued (FCA, 2014b); gold; silver; platinum; palladium; Treasury securities; interest rate 
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derivatives; and NDFs.3 The relevance of our analysis for LIBOR manipulation may be more limited. 

LIBOR is based on banks’ self-reported costs of borrowing from other banks, whereas the London 4 pm 

fix, like most benchmarks, is based on traded prices. Further, LIBOR manipulation was intended, in part, 

to support the health of the dealing banks (Abrantes-Metz et al., 2012; Gandhi et al., 2016). Fix dealers, 

by contrast, are on record as actively disregarding their banks’ well-being (e.g., CFTC, 2015; p. 1).  

Section I, which follows, relates our work to other studies. Section II presents the model. Sections III 

and IV develop the model’s implications when dealers are risk-neutral, focusing first on independent 

trading and then on information-sharing and collusion. Section V examines the model with risk-averse 

dealers. Section VI provides a statistical test of the model’s implication that convexity should be higher 

under collusion. Section VII discusses practical implications of our findings. Section VIII concludes. 

I.  Literature review  

 Financial benchmarks are a fairly new topic of research so the relevant literature is limited. This 

discussion begins with empirical studies and then turn to theoretical models. We evaluate those models 

based on the same criteria applied in the rest of the paper: whether they are consistent with the 

findings of investigative reports and empirical research.  

 Extensive evidence regarding fix-dealer behavior is provided by Investigative reports from the UK 

and the US. Dealers executed client-service trades before the fix as a matter of course (FCA, 2014b–f; 

CFTC, 2015). Proprietary trading was also standard practice:  

[Forex t]raders increased the volume traded by them at the fix in the desired direction in excess of 
the volume necessary to manage the risk associated with the firm’s fix position. Traders have 
referred to this process as “overbuying” or “overselling” (Grabiner, 2014; p. 11).   

There is substantial formal and informal evidence for banging-the-close at fixes. Evans (2016) provides 

evidence that trading volume surges briefly just before the London fix is calculated. FCA presentations 

available online describe in detail multiple specific episodes of banging-the-close in forex (FCA, 2014b–f). 

 
3 See FCA (2014a) for gold and silver; Iosebashvili (2014) for platinum and palladium;  Stempel (2015) for Treasury 
securities; Leising and van Voris (2014) for interest rate derivatives; Armstrong (2013) for Asian NDFs; and Ito and 
Yamada (2017a) for the Tokyo fix. 
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The CFTC has identified banging-the-close by specific traders in palladium and platinum in 2007 and 

2008 (Doering and Rampton, 2010). 

 Empirical descriptions of pre-reform fix-price dynamics are presented in Michelberger and White 

(2016) and Evans (2017). Both studies find that fix-price volatility greatly exceeds average volatility at 

other times of day. Michelberger and White show that this unusual volatility occurs before 4 pm. Evans 

provides evidence that returns before and after the fix were negatively correlated. Ito and Yamada 

(2017b) and van der Linden (2017) show that high volatility before the fix and partial retracements after 

the fix were sustained after the 2015 reforms. Melvin and Prins (2015) provide evidence that month-end 

fix-price dynamics reflect hedge adjustments by asset managers in response to foreign equity returns. 

 Evidence presented in Marsh et al. (2017) raises the possibility that positive price impact should not 

be assumed for period 2. They regress one-minute exchange rate changes on the contemporaneous net 

of market buy and market sell orders, known in forex research as order flow. The regressions are 

intended to measure the price impact of aggressive trades and are interpreted as capturing the impact 

of information, following Kyle (1985). The order flow coefficients are consistently positive but trend 

downward before 4 pm, trend back upward thereafter, and are significant at all times except 4 pm 

exactly. Marsh et al. conclude that aggressive fix trading carries information and has positive price 

impact, consistent with our model and with existing research (e.g., Evans and Lyons, 2002), except 

during the one-minute fix-calculation window. This conclusion would imply that dealers were not 

rational, or even reasonable, in choosing to bang-the-close (Evans, 2017), which would be surprising. 

Reassuringly, there are good reasons to believe that the order-flow coefficients in Marsh et al. (2017), 

and especially the coefficient for 4 pm exactly, underestimate the price impact of aggressive fix trades.  

 Fix dealers often relied on large marketable limit orders to trade aggressively, rather than market 

orders. By implication, much of their aggressive trading behavior was not measured by order flow.4 

 
4 A marketable limit order has limit price above (below) or equal to the best ask (bid). An example will help clarify. 
Suppose the best bid is 1.29, the best ask is 1.30 and depth exists at every penny above 1.30; suppose further that 
depth at every price is 10. A market-buy order for 15 and a MLO-buy for 15 at 1.31 would be equivalent: in both 
cases the dealer would buy 10 at 1.30 and 5 at 1.31 and the best ask would rise to 1.31. A market-buy for 50 and a 
MLO-buy for 50 at 1.31 would differ dramatically. After the market-buy, the best ask would have depth of 10 at 
1.35. After the MLO-buy the best ask would have depth of 30 at 1.31, as the unexecuted volume of 30 becomes 
depth/liquidity at a new best bid of 1.31; meanwhile the new best ask is 1.32. 

http://www.reuters.com/journalists/christopher-doering
http://www.reuters.com/journalists/roberta-rampton
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Marketable limit orders are common: they account for over half of all aggressive orders on the NYSE 

(Boehmer at al., 2006) and 90% of aggressive orders on the Korean futures exchange (Park and Ryu, 

2019). Petersen and Sirri (2003) find that marketable limit orders are most likely to be used under six 

conditions, of which at least four tend to be satisfied at the fix: the traders are sophisticated; their 

trades are large; quoted depth is smaller than order size; and a trend is likely.5  

 Large marketable limit orders have important advantages over market orders for dealers intent on 

moving a fix price. To clarify we compare a large market buy order with a large marketable limit buy 

order. A large buy market order triggers immediate trading and raises the best ask but not the best bid. 

This is not ideal for fix manipulation because the London fix is calculated from prices on both sides of the 

book. In addition, the market buy order provides no support for the new, higher ask price: another 

trader can easily place a limit sell order at a lower price, thereby lowering the ask.  

 A large marketable limit buy order likewise triggers immediate trading, but it raises the best bid as 

well as the best ask. To see why, suppose a marketable limit buy order is large enough to exhaust sell-

side depth up through the limit price and still have unexecuted volume. The limit price then becomes 

the new best bid and the unexecuted volume becomes depth at that price. In addition to raising the bid, 

this depth forms a wall of liquidity that impedes any price decline. The ask is unlikely to decline right 

away because a limit sell order below the best ask will be executed against the new best bid rather than 

resting in the book. The bid is unlikely to decline right away because a market sell order must also first 

execute against the new bid depth.  

 This analysis has important implications for empirical estimates of price impact. First: order flow is a 

distorted measure of aggressive trading. The initially-unexecuted volume of a marketable limit order is 

clearly intended to be aggressive and should be included in measures of aggressive trading. However, 

this volume only appears in order flow when it is executed against market sell orders, and is thus 

associated with a reduction in aggressive trading as measured by order flow. Second: order-flow 

regressions will underestimate the impact of aggressive orders. As just noted, the unexecuted depth of 

marketable limit order constrains the price impact of incoming market orders and marketable limit 

 
5 The other two conditions: depth is relatively low, spreads are narrow. 
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orders are common. Third: if dealers rely increasingly on marketable limit orders as the fix approaches, 

which seems plausible, the downward bias in these coefficients will become stronger as the fix 

approaches and weaker again thereafter. If the true price impact of aggressive trades is constant this 

pattern of bias could produce the U-shaped pattern in the order-flow coefficients of Marsh et al. (2017). 

 Figure 2, which shows Citibank’s trading before an ECB fix in EUR-USD, demonstrates the power of 

large marketable limit orders to move prices just before a fix. During the last half-minute before 2:15 

CET, Citi placed four large marketable limit buy order orders at roughly five-second intervals. Each order 

had a limit price two ticks higher than the last and their volumes rose monotonically from EUR 10 mn to 

EUR 400 mn. The stair-step rise of the bid confirms that each marketable limit order included sufficient 

depth to sustain the higher bid price and to impede both bid and ask from declining. Overall, Citi’s 

aggressive trading achieved an eight-tick (six-bp) rise in both bid and ask during the last 30 seconds 

before the fix, and did so in a market that is arguably the most liquid in the world. In combination, this 

illustration and our previous analysis of marketable limit orders suggest that aggressive trades should be 

assumed to have positive price impact throughout the fix trading interval. 

The theoretical literature on financial benchmarks begins with Duffie et al. (2014), who show that 

benchmarks can improve OTC-market performance by increasing pre-trade transparency. Those benefits 

are likely important in relatively opaque OTC settings like the market for municipal bonds. However, 

those benefits may be limited in forex, where pre-trade transparency is already provided by streaming 

online prices from retail forex dealers. 

 We are aware of two contemporaneous papers that model dealer conduct around the London 4 pm 

fix, Evans (2017) and Saakvitne (2016). In Evans’ model, multiple independent dealers are free to trade 

either before or after the fix in a complex market structure. His model predicts that dealers do no fix 

trading at all before the fix. This implies that all client-service trading happens after the fix and that 

dealers do not take proprietary positions, both of which are at odds with evidence in the investigative 

reports (FCA, 2014b–f; Grabiner, 2014; CFTC, 2015).  

 More broadly, Evans’ (2017) conclusion that rational fix dealers only trade after the fix seems to be 

at odds with the core finance principle that traders fully exploit private information (Samuelson, 1965). 

Each dealer’s net fix order provides a private signal of the upcoming price trend. This signal indicates 
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that the cost of his client-service trades will likely rise sooner or later, which implies that a rational 

dealer should execute those trades sooner rather than later. This signal also motivates the dealer to 

open a proprietary position before executing client-service trades. These information-based trades 

generate the pre-fix volatility that Evans’ model does not predict. The partial liquidation of the 

proprietary position after the fix then creates the retracements that Evans’ model does not predict. 

Note that proprietary trading is optimal regardless of the competitive setting so retracements should 

arise with or without information-sharing or collusion, contrary to the inference in Evans (2017).   

Saakvitne’s (2016) model focuses on a single dealer who only trades before the fix. This modeling 

constraint implicitly acknowledges that dealers routinely execute client trades before the fix. However, 

it also precludes trading after the fix which could explain why the model does not predict the 

empirically-observed proprietary trading. Saakvitne’s model does predict that widening the fix window 

would greatly reduce price distortion, which conflicts with the empirical evidence of Ito and Yamada 

(date) and van der Linden (2017). 

Fix prices and closing prices have much in common, and concerns about closing prices in equity 

markets are nothing new (Cordi et al., 2016). A tendency for U.S. equity prices to be volatile at the end 

of the day was documented in the mid-1980s (Harris, 1986) and a number of explanations have been 

suggested that involve misconduct. Carhart et al. (2002) suggest that equity fund managers may 

intentionally inflate quarter-end mutual fund values; Hillion and Suominen (2004) suggest that equity 

brokers may intentionally inflate their apparent skill. A number of the structural differences between 

equity and foreign exchange markets suggest that these ideas are unlikely to be important in the context 

of the London fix. To illustrate: the chatroom conversations did not include fund managers and forex 

trades are handled on a principal rather than an agency basis.  

 Cushing and Madhavan (2000) document negative return autocorrelation at the NASDAQ close in 

the late 1990s and attribute it to the common tendency for dealers to price shade, meaning to raise 

(lower) prices when they have insufficient (excess) inventory. Though the authors do not rigorously 

evaluate the price-shading hypothesis for the NASDAQ close, price shading is well-documented for 

equity markets (e.g., Hendershott and Menkveld, 2014). studies of currency markets, by contrast, 

generally find no evidence for price shading (e.g., Bjønnes and Rime, 2005), and explain the absence 
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with reference to a simple cost-benefit analysis. Price shading does not guarantee execution and 

communicates sensitive information about a dealer’s position; by contrast, trading in the interdealer 

market is anonymous, fast, and inexpensive. Indeed, existing evidence for currency markets supports a 

positive rather than negative response of price to lagged order flow, because small dealers tend to 

imitate the trading of large dealers (Menkhoff and Schmeling, 2010). Given these empirical findings, we 

view price shading as unlikely to have been a big contributor to retracements around the London fix. 

Misconduct, however – including the proprietary trading that our model identifies as the source of those 

retracements – seems in little doubt, given the chatroom transcripts and the banks’ guilty pleas. 

II. The model  

This section outlines our model, highlighting its foundations in microstructure theory, evidence, and 

the institutional reality of the forex market. It also discusses how we evaluate the model.  

A. The model 

Fix dealers: Customer fix orders are managed by representative dealer d plus 1 ≤ N <  other 

identical OTC fix dealers. The asset in question is technically the base currency but could also be a 

security or a commodity. The price is quoted in terms of a numeraire currency. Both the asset and the 

numeraire currency have zero return because all trades happen intraday and zero net supply. 

The assumption that there are finite fix dealers is empirically well-supported. The top five forex 

dealing banks accounted for over 50% of spot dealing during the entire period of admitted collusion. The 

management of fix orders was yet more concentrated, because small and regional banks generally 

passed their client fix orders on to the dominant dealers. Fix dealing was also highly concentrated in the 

markets for gold and silver bullion during 2004 through early 2014, when collusion is alleged to have 

occurred (Case 1:14-cv-02213-UA, 2014). During this period just five banks set the gold fix (Harvey, 

2014) and just three banks set the silver fix (Rice, 2014). 

Fix orders: Before fix trading begins, in period 0, each fix dealer receives a random set of customer 

fill-at-fix orders. Representative dealer d matches off his own buy and sell orders to the extent possible 

and manages the remaining amount, Fd, in the interbank market. We assume for convenience and 

without loss of generality that the dealer’s customers are net buyers at the fix, Fd > 0. 
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Dealer d‘s net fix order, Fd, includes a component shared by all other dealers,  , and a dealer-

specific component d : Fd = +d. The terms  and d are i.i.d. and mutually uncorrelated with mean 

zero and variances 𝜎𝛷
2 > 0 and 𝜎𝜂

2> 0, respectively. The aggregate net fix order is 𝐹𝑇𝑜𝑡 ≡ ∑ 𝐹𝑛𝑁+1 , with 

variance 𝜎𝐹𝑇𝑜𝑡

2 = (𝑁 + 1)2𝜎Φ
2 + (𝑁 + 1)𝜎η

2. Fix orders are positively correlated across dealers: the 

correlation between the orders of two dealers is , 0 < 𝜌 = 𝜎𝛷
2/(𝜎𝛷

2 + 𝜎𝜂
2) < 1. A positive correlation in 

fix orders is consistent with Melvin and Prins’ (2015) evidence that fix trading is influenced by recent 

returns in foreign equity markets. The covariance between a single dealer’s order and the aggregate fix 

order is 𝜎𝑑,𝑇𝑜𝑡 = (1 + 𝑁)𝜎Φ
2 + 𝜎η

2.   

The model takes customer fix orders as exogenous but their origin in reality is well understood. 

International equity funds worth $9 trillion are benchmarked to the MSCI indexes and another $2 trillion 

are benchmarked to the Citi World Government Bond Index, and these indexes are all marked to market 

with the WM/Reuters fix price (Cochrane, 2015). These institutions have a strong incentive to avoid 

tracking risk, which they can do by trading exactly at the fix price.  

Customer fix orders at the major banks often accumulate to massive amounts. Publicly available 

chatroom transcripts (FCA 2014b–f) reveal that net fix orders for a single large bank sometimes 

exceeded USD 200 million and the net across a group of four banks sometimes exceeded USD 500 

million. These sums are large relative to cumulative depth in the market-wide forex order book at 4 pm 

in London during 2008. During that specific minute cumulative depth per side averaged roughly EUR 200 

mn for EUR-USD, GBP 60 mn for GBP-USD, and USD 50 mn for USD-CAD.6  

Trading activity: After fix orders arrive in period 0, the fix dealers trade in the interdealer market for 

three periods, two before and one after the fix. During periods 1 and 2 dealer d trades quantities D1d 

and D2d at prices P1 and P2, respectively. The fix price, PF, is set as the period-2 interdealer price, PF = 

P2. After the fix-calculation moment dealer d sells Fd to his customers, a trade that happens outside the 

interdealer market and is therefore not explicitly recorded in the model. Dealer d restores his inventory 

to its initial level during period 3, liquidating the amount Xd: 

 
6 Order-book depth figures are from RBS’ private-use aggregator, which covered seven foreign exchange electronic 
communication networks (ECNs): EBS, Reuters, Hotspot, Lava, Currenex, FXCM, and eSpeed. Data are sampled every minute 
and span February 27th, 2008 to November 13th, 2008. 
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  Xd   D1d  + D2d  – Fd   .                           (1) 

 Extensive evidence confirms that dealer inventories in major currency pairs mean-revert rapidly. 

The half-life of forex dealer inventory positions has been estimated at five minutes or less at major 

banks (Bjønnes and Rime, 2005) and half-an-hour or less at smaller banks (Osler et al., 2007). Our 

period 3, which should range from a few minutes to a few hours, is consistent with this time horizon 

even if structural changes in the market since those studies have accelerated inventory adjustment 

(e.g., HFT) or slowed it down (e.g., major banks now warehouse risk). 

 Dealer Objectives: Dealer d’s quadratic utility, with risk aversion /2, is defined over profits :  

  𝐸{𝜋𝑑} −
𝛾

2
𝑉𝑎𝑟(𝜋𝑑)   .                (2) 

Dealer d’s profits, d, are:  

  𝜋𝑑 = 𝑃𝐹𝐹𝑑 − 𝑃1𝐷1𝑑 − 𝑃2𝐷2𝑑 + 𝑃3𝑋𝑑 .              (3) 

The dealer earns the amount 𝑃𝐹𝐹𝑑 when he exchanges with clients the amounts they ordered at the fix 

price. The next two terms represent the cost to purchase inventory in periods 1 and 2. The final term 

represents either a cost or a revenue, depending on whether the dealer purchases more or less than his 

client orders. Interest expense is irrelevant because fix trading occurs intraday. Following the literature, 

we abstract from the cost of bank capital and the potential costs of violating laws or regulations.  

 Throughout our analysis we rely on the following simplified expression for profits:  

   𝜋𝑑 = 𝐷1𝑑(𝑃2 − 𝑃1) + 𝑋𝑑(𝑃3 − 𝑃2)  .                (4) 

The first term on the right represents the period-2 gain or loss on inventory accumulated in period 1. 

The second term captures the period-3 gain or loss on inventory-restoration trades. In equilibrium, the 

first term is positive and the second term is negative. 

 Price generating process: Fix dealers trade aggressively against each other and against an atomistic 

fringe of smaller dealers. We assume that the atomistic fringe extracts information from those trades, so 

fix trades have contemporaneous per-unit price impact     . Returns are also driven by factors 

orthogonal to the fix, such as public information, that generate random order-flow shocks, t. These 

shocks are i.i.d. with zero mean and variance 
2 > 0. The period-t price change is thus: 

   𝑃𝑡 − 𝑃𝑡−1 = 𝜃(𝐷𝑡𝑑 + ∑ 𝐷𝑡𝑛𝑁 + 𝜀𝑡),        t = {1,2,3}.              (5)  
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Without loss of generality, P0 is left unspecified. Outside of the fix trading interval the price would follow 

a random walk, 𝑃𝑡 − 𝑃𝑡−1 = 𝜃𝜀𝑡, with one-period return variance  2
2.  

 Equation (5), which is consistent with other models of optimal execution (Bertsimas and Lo, 1998; 

Almgren, 2012; Obizhaeva and Wang, 2013), is well-grounded in the literature. A positive, permanent 

price impact of informed trades is implied by models of asymmetric information (Kyle, 1985; Glosten 

and Milgrom, 1985) and order flow has permanent price impact for all major asset classes.7 Asymmetric 

information is an integral feature of the forex interdealer market and there is no reason to expect fix 

trades to have less information content than trades at other times of day. Consistent with the 

hypothesis that fix trades carry information, Figure 1 provides evidence that the price impact of fix 

trades is permanent, on average.  

B. Evaluating the model  

 We evaluate the model by assessing whether it conforms to documented features of dealer 

behavior and price dynamics at the fix. With respect to dealer behavior we evaluate the model’s 

predictions for the four documented behaviors discussed previously: front-running, the timing of client-

service trades, collusion, and banging-the-close.  

 With respect to price dynamics we evaluate the model’s implications for pre-fix volatility, post-fix 

retracements, and convexity. We measure these three properties of price dynamics as follows: 

1. Pre-fix volatility, denoted , is measured as the variance of returns from P0 to PF= P2: 

       ≡ 𝐸0{(𝑃𝐹 − 𝑃0)2}    .                (6a) 

2. The extent of post-fix retracements, denoted , is measured as follows:  

  Λ ≡ 𝐸0{(𝑃3 − 𝑃𝐹)(𝑃𝐹 − 𝑃0)}  .               (6b) 

3. Convexity, denoted , is the acceleration of the pre-fix trend as the fix approaches. It is measured as 

the expected period-2 return relative to the expected period-1 return, quantity minus 1. 

Π ≡
𝐸{𝑃2−𝑃1|𝐹𝑇𝑜𝑡}

𝐸{𝑃1−𝑃0|𝐹𝑇𝑜𝑡}
− 1  .                (6c) 

This measure is positive if the price accelerates to the fix and negative if it decelerates to the fix.  

 
7 See, e.g., Shleifer (1986) for equities, Evans and Lyons (2002) for foreign exchange, and Simon (1991) for bonds. 
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III.  Independent trading 

 This section analyzes the model when dealers trade independently. For the present dealers are 

assumed to be risk neutral, which enables us to examine closed-form solutions while capturing most of 

the model’s critical insights.  

A. Dealer decision strategies  

 Representative dealer d chooses D1d in period 1. In period 2 he chooses either D2d or Xd, and we 

assume each dealer chooses Xd. To carry out this dynamic optimization problem dealer d must know the 

structure of his period-2 decision when making his period-1 decision. 𝐷1𝑑 and 𝑋𝑑 are proportional to 𝐹𝑑 

in equilibrium so define 𝛼 ≡ 𝐷1𝑑/𝐹𝑑  and 𝜒 ≡ 𝑋𝑑/𝐹𝑑. A hat denotes dealer d’s expected average value 

of that parameter across the other dealers: e.g., 𝛼̂ ≡ 𝐸2𝑑{∑ 𝐷1𝑛}/𝑁 𝐸2𝑑{∑ 𝐹𝑛}𝑁 .  

 In period 2 dealer d maximizes expected utility by choosing , taking  and 𝛼̂ as given:  

      𝑀𝑎𝑥
𝜒

  𝐸2𝑑{𝜋𝑑} = 𝛼𝐹𝑑𝜃⟨[(1 − 𝛼)𝐹𝑑 + (1 − 𝛼̂)𝐸2𝑑{∑ 𝐹𝑛𝑁 }]⟩ + 𝐹𝑑(𝛼 − 𝜒)𝜃(𝜒𝐹𝑑 + 𝐸2𝑑{∑ 𝑋𝑛𝑁 }).    (7) 

Optimal  depends on dealer d’s expected value of the other dealers’ period-3 trading, 𝐸2𝑑{∑ 𝑋𝑛𝑁 }:  

  𝜒 =
𝜶

2
−

𝐸2𝑑{∑ 𝑋𝑛𝑁 }

𝐹𝑑
    .               (8) 

The rational-expectations solution for , derived in the Appendix, is a fraction of  we label q: 

  𝜒 ≡ 𝑞𝛼 =
𝜶

2+𝜌𝑁
,     0 < 𝑞 =

1

2+𝜌𝑁
<

1

2
  .             (9) 

 In period 1 dealer d maximizes expected utility by choosing  to solve: 

       𝑀𝑎𝑥
 𝛼

  𝐸1𝑑{𝜋𝑑} = 𝛼𝐹𝑑𝜃[(1 − 𝛼)𝐹𝑑 + (1 − 𝛼̂)𝜌𝑁𝐹𝑑] + 𝐹𝑑𝛼(1 − 𝑞)𝜃[𝑞𝛼𝐹𝑑 + 𝐸1𝑑{∑ 𝑋𝑛}𝑁 ].     (10) 

The first-order condition shows that  depends on the other dealers’ expected behavior, 𝛼̂ and 𝑞̂: 

  𝛼 =
(1+𝜌𝑁)−𝛼̂𝜌𝑁[1−𝑞̂(1−𝑞̂)]

2[1−𝑞(1−𝑞)]
 .               (11) 

Dealer symmetry implies that 𝛼 = 𝛼̂ and 𝑞 = 𝑞̂ in market equilibrium, which closes the model.  

B. Market equilibrium under independent trading 

 Lemma 1 summarizes a risk-neutral dealer’s optimal strategy in an independent-trading equilibrium 

(henceforth denoted by superscript IN).  

Lemma 1: When risk-neutral dealers trade independently, the expected profits and optimum trades of 

representative dealer d are:  
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 a. 𝐸0{𝜋𝑑
𝐼𝑁} = 𝜃𝜎𝑑,𝑇𝑜𝑡𝐹𝑑 [𝛼𝐼𝑁[1 − (1 − 𝑞𝐼𝑁)𝛼𝐼𝑁] − 𝛼𝐼𝑁2

𝑞𝐼𝑁2
] ,  𝐸{𝜋𝑑

𝐼𝑁} > 0  .                    (12a) 

 b. 𝐷1𝑑
𝐼𝑁 = 𝛼𝐼𝑁𝐹𝑑    ,    𝛼𝐼𝑁 =

(2+𝜌𝑁)(1+𝜌𝑁)

(2+𝜌𝑁)2−(1+𝜌𝑁)
  ,  

2

3
< 𝛼𝐼𝑁 < 1 .                    (12b) 

 c. 𝐷2𝑑
𝐼𝑁 = [1 − (1 − 𝑞𝐼𝑁)𝛼𝐼𝑁]𝐹𝑑  ,  𝑞𝐼𝑁 =

1

2+𝜌𝑁
   , 0 < 𝑞𝐼𝑁 <

1

2
  .          (12c) 

 d. 𝐷3𝑑
𝐼𝑁 = −𝑋𝑑

𝐼𝑁 = −𝑞𝐼𝑁𝛼𝐼𝑁𝐹𝑑   ,      0 < 𝑞𝐼𝑁𝛼𝐼𝑁 <
1

3
     .            (12d) 

 In period 1 a profit-maximizing fix dealer opens proprietary position 𝛼𝐼𝑁Fd. In period 2 he carries 

out the full amount of his client-service trading, Fd, and liquidates (1 − 𝑞𝐼𝑁)𝛼𝐼𝑁𝐹𝑑 of his proprietary 

position. After the fix dealer d has excess inventory of 𝑞𝐼𝑁𝛼𝐼𝑁𝐹𝑑, which he liquidates in period 3.  

Dealer d’s profits come from the period-2 price move of 𝜃[1 − (1 − 𝑞𝐼𝑁)𝛼𝐼𝑁]𝐹𝑇𝑜𝑡 > 0, which 

appreciates his proprietary position. The price moves in response to the fix dealers’ aggressive trades, 

which are the net of client-service trades, 𝐹𝑇𝑜𝑡, and the partial liquidation of proprietary 

positions, (1 − 𝑞𝐼𝑁)𝛼𝐼𝑁𝐹𝑇𝑜𝑡. The period-2 profits are partially offset in period 3 when the price declines 

by 𝜃𝑞𝐼𝑁𝛼𝐼𝑁𝐹𝑇𝑜𝑡, depreciating the value of inventory remaining at the end of period 2. Expected profits 

are rising in price impact, , and in the covariation between dealer d’s order and 𝐹𝑇𝑜𝑡, 𝜎𝑑,𝑇𝑜𝑡.  

Expected profits are positive due to a special feature of fill-at-fix orders, a feature they share with 

market-on-close orders: the trade’s price is determined after its quantity. The strategy of Lemma 1 could 

not be profitable with a regular (a.k.a. “arrival-price”) OTC trade, in which the client’s traded price and 

quantity are set simultaneously, because it is logistically impossible to front-run an unknown client 

trading interest. Profits on arrival-price trades are also inversely rather than positively related to price 

impact, because price impact makes it costly to restore inventory to its desired level after the trade.  

 The dealer’s optimal strategy includes free-riding, a strategy we introduce to the literature on 

benchmark prices. To understand free-riding it is helpful to examine the equilibrium without free-riding, 

which would occur if fix orders were uncorrelated or 𝜎𝛷
2 = 0. In this case dealer d’s proprietary position 

is minimized, 𝛼
𝜎𝛷

2 =0
𝐼𝑁 =

2

3
, and the share of that position liquidated in period 3 is maximized, 𝑞

𝜎𝛷
2 =0

𝐼𝑁 =
1

2
 .  

 Free riding is each dealer’s effort to exploit the likely trading of other dealers. He can forecast those 

trades because his own order provides information the other dealers’ net fix orders. Dealer d‘s estimate 

of their aggregate orders is 𝐸𝑑{∑ 𝐹𝑛𝑁 } =Fd. This allows him to forecast that these orders’ execution 
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will intensify the period-2 price trend by Fd[1–(1-q)], a forecast he exploits with two adjustments 

to his trading strategy. First, he takes a bigger proprietary position: 𝛼𝐼𝑁 =  
2

3
+

𝜌𝑁(1+𝜌𝑁 3⁄ )

(2+𝜌𝑁)2−(1+𝜌𝑁)
>

2

3
. 

Second, he liquidates more of that position in period 2: 1– qIN  
1

2
+

𝜌𝑁

2(2+𝜌𝑁)
>

1

2
.  

 Proposition 1 summarizes key features of risk-neutral dealer behavior under independent trading: 

Proposition 1: When risk-neutral dealers trade independently, representative dealer d’s equilibrium 

trading strategy exhibits the following features: 

a. Proprietary trading: Dealer d opens a proprietary position before trading for his clients, a 

position that is at least 2/3 of 𝐹𝑑 (𝛼𝐼𝑁 >
2

3
 ). 

b. Distributed liquidation of proprietary positions: Dealer d liquidates at least one-half of his 

proprietary position before the fix and the remainder after the fix. 

c. Client-service trading before the fix but after proprietary trading: Dealer d accumulates the 

inventory required to fulfill his client orders, 𝐹𝑑, in period 2, after he opens a proprietary position 

but before the fix is calculated.  

d. Front-running: The amount (2/3)Fd of dealer d’s proprietary position is intended to front-run his 

own client fix orders. Without information about the other dealers he would liquidate half of this 

position immediately before and immediately after the fix. 

e. Free-riding: The rest of dealer d’s proprietary position, 
𝜌𝑁(1+𝜌𝑁 3⁄ )

(2+𝜌𝑁)2−(1+𝜌𝑁)
𝐹𝑑, is intended to exploit 

the expected client-service trades of other dealers. Dealer d also exploits those expected trades by 

increasing the share of his proprietary position liquidated in period 2 by 
𝜌𝑁

2(2+𝜌𝑁)
. 

C. Fix price dynamics when dealers trade independently 

 The model under independent trading predicts high pre-fix volatility and post-fix trend reversals. 

Pre-fix volatility, Ψ𝐼𝑁, is:  

       𝐼𝑁 ≡ 𝐸0{(𝑃𝐹 − 𝑃0)2} = 2𝜃2𝜎𝜀
2 + 𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁 + 1)(1 + 𝑞𝐼𝑁𝛼𝐼𝑁)2.         (13) 

The first term on the right of Equation (13), 2𝜃2𝜎𝜀
2, captures volatility that would be observed under 

regular OTC trading outside the fix interval. The second term of Equation (13) can be disaggregated into 

two terms that capture the fix dealers’ effects on volatility: 𝜃2𝜎𝐹𝑇𝑜𝑡
2 (𝑁 + 1) is the effect of their client-

service trades; 𝜃2𝜎𝐹𝑇𝑜𝑡
2 (𝑁 + 1)𝑞𝐼𝑁𝛼𝐼𝑁(2 + 𝑞𝐼𝑁𝛼𝐼𝑁), is the effect of their proprietary trades.   

 Post-fix retracements: Return autocorrelation around the fix is negative under independent trading:  

  Λ𝐼𝑁 ≡ 𝐸0{(𝑃3 − 𝑃𝐹)(𝑃𝐹 − 𝑃0)} = −
𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁+1)(1+𝑞𝐼𝑁𝛼𝐼𝑁)𝑞𝐼𝑁𝛼𝐼𝑁

Ψ𝐼𝑁 < 0   .          (14) 
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Post-fix retracements are due entirely to the liquidation of the dealers’ proprietary positions (Expression 

(14)): if dealers neither front-run nor free-ride then 𝛼𝐼𝑁 =  𝑞𝐼𝑁 = Λ𝐼𝑁 = 0. 

 Convexity: When risk-neutral fix dealers trade independently the pre-fix price trend is concave:  

            Π𝐼𝑁 = − 
𝜌𝑁

1+𝜌𝑁
< 0 .                 (15) 

 If risk-neutral dealers did not free-ride the expected price path would be linear (IN = 0) because 

expected price moves would be the same for periods 1 and 2. = 𝐸0𝑑{𝑃2 − 𝑃1}. In period 1, each dealer’s 

proprietary position would be intended solely to front-run his own client orders, so 𝐷1𝑑
𝐼𝑁 = 𝛼𝜌=0

𝐼𝑁 Fd = 

(2/3)Fd and 𝐸0𝑑{𝑃1 − 𝑃0} = (2/3)FTot. In period 2, each dealer’s purchase of Fd would be offset by 

(1/3)Fd as he liquidated exactly half of his proprietary position. However, the rational free-riding of risk-

neutral dealers creates a strictly concave price path. They strengthen the period-1 price move by 

opening a larger proprietary position and they moderate the period-2 price move by liquidating more of 

that position before the fix. Proposition 2 summarizes the model’s implications so far for fix-price 

dynamics: 

Proposition 2: When risk-neutral dealers trade independently, equilibrium price dynamics display 

the following features: 

a. High pre-fix volatility: Volatility is higher before the fix than after the fix and at other times 

of day. The price moves before the fix in response to normal random order flow, the 

dealers’ client-service trading, and the dealers’ proprietary trading. 

b. Post-fix retracements: In expectation the pre-fix trend is partially reversed after the fix, as fix 

dealers finish liquidating proprietary positions. 

c. Strict concavity of the pre-fix price path: In expectation the pre-fix trend decelerates as the fix 

approaches because dealers free-ride on each others’ expected client-service trades. 

D. Discussion  

Front-running is illegal in well-regulated financial markets because it is costly to clients. In currency 

markets front-running is discouraged but not explicitly prohibited (Bank of England, 2011; B.I.S., 2017). 

The absence of any prohibition reflects a simple cost-benefit analysis. There is no institution with 

authority to enforce trading rules worldwide, so banks can always find a legal domicile from which to 

trade as preferred. But authorities would rather keep the business at home because it is lucrative and 

non-polluting. In addition, currencies are neither securities nor financial instruments, so they are not 
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covered by Europe’s MIFID or similar legislation elsewhere. The fix dealers’ proprietary trades were 

sometimes substantial by any yardstick. Figure 2, for example, shows the Citibank dealer placing orders 

for at least EUR 33 mn more than his underlying client fix orders (FCA, 2014b). CFTC transcripts report 

one forex dealer telling another, “haha i [sic] sold a lot up there and over sold by 100” (CFTC, 2015, pp. 

2-3), meaning 100 million of the base currency. 

The front-running and free-riding predicted by our model essentially represent trade-based 

manipulation (Hart, 1977; Allen and Gale, 1992; Aggarwal and Wu, 2006; Vitale, 2000). However, this 

research generally focuses on just one informed trader who exploits the market power that arises from 

superior information. Our model assumes, in contrast, multiple fix dealers with imperfectly correlated 

private information and our findings involve those dealers’ strategic interactions. The profitability of 

trade-based manipulation on arrival-price trades is driven by lags or instabilities in the expectation 

formation process (e.g., Hart, 1977; Aggarwal and Wu, 2006), but these are irrelevant for the 

profitability of trade-based manipulation at the fix. 

The model’s prediction that volatility will be high before the fix under independent trading has an 

important implication: high pre-fix volatility and retracements cannot support a strong legal case for 

misconduct, including collusion. These features of fix-price dynamics will arise even if dealers trade 

independently and avoid misconduct, because client-service trading happens before the fix. Even if 

independent dealers take proprietary positions their client-service trades will contribute a minimum 

66% of pre-fix volatility, according to the model, which arises in the extreme conditions of with zero 

random trading (𝜎𝜀
2 = 0) and the slowest rational liquidation of proprietary positions (qIN= 1/2).  

IV.  Information sharing and collusion  

 This section examines market equilibrium when risk-neutral dealers share information about client 

orders or collude outright in executing a joint trading strategy.  

A.  Information sharing 

 It is considered unethical for dealers to share information about client orders because it puts the 

client at risk of manipulation. Forex dealers know this because bank compliance officers remind them of 

it regularly. This message came through loud and clear in the Non-investment Products Code signed by 
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all the major banks in 2011 (Bank of England, 2011, see p. 18) as well as the recent Forex Global Code 

(Bank for International Settlements, 2017).  

 Nonetheless, transcripts of private chat-room conversations revealed by investigative reports show 

that forex dealers were accustomed to sharing information about client fix orders (FCA, 2014b–f). We 

assume that each fix dealer shares his own net fix order with the other fix dealers before fix trading 

begins. (The possibility of deceit is discussed below.)  

 Lemma 2 describes dealer d’s optimal fix trading under information sharing (superscript IS). 

Lemma 2:  When risk-neutral dealers share information, the expected profits and optimum trades of 

representative dealer d are:  

 a. 𝐸{𝜋𝑑
𝐼𝑆} = 𝜃𝜎𝐹𝑇𝑜𝑡

2 𝐹̄[𝛼𝐼𝑆[1 − (1 − 𝑞𝐼𝑆)𝛼𝐼𝑆] − 𝛼𝐼𝑆2
𝑞𝐼𝑆2

] > 0 .      (16a) 

 b.   𝐷1𝑑
𝐼𝑆 = 𝛼𝐼𝑆𝐹̄  ,   𝛼𝐼𝑆 =

(1+𝑁)(2+𝑁)

(2+𝑁)2−(1+𝑁)
  ,   

6

7
≤ 𝛼𝐼𝑆 < 1 .   (16b) 

 c.    𝐷2𝑑
𝐼𝑆 = 𝐹𝑑 − (1 − 𝑞𝐼𝑆)𝛼𝐼𝑆𝐹̄  ,  𝑞𝐼𝑆 = (

1

2+𝑁
)   ,   0 ≤ 𝑞𝐼𝑆 <

1

2
   .   (16c) 

 d.    𝐷3𝑑
𝐼𝑆 = −𝑋𝑑 = −𝑞𝐼𝑆𝛼𝐼𝑆𝐹̄  ,       0 < 𝑞𝐼𝑆𝛼𝐼𝑆 ≤

3

7
  .  (16d) 

 Equilibrium trading under information sharing has the same outline as equilibrium trading under 

independent trading: dealer d opens a proprietary position in period 1; he carries out his client-

service trades in period 2, when he also begins liquidating his proprietary position; he finishes 

liquidating that position in period 3. The proprietary position once again includes a component 

intended to front-run client fix orders and another intended to free-ride on the other dealers; a 

dealer also free-rides by accelerating the liquidation of his proprietary position.  

 Nonetheless, the fix dealer’ strategy is critically different. First, each proprietary position is now 

proportional to the market’s average net fix order, 𝐹̅, rather than to a dealer’s own net fix order, so 

every fix dealer takes the identical proprietary position. Second, market-wide front-running remains 

unchanged at (2/3)𝐹𝑇𝑜𝑡 but free-riding intensifies because dealers no longer need to estimate each 

others’ client-service trading, they know it with certainty. The larger proprietary positions, 𝛼𝐼𝑆 >

𝛼𝐼𝑁, and the accelerated liquidated of those positions, 1 − 𝑞𝐼𝑆 > 1 − 𝑞𝐼𝑁, would increase dealer d’s 

expected profits if he were the only one to free-ride. When all dealers free-ride, however, expected 
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profits decline, despite the larger proprietary position, because the extra speriod-2 liquidation sales 

moderate the period-2 return and thus the proprietary position’s per-unit appreciation.  

 The conclusion that information sharing is costly to dealers may be robust to the possibility that 

dealers are not fully truthful. Gal-Or (1985) analyzes such a model and concludes that in Nash 

equilibrium firms that optimally lie still do worse by sharing information. Clarke (1983) likewise finds 

that firms profit most if they collude on trading strategies as well as share information. 

 Proposition 3 summarizes the key features of equilibrium behavior when dealers share information: 

Proposition 3: When risk-neutral fix dealers share information: 

a. Conditional expected profits are lower than under independent trading. 

b. Proprietary trading remains an optimal strategy. However, the positions are now perfectly 

correlated because they are proportional to 𝐹̄ rather than a dealer’s own net fix order. 

Proprietary positions are larger, on average, than under independent trading, 𝛼𝐼𝑆 > 𝛼𝐼𝑁.  

c. Client-service trading is still optimally carried out before the fix but after proprietary trading. 

d. Front-running is still optimally 2/3 of each dealer proprietary position.  

e. Free-riding becomes more pronounced than under independent trading: This explains the larger 

proprietary positions and why those positions are liquidated more quickly, 𝑞𝐼𝑆 < 𝑞𝐼𝑁. 

The adjustments in trading strategies under information sharing bring corresponding changes in fix-

price dynamics, as summarized in Proposition 4:  

Proposition 4: In equilibrium when risk-neutral dealers share information about client fix orders,  

 a.  Pre-fix volatility is less pronounced than under independent trading: 

 0 < Ψ𝐼𝑆 = 𝜃22𝜎𝜀
2 + 𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁 + 1)(1 + 𝑞𝐼𝑆𝛼𝐼𝑆)2 < Ψ𝐼𝑁.             (17a) 

b.  Post-fix trend retracements are less pronounced than under independent trading: 

 Λ𝐼𝑁 < Λ𝐼𝑆 = −
𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁+1)(1+𝑞𝐼𝑆𝛼𝐼𝑆)𝑞𝐼𝑆𝛼𝐼𝑆

Ψ𝐼𝑆 < 0 .                     (17b) 

c. The pre-fix price path is less convex (more concave) than under independent trading: 

Π𝐼𝑆  = −
𝑁

1+𝑁
< Π𝐼𝑁 = −

𝜌𝑁

1+𝜌𝑁
< 0  .            (17c) 

 These shifts all reflect the increase in free-riding under information sharing. The two dimensions of 

free-riding exert opposing forces on volatility and retracements: larger proprietary positions intensify 

both while faster liquidation reduces them. As with dealer profits, faster liquidation dominates in 

equilibrium so these features of price dynamics become less pronounced. The two dimensions of free-
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riding have reinforcing effects on convexity: larger proprietary positions strengthen the period-1 trend 

and faster liquidation weakens the period-2 price trend.  

B. Discussion  

  It may seem surprising that information sharing reduces dealer profits at the fix: indeed, Evans 

asserts that dealers would benefit from sharing information if they had the opportunity to do so (Evans, 

2017; p. 46). Nonetheless, this represents yet another way in which our model is consistent with 

microeconomic research on cartels. Clarke (1983), whose model of oligopoly is closest to ours, shows 

that in a full Bayes-Cournot equilibrium firms have no mutual incentive to share information unless they 

also collude in setting traded quantities. The parallels are striking given that the mechanisms supporting 

these results have little in common: fix profits derive from price changes across time while oligopoly 

profits derive from a high price level at a given time.  

C.  Collusion  

 We assume that all risk-neutral fix dealers join a single cartel and collaborate in the execution of a 

single trading strategy that maximizes expected aggregate profits, consistent with transcripts of the 

dealers’ private conversations (FCA, 2014b–f; CFTC, 2015). (The outcome with K separate cartels is 

isomorphic to independent trading with N = K -1). We also assume that cartel members do not cheat in 

fulfilling their mutual agreements (the possibility of cheating is discussed below). Lemma 3 summarizes 

the cartel’s optimal trading strategy under collusion (superscript C), with its total trading in period t 

denoted Dt Tot.  

Lemma 3: When risk-neutral dealers execute a collusive trading strategy, the cartel’s aggregate expected 

profits and optimum trades are:  

 a. 𝐸{𝜋𝑇𝑜𝑡
𝐶 } =

1

3
𝜃𝜎𝑑,𝑇𝑜𝑡𝐹𝑇𝑜𝑡  > 0  .         (18a) 

 b.   𝐷1𝑇𝑜𝑡
𝐶 = 𝛼𝐶𝐹𝑇𝑜𝑡 =

2

3
𝐹𝑇𝑜𝑡  ,    𝛼𝐶 =

2

3
 .        (18b) 

 c.    𝐷2𝑇𝑜𝑡
𝐶 = [1 − (1 − 𝑞𝐶)𝛼𝐶]𝐹𝑇𝑜𝑡  ,        𝑞𝐶 =

1

2
   . [1 − (1 − 𝑞𝑐)𝛼𝐶] =

2

3
   (18c) 

 d.    𝐷3𝑇𝑜𝑡
𝐶 = 𝑋𝐶 = −𝑞𝐶𝛼𝐶𝐹𝑇𝑜𝑡 =

1

3
𝐹𝑇𝑜𝑡    ,     𝑞𝐶𝛼𝐶 =

1

3
    .    (18d) 

 Equilibrium trading under collusion has the same outline as equilibrium trading under 

independent trading and information sharing: in period 1 the cartel opens a proprietary position; in 
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period 2 the cartel carries out all client-service trades and begins to liquidate the proprietary 

position; in period 3 the cartel finishes liquidating that position. Beyond this common outline, 

optimal trading under collusion has one crucial difference from its predecessor strategies: to 

maximize profits dealers shut down free-riding. The shared proprietary position is therefore just 2/3 

of the aggregate net fix order and the position is liquidated in equal amounts. Proposition 5 

summarizes the features of the optimal strategy in collusive equilibrium and Proposition 6 

summarizes the properties of fix-price dynamics: 

Proposition 5: In equilibrium, when risk-neutral dealers collude,  

a. Aggregate conditional expected profits are maximized across the three competitive settings, 

𝐸0{𝜋𝑇𝑜𝑡
𝐶 } > 𝐸0{𝜋𝑇𝑜𝑡

𝐼𝑁 } > 𝐸0{𝜋𝑇𝑜𝑡
𝐼𝑆 }  .   

b. Proprietary trading remains an optimal strategy. The dealers’ aggregate proprietary position is 

smaller than the average position under either independent trading or information sharing:   

𝛼𝐶 <  𝛼𝐼𝑁 < 𝛼𝐼𝑆. 

c. Client-service trading is still optimally carried out before the fix but after proprietary trading. 

d. Front-running is optimally 2/3 of the dealers’ aggregate proprietary position.  

e. Free-riding is shut down. This explains why the aggregate proprietary position is minimized and 

why that position is liquidated most slowly, 𝑞𝐼𝑆 < 𝑞𝐼𝑁 < 𝑞𝐶. 

Proposition 6: In equilibrium when risk-neutral dealers collude:  

 a. Pre-fix volatility is highest across the three competitive settings: 

  Ψ𝐶 = 2𝜃2𝜎𝜀
2 + 𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁 + 1)[1 + 𝑞𝐶𝛼𝐶]2 > Ψ𝐼𝑁 > Ψ𝐼𝑆   .           (19a) 

 b. Post-fix retracements are most pronounced across the three competitive settings:  

  Λ𝐶 = −
𝜃2𝜎𝐹𝑇𝑜𝑡

2 (𝑁+1)(1+𝑞𝐶𝛼𝐶)𝑞𝐶𝛼𝐶

Ψ𝐶  < Λ𝐼𝑁 < Λ𝐼𝑆 < 0   .              (19b) 

c.  The pre-fix path is linear in expectation and thus has the highest convexity across the three 

competitive settings:  

  Π𝐶 = 0 > Π𝐼𝑁 = −
𝜌𝑁

1+𝜌𝑁
> Π𝐼𝑆 = −

𝑁

1+𝑁
     .           (19c) 

D.  Discussion  

The model under collusion continues to predict front-running of client orders and client-service 

trading before the fix. It also shows that dealers have a strong incentive to collude: higher profits. The 

model also continues to predict high pre-fix volatility and partial retracements of the pre-fix trend 

immediately after the fix. Under collusion pre-fix volatility and trend reversals will be more pronounced, 
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and the pre-fix price path will be more convex, than under information sharing or independent trading. 

Indeed, collusion is missing just one of the characteristic features of the fix: banging-the-close. 

 Collusion at the fix shares some notable features with shrouding (Gabaix and Laibson, 2006), a 

pricing strategy in which producers hide the overall cost of a product. Manufacturers of home printers, 

for example, advertise a low price for the physical machine and hide the high price of ink, which is the 

costliest part of home printing. Shrouding may be relevant to fix dealing insofar as the true cost of 

liquidity at the fix is not visible to the dealers’ clients. Prior to reforms, the bid-ask spread on fix trades 

was zero even though such orders are often quite large and large forex orders are typically charged 

wider spreads (Cochrane, 2015). In effect, the price of the headline liquidity product associated with a 

fix trade, meaning a transaction at a specific price, was zero. The clients’ total cost of liquidity was not 

zero, however, because the dealers’ strategic trading was costly to their clients. Clients were unaware of 

this behavior because dealers colluded in private electronic chat rooms and the market is opaque. 

 The possibility of cheating by cartel members cannot reasonably be ruled out given the dealing 

banks’ admission that dealers violated bank ethical standards and anti-trust laws. Indeed, given the 

strong incentives for dealers to cheat on each other identified by the model, fix trading is isomorphic to 

a prisoner’s dilemma and cheating could perhaps be expected. A cheating dealer could have 

understated his fix orders to minimize the other dealers’ front-running and then traded for his own 

account separately from the cartel. In equilibrium, however, the influence of cheating might be limited 

as rational lying dealers anticipated the lying of other dealers.  

 As a repeated game fix trading can be analyzed in terms of dynamic collusion. If forex demand and 

supply functions are known with certainty, equilibrium cartel behavior would be determined by the fact 

that cheating can be identified unambiguously. In reality, however, forex dealers face many sources of 

uncertainty and signals of cheating would be noisy. Green and Porter (1984) and Abreu et al. (1986) 

show that Bertrand competitors facing such uncertainty can rationally adopt both carrots and sticks. 

They cooperate if and only if the price remains within a certain range, but if the price breaches that 

range they perceive a high likelihood of cheating. In this case the other cartel members retaliate for a 

finite number of rounds and then revert to collusion. In fix trading the trigger for retaliation could have 

been an observed price path that was sufficiently inconsistent with the expected path under collusion. 
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The price trend might begin earlier than expected, for example. A dealer suspicious of a co-conspirator 

could be un-cooperative with that other dealer in a variety of ways outside the fix: quoting slower or 

wider prices in direct trading; accommodating smaller amounts; or engaging in social exclusion.8 

 Given randomness in the price process, the cartel theories of Green and Porter (1984) and Abreu et 

al. (1986) predict an irregular cycle of cheating, retaliation, and renewed cooperation which, in our 

contest, could generate irregularities in fix-price dynamics. However, empirical research on cartels does 

not entirely support these cartel theories. Cartels typically survive for at least a few years – many last 

beyond ten years – and price wars are less frequent and less intense than predicted by theory 

(Levenstein and Suslow, 2006). The empirical research also highlights conditions under which collusion 

tends to thrive, at least two of which were met by forex dealing at the fix. First, in successful cartels 

colluding agents avoid disagreement over how to adjust collusive rents, one approach to which is to 

make compensation responsive to market conditions (Levenstein and Suslow, 2011). In the fix cartel, 

profits necessarily varied by market conditions such as volatility. Second, members of successful cartels 

typically apply low discount rates for the future (Levenstein and Suslow, 2016). This could be relevant to 

the fix cartel because dealers were secure within their banks and interest rates were generally low.  

E.  Evaluation of the model 

Our model under risk neutrality is highly successful at predicting the key documented features of 

dealer behavior and price dynamics at the London 4 pm fix. It predicts three of the dealer behaviors 

identified in regulatory reports: proprietary trading, client-service trading before the fix, and collusion. 

The next section shows that the fourth and last documented behavior, banging-the-close, can arise 

when dealers are risk averse. The model under risk neutrality also predicts both of the fix-price dynamics 

documented empirically – high pre-fix volatility and post-fix retracements. It also predicts that convexity 

is highest under collusion, consistent with the rise in convexity after 2007 documented in Section VI. 

 
8 We are grateful to Alexis Stenfors for these insights. 
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V.  Risk-averse dealers: Convexity and banging-the-close  

 This section examines the full model exposited in Section II, in which fix dealers are risk-averse with 

risk-aversion coefficient /2 (see Equation (2)). This version of the model captures all four of the 

characteristic dealer behaviors and all three of the characteristic features of fix-price dynamics. As 

before, we consider independent trading, information sharing, and collusion in sequence. 

A.  Independent trading under risk aversion 

Consider risk-averse dealer d in period 2 as he decides how much to trade in period 3. He does not 

know the fix orders of the other dealers because they are neither colluding nor sharing information. This 

decision relies on the variance of profits conditional on period-1 information, Var1(d) (see Equation 

(2)). In addition to the model’s three risk primitives – 𝜎𝜀
2, 𝜎Φ

2 , and 𝜎𝜂
2 – Var1(d). depends on dealer d’s 

error in forecasting the other dealers’ aggregate net fix orders, 𝜗𝑑 ≡ ∑ 𝐹𝑛𝑁   − 𝐸2𝑑{∑ 𝐹𝑛𝑁 }. The variance of 

𝜗𝑑, 𝜎𝜗
2 > 0, proves important for this analysis, but its dependence on other variables does not prove 

important so we leave it unspecified. Using the superscript R to indicate risk aversion, Var1(d) is: 

𝑉𝑎𝑟1(𝜋𝑑) = 𝜎𝜀
2[2 − 𝑞𝑅,𝐼𝑁(1 − 𝑞𝑅,𝐼𝑁)] + 𝜎𝜗

2[(1 − 𝛼𝑅,𝐼𝑁̂)(1 − 𝑞𝑅,𝐼𝑁)]2.          (20) 

 Equilibrium fix-dealer trading depends on the three risk primitives indirectly, through Var1(d) and 

three other composite risk term. The first, 𝜎𝜗
2, was just introduced. The second is 𝜎𝜇

2, the variance of 

dealer d’s error in forecasting other dealers’ period-3 trades, 𝜇𝑑 ≡ ∑ 𝑋𝑛𝑁 − 𝐸2𝑑{∑ 𝑋𝑛𝑁 }. The third is 

𝐶𝑜𝑣(𝜗𝑑 , 𝜇𝑑) > 0.9  

 Equilibrium trading shares cannot be expressed in closed form because proprietary trading under 

risk aversion, 𝛼𝑅,𝐼𝑁, and the share of the proprietary position liquidated in period 3, 𝑞𝑅,𝐼𝑁, depend non-

linearly on each other and on the composite risk terms, as shown in Lemma 4. 

Lemma 4: In equilibrium when risk-averse dealers trade independently, dealer d with net fix orders Fd 

trades the following amounts:  

 a.  𝐷1𝑑
𝐼𝑁 = 𝛼𝑅,𝐼𝑁𝐹𝑑,          𝛼𝑅,𝐼𝑁 =

(1+𝜌𝑁)

(2+𝜌𝑁)[1−𝑞𝑅,𝐼𝑁(1−𝑞𝑅,𝐼𝑁)]+𝛾𝜃𝑉𝑎𝑟1(𝜋𝑑)
,          

1

2
< 𝛼𝑅,𝐼𝑁 < 1.     (21a) 

 b.  𝐷3𝑑
𝐼𝑁 = −𝑞𝑅,𝐼𝑁𝛼𝑅,𝐼𝑁𝐹𝑑,    𝑞𝑅,𝐼𝑁 = 

1+𝛾𝜃(𝜎𝜀
2+𝜎𝜇

2)+𝛾𝜃(1−𝛼𝑅,𝐼𝑁)𝐶𝑜𝑣(𝜇𝑑,𝜗𝑑)

2+𝛾𝜃(𝜎𝜀
2+𝜎𝜇

2)+𝜌𝑁
 .       (21b) 

 
9 In equilibrium the last two errors and their statistical properties are closely tied, but the form of those links prove 
immaterial to the qualitative analysis presented here. 
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Equations (21a) and (21b) are not highly informative and comparative statics are also inconclusive. 

Figures 3A through 3D present simulations that show how equilibrium proprietary trading and convexity 

vary with risk aversion, risk primitives, and the number of dealers. Proprietary positions are declining in 

the risk primitives and in risk aversion, which implies that the period-1 price trend is more moderate 

under risk-aversion than under risk-neutrality. More broadly, as uncertainty rises fix dealers tend to 

trade more in period 2 and less in periods 1 and 3. 

Figures 3A through 3D also show that convexity is rising both in the risk primitives and risk aversion. 

The pre-fix price path is strictly convex when risk aversion is high or when risk aversion is modest and 

risk primitives are high. This convexity is consistent with the well-known tendency of dealers to trade 

most aggressively during the fix calculation window or, equivalently, to bang the clos as noted in the 

original Bloomberg article (Vaughan et al., 2013). Formal and informal evidence suggests that forex fix 

dealers used this strategy commonly at the London 4pm fix and ECB fix. Evans (2016) provides evidence 

that trading volume surged during the fix calculation window and the FCA presentations describe 

multiple specific episodes of banging-the-close. Outside of forex, the CFTC has identified banging-the-

close by specific traders in palladium and platinum in 2007 and 2008 (Doering and Rampton, 2010). 

B.  Information sharing and collusion under risk aversion 

 Information sharing: When risk-averse dealers share information their certainty about the orders of 

other dealers streamlines the analysis considerably, because 𝜎𝜗
2 = 𝐶𝑜𝑣(𝜗, 𝜇) = 0 and 𝑉𝑎𝑟1

𝐼𝑆  (𝜋𝑑) =

𝜃2𝜎𝜀
2(𝐷3𝑑

2 + 𝐷1𝑑
2 ). Equilibrium trading shares can be expressed in closed form as shown in Lemma 5. 

Lemma 5: In equilibrium when risk-averse dealers share information about client orders, dealer d with 

net fix orders Fd trades the following amounts: 

 b.   𝐷1𝑑 = 𝛼𝑅,𝐼𝑆𝐹̄ ,     𝛼𝑅,𝐼𝑆 =
(2+𝑁+𝜃𝛾𝜎𝜀

2)

(2+𝑁+𝜃𝛾𝜎𝜀
2)2−(1+𝑁)

  
1

3
< 𝛼𝑅,𝐼𝑆 < 𝛼𝐼𝑆 < 1.  (22a) 

 c.   𝐷3𝑑 = −𝑞𝑅,𝐼𝑆 𝛼𝑅,𝐼𝑆𝐹̄,  𝑞𝑅,𝐼𝑆 =
1

2+𝑁+𝜃𝛾𝜎𝜀
2   ,       0 < 𝑞𝑅,𝐼𝑆 < 𝑞𝐼𝑆 <

1

2
  .  (22b) 

 Risk-averse dealers who share information take smaller proprietary positions in period 1 and 

liquidate a smaller share of that position in period 3 than their risk-neutral counterparts. Convexity is 

rising in dealer risk aversion and in random non-fix trading, 𝜎𝜀
2. Convexity is falling in N because the free-

riding incentive still operates, so rising N brings larger proprietary positions and accelerated liquidation. 

http://www.reuters.com/journalists/christopher-doering
http://www.reuters.com/journalists/roberta-rampton
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 When dealers collude, equilibrium trading strategies can again once again be expressed in closed 

form, as shown in Lemma 6. 

Lemma 6: With a cartel’s proprietary positions is smaller with risk-averse than with risk-neutral dealers. 
With risk-averse dealers the cartel bangs-the-close and the average pre-fix price path is strictly convex: 

 a.     𝐷1𝑇𝑜𝑡 = 𝛼𝑅,𝐶𝐹𝑇𝑜𝑡,    𝛼𝑅,𝐶 =
(2+𝜃𝛾𝜎𝜀

2)

(2+𝜃𝛾𝜎𝜀
2)2−1

,   𝛼𝑅,𝐶 <
2

3
=  𝛼𝐶 < 1   .         (23a) 

 b.    𝐷3𝑇𝑜𝑡 = – 𝑞𝑅,𝐶𝛼𝑅,𝐶𝐹𝑇𝑜𝑡,       𝑞𝑅,𝐶 =
1

2+𝜃𝛾𝜎𝜀
2  ,    0 < 𝑞𝑅,𝐶 < 𝑞𝐶 <

1

3
  (23b)  

C.  Evaluation of the model under risk aversion 

 if dealers are risk-averse and competition is limited (low N) the model is consistent with all four 

documented dealer behaviors and all three documented features of fix-price dynamics. Under collusion 

the model necessarily predicts all four behaviors and all three features of fix-price dynamics. As 

discussed in Section II, the other existing models of dealer behavior at the fix (Evans, 2017; Saakvitne, 

2016) are inconsistent with some or all of these dealers behaviors and fix-price dynamics.  

VI.  A simple test of the model 

 We next take the model to the data by testing its prediction that convexity should be higher under 

collusion than under other independent trading or information sharing. Five major forex dealing banks 

have pleaded guilty to collusion and market manipulation, admitting that it occurred between 2008 and 

2013 (Department of Justice, 2015). According to the model, this collusion would have brought higher 

convexity, other things equal. We develop a rigorous measure of convexity and test statistically whether 

it was higher after December 2007 than before. 

 Our high-quality data comprise tick-by-tick OTC prices from a Thompson-Reuters price aggregator 

that takes the best executable bid and ask quotes from EBS, Reuters Matching, Reuters Dealing, and 

other platforms.10 The data begin in February 1996 for JPY, GBP, CHF, CAD, NZD, and DKK and in January 

1999 for EUR. Data for all currencies end in May 2013 but for CHF we drop all observations after 

October 2011, when the Swiss National Bank began to support a floor on EUR-CHF. We focus exclusively 

 
10 Reuters considers the full list of platforms to be proprietary information. 
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on end-of-month trading days following Melvin and Prins (2015) and use log mid-quotes at the end of 

each minute.  

 To capture the shape of the average pre-fix path we first index each path to 100.0 at exactly 3:45, 

reverse the direction of any price path that declines overall between 3:45 and 4:00 pm, and take 

averages of those paths. We then measure the convexity of a given average path. As depicted in Figure 

4A, our measure involves two areas: the area between the actual path to the fix and the no-change 

path, Area; and the area of the triangle formed by the linear price path and the no-change path, ABC. 

Convexity is defined as (∆ABC – 𝐴𝑟𝑒𝑎) ∆ABC⁄ . Like the measure of convexity used to evaluate the 

model, this measure is positive If the price path accelerates to the fix, zero if the path is linear, and 

negative otherwise.  

 Figure 4B shows convexity for the exchange rates of Figure 1. The first observation for each series is 

convexity using data from the beginning of the sample through December 2002. Each subsequent 

observation shows convexity using a progressively longer sample. Early in the sample convexity was 

negative for some currencies, consistent with the model when dealers with low risk or moderate 

aversion trade independently. By the end of the sample period convexity was positive for all currencies. 

Critically, convexity rose over the sample period for all currencies as predicted by the model.  

 To test the statistical significance of this finding we first calculate convexity separately for the 

periods before and after December 2007. Our null hypothesis is that each currency’s convexity was 

drawn from the same distribution after 2007 as before, which implies that each currency’s convexity had 

a 50% chance of being higher from 2008 to 2013 than from 1996 through 2007. Each currency thus 

represents a single Bernoulli trial with p = 0.50 and the number of currencies with rising convexity has a 

binomial distribution with N = 7 and p = 0.50 so long as convexity is independent across currencies.  

 The assumption that convexity is independent across these exchange rates might seem questionable 

given the tight links among currency returns forged by triangular arbitrage. However, convexity is many 

steps removed from returns: it is a complex property of the underlying return process calculated from 

an average of price series sampled on month-end dates over many years. We examine whether 

independence is a reasonable assumption by calculating the convexity of each end-month pre-fix path 
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for each currency using the full sample of data. This gives 208 convexity values for each of GBP, JPY, 

CAD, NOK, and DKK; 191 values for CHF; and 173 values for EUR. Of the 21 bilateral correlations across 

these convexity series, only eight are positive and the overall average is just -0.005. Independence 

appears to be a reasonable assumption.11  

 Each currency’s convexity before and after December 2007 is presented in Figure 4C. As one would 

expect given Figure 4B, convexity is higher during the period of admitted collusion for each currency.  

The binomial test rejects the null hypothesis of no change in convexity with marginal significance 0.008. 

We conclude that convexity was higher during the period of alleged collusion. 

VII.  Practical lessons from the model 

Before closing we use the model to analyze three questions of practical relevance. First: can the 

striking price dynamics associated with the London 4 pm fix be consistent with an efficient market? 

Second: Why did these properties of fix-price dynamics survive the reforms of 2015? Third: could price 

dynamics and dealer behavior be moderated under alternative fix-calculation methodologies? 

A.  Market efficiency 

The model highlights a potential gap between two dimensions of market efficiency that are usually 

conflated: speculative efficiency and informational efficiency. These two need not occur simultaneously 

at the fix because the fact that client fill-at-fix orders are priced after their quantity has been agreed. To 

clarify this we compare regular arrival-price trades with fill-at-fix orders. 

Consider a dealer who makes a regular arrival-price trade with a client, in which quantity and price 

are set simultaneously. In general, the dealer cannot directly profit from the transaction, beyond the 

half-spread. If he restores his inventory to its original level or purchases more for his own account in the 

interbank market, any interbank trades will generate slippage that is unprofitable to himself. Further, 

this dealer is a strategic substitute with other dealers: the trades mentioned above will move the market 

towards informational efficiency, leaving fewer profits for other dealers adopting the same strategy. 

 
11 We also conducted this test assuming that the probability of a change under the null exceeds 50%, in case 
convexity was pushed upward for reasons unrelated to collusion. The null is still rejected at the 5% level if the 
underlying probability of a rise in convexity was as high as 65%. 
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Now consider a dealer who receives a fill-at fix order from a client, in which the client and dealer 

agree initially on a quantity but not a price. This dealer can profit from the transaction in multiple ways 

that do not involve the half-spread. First, when he purchases the amount needed to service the client he 

moves the price the price in a direction that is profitable to himself, though adverse for the client, 

because the amounts purchased early in the pre-fix interval will ultimately be sold to the client at a 

higher price. In addition, the dealer can profitably exploit that trend by opening a proprietary position. 

Nonetheless, the dealer’s rational behavior pushes the price beyond its informationally-efficient value 

and that level will not be arbitraged away because his trading magnifies rather than diminishes the 

other fix dealers’ expected profits from adopting the same strategy. Thus each individual fix is 

speculatively efficient, because every dealer’s trading is incentive-compatible, but informationally 

inefficient, because the fix price consistently differs from the asset’s fundamental value. Indeed, the 

model provides a closed-form measure of the divergence, E0d{PF  – P3} = qFTot  0, the dependence of 

which on qFd shows explicitly that it arises from the amount of the dealers’ proprietary trading that is 

not liquidated prior to the fix. 

 Prior to 2015 the strategic complementarities at the fix were not limited to fix dealers. Clients and 

smaller dealing banks (Bulow et al., 1985) were also linked to the dealers in interlocking chains of 

mutually reinforcing incentives. Chain 1: The clients chose to avoid risk by placing fill at fix orders; the 

dealer’s execution of fix orders generated pre-fix price trends and thus additional volatility; the 

additional volatility encouraged clients to place more orders. Chain 2: The conditionally-predictable 

trends motivated the dealers to open proprietary positions; those positions generated yet more 

volatility and encouraged funds to place yet more fix orders. Chain 3: Small and mid-sized dealers, 

observing the pronounced pre-fix volatility, chose to avoid executing fix orders by passing their fix 

orders on to the bigger banks; this would have increased the concentration of fix orders at the major 

banks which strengthened those banks’ information advantage, encouraging them to take larger 

proprietary positions; larger proprietary positions would have brought further volatility, thereby 

encouraging more clients to place fix orders.12  

 
12 The smaller banks’ exit from fix trading was confirmed in conversation by a former trader, Alexis Stenfors. 
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Evans (2017) presents evidence that a trader could profitably exploit the post-fix retracements by 

trading against the informational inefficiency. This would imply that the market was both speculatively 

and informationally inefficient at the fix prior to reforms. According to our analysis, however, that 

strategy would have left money on the table. The profit-maximizing strategy was, instead, to exploit the 

entire fix trading context rather than just the informational inefficiency at the 4:00 pm. The broader 

strategy involved proprietary trading before the fix, and of course such proprietary trading was common 

(Grabiner, 2014). When dealers exploit the entire fix context the market is informationally inefficient, as 

noted by Evans (2017), but speculatively efficient.  

B.  Price dynamics since reforms 

Pre-fix volatility remains high and retracements are still common despite the reforms of 2015 (Ito 

and Yamada, 2017b; van der Linden, 2017). The model provides a ready explanation for this, to 

understand which it is helpful to distinguish two sets of reforms: those of the regulators and those of 

the banks. The regulators extended the fix calculation window from one to five minutes, a change that 

would be captured in the model as an increase in the variance of non-fix trading, 
2. This could have 

reduced the dealers’ proprietary positions or accelerated the liquidation of those positions. However, it 

brought no structural change in the dealers’ incentives and, thus, in their overall optimum strategy.  

The banks themselves instituted two reforms that did change dealer behavior. First, they prohibited 

the fix dealers from conversing in private with competing dealers. This certainly impeded collusion and 

information sharing, though ironically it could have enhanced dealer profits by eliminating free-riding. 

Second, the banks required all fix trades to be processed via automated algorithms that distribute trades 

over the pre-fix interval. This essentially prohibits strategic trading by fix dealers. 

If fix dealers had been the only agents to exploit their private information about client fix orders, as 

assumed in existing theoretical models including our own, the banks’ reforms would probably have 

brought substantial changes in fix-price dynamics. However, non-dealers may have taken over from the 

dealers in strategic trading, and thereby sustained the characteristic features of fix-price dynamics. The 

early pre-fix price trend always provided a signal to non-dealers of the market’s aggregate net fix order, 

which could have enabled rational non-dealers to adopt the speculative strategy identified by the 
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model: open a proprietary position immediately and liquidate it progressively before and after the fix. 

Fix dealers were chagrinned to observe such behavior among other market participants as early as 2006 

(Grabiner, 2014). The automated execution of fix orders in 2015 increased the precision of that pre-fix 

signal, after which more  non-dealers could have found it profitable to adopt the model’s speculative 

strategy. SmartFix, a software package released after the fix reforms and marketed to active traders, 

facilitates fix-based speculative strategies among non-dealers (Albinus, 2016). Such trading by non-

dealer would generate and thus sustain excess volatility and retracements. 

C.  Alternative fix structures 

The model also provides useful insights regarding other proposed reforms to the London 4 pm fix, 

most notably a clearing auction for fix orders. This could certainly provide a mechanism for matching off 

the maximum possible number of fix buy and sell orders. However, the clearing auction would be of no 

use in identifying an equilibrium price because fill-at-fix orders are perfectly price inelastic: clients have 

instructed their banks to trade a specific amount regardless of the market price. The price for the 

matched orders would be indeterminate and would therefore be taken from some other market source, 

which once again opens the price to manipulation. The “clearing” auction would also not identify a price 

and counterparties for the remaining unmatched orders.  

Non-fix trading is price elastic, so one proposal for fix reform involves eliciting non-fix orders to 

match the net fix order imbalance. This idea essentially describes the status quo and has already been 

tried on the NASDAQ with disappointing results. In the late 1990s the NASD began publishing market-

on-close imbalances shortly before 4:00 pm (Cushing and Madhavan, 2000). Our analysis suggests that 

this could intensify instead of dampen fix-price dynamics because rational non-dealers, when informed 

of the dealers’ net order imbalance, will front-run. The NASDAQ dropped this approach and instituted a 

closing call in 2004.  

The foregoing analysis has the following implication: fill-at-fix orders have negative externalities. 

According to our analysis the execution of such orders brings higher volatility, higher risk for anyone 

trading at the fix, and high client execution costs even if dealers do not engage in misconduct. Each of 

these consequences brings incentives for dealers to front-run or collude. 
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These observations highlight an uncomfortable trade-off. On the one hand, fill-at-fix orders are a 

natural and ex-ante reasonable solution to challenges faced by buy-side clients. On the other hand, long-

established economic logic points to a specific remedy for negative externalities: calibrated disincentives 

for the behavior that generates them. If some sort of calibrated disincentive were considered with 

respect to client reliance on fix orders it would be important to keep in mind that decades of experience 

confirm that every attempt at financial regulation introduces its own set of negative externalities.  

VII.  Summary 

 This paper examines dealer behavior at the London 4 pm fix in forex, an exchange rate benchmark 

price relevant to index funds valued at $11 trillion (Cochrane, 2015). We develop a model of dealer 

conduct and misconduct at the fix. The model’s assumptions are based on core microstructure theories 

and evidence. It is also based on the actual structure of the forex market, which allows us to correctly 

identify dealer incentives and constraints. We examine the dealer strategies and fix-price dynamics 

under independent trading, information sharing, and collusion.  

 The outline of the optimal fix-dealer trading strategy is the same under all circumstances. Before the 

each fix dealers opens a proprietary position (or equivalently, front-runs his fix orders) and then 

executes his client-service trades. The dealer begins liquidating his proprietary position before the fix 

and finishes doing so after the fix.  

The paper introduces a new form of free-riding to the literature, in which fix dealers attempt to 

exploit the anticipated trading of their competitors. Free-riding dealers open larger proprietary positions 

and liquidate a larger share of those positions before the fix.  

 Collusion maximizing profits because it shuts down free riding; information sharing is associated 

with the most free-riding and thus minimizes profits. This ranking of profitability is consistent with 

traditional models of collusion among oligopolists. The mechanisms behind them are entirely distinct, 

however. Fix profits are determined in part by the price path while profits in traditional models are 

determined by the price level.  

 We evaluate the model in part by comparing its predictions to seven documented features of the fix 

that are not common to regular trading. Regulatory reports document four unusual dealer behaviors:  
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taking proprietary positions, executing client-service trades before the fix, and colluding (FCA, 2014b–f; 

CFTC, 2015). Earlier studies document three unusual properties of fix-price dynamics: high pre-fix 

volatility, post-fix retracements, and an acceleration of the pre-fix trend (Michelberger and White, 2016; 

Evans, 2017; Ito and Yamada, 2017b). The model predicts all but two of these seven features of the fix 

unconditionally. The model predicts the remaining two features – banging the close and an acceleration 

of the pre-fix trend – when competition is limited, as it arguably was prior to June of 2013. 

Five major banks have acknowledged that their dealers colluded at the fix beginning around 2008, 

and the model implies that convexity is highest under collusion. We test the model by examining 

whether convexity rose after 2007 in seven highly-liquid currencies vis-à-vis USD. The results reject the 

hypothesis that convexity was unchanged after 2007 in favor of the alternative hypothesis that 

convexity was higher under collusion. 

Future research could usefully endogenize customer fix orders within the context of this model. This 

would clarify some of the interlocking chains of strategic complementarities that allowed these dealer 

behaviors to persist for years.  
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Appendix A: Details of the Model Solution 

A.1. Rational expectations equilibrium under risk neutrality and independent trading 

In period 2, dealer d must forecast the amount the other dealers will sell in period 3, 𝐸2𝑑{∑ 𝑋𝑛𝑁 }. This 

forecast necessarily depends on his period-2 information set, 𝛺2𝑑 ≡ {𝐹𝑑 , 𝐷1𝑑 , 𝑃1 − 𝑃0}. To identify the 

functional form of this expectation, we assume that it is linear and apply the method of undermined 

coefficients:  

  𝐸2𝑑{∑ 𝑋𝑛𝑁 } = 𝐴(𝑃1 − 𝑃0) + 𝐵𝐷1𝑑 + 𝐶𝐹𝑑.          (A.1) 

The coefficients A, B, and C are identified from rationality constraints. The first is that dealers should 

expect their own period-3 inventory, as a share of their net fix order, to be neither more nor less than 

the unconditional expected value of that share: 

 
𝐸1𝑑{𝑋𝑑}

𝐹𝑑
= 𝐸0 {

∑ 𝑋𝑛𝑁+1

∑ 𝐹𝑛𝑁+1
}.       (A.2) 

This implies the following equality which can only be satisfied if A = 0:  

 
𝐸1𝑑{𝑋𝑑}

𝐹𝑑
=

𝛼

2
[1 − 𝐵 −

𝐴

𝐵
(1 + 𝜌𝑁)] =

𝛼

2
[1 − 𝐵 −

𝐴

𝐵
(1 + 𝑁)] = 𝐸0 {

∑ 𝑋𝑛𝑁+1

∑ 𝐹𝑛𝑁+1
}   .        (A.3) 

A second rationality constraint is that dealers should not make predictable errors in forecasting the 

other dealers’ aggregate position at the beginning of period 3, . 

 or: 𝐸1𝑑{
𝑑

} ≡ 𝐸1𝑑{∑ 𝑋𝑛𝑁 − 𝐸2𝑑{∑ 𝑋𝑛𝑁 }} = 0. With A = 0, this implies: 

  𝐸1𝑑{
𝑑

} = 𝐸1𝑑 {(
1−𝐵

2
) ∑ 𝐷1𝑛𝑁 − 𝐵𝐷1𝑑 −

𝐶

2
(∑ 𝐹𝑛 + 2𝐹𝑑)𝑁 } = 0.        (A.4) 

This can be solved for B and C by considering (a) the model’s symmetry, which implies that n = m for 

all n, and (b) the structure of fix orders, which implies 𝐸1𝑑{𝐹𝑛} = 𝜌𝐹𝑑. Equation (A.4) becomes 

𝐸1𝑑{
𝑑

} = 0 = 𝛼1[𝐵(2 + 𝜌𝑁) − 𝜌𝑁] − 𝐶(2 + 𝜌𝑁) or 

  𝐶 = 𝛼 (
𝜌𝑁

(2+𝜌𝑁)
− 𝐵).                           (A.5) 

 Applying this to Equation (A.1) reveals that 𝐸2𝑑{∑ 𝑋𝑛𝑁 } depends only on D1d:  

  𝐸2𝑑{∑ 𝑋𝑛𝑁 } =
𝜌𝑁

2+𝜌𝑁
𝐷1𝑑 .                        (A.6) 

Thus 𝐵 = 𝜌𝑁 (2 +⁄ 𝜌𝑁) and C =0. In combination with Equation (5), this implies:  

  𝑋𝑑 =
1

2+𝜌𝑁
𝐷1𝑑 ≡ 𝑞𝐷1𝑑.                      (A.7) 

A.2  Rational expectations equilibrium with risk aversion under independent trading   

Risk-averse dealer d begins optimizing by evaluating expected profits and the variance of profits for the 

period-2 trading decision. Unexpected profits for the period-2 decision are: 

   𝜋𝑑 − 𝐸2𝑑{𝜋𝑑} = 𝐷1𝑑𝜃(1 − 𝛼𝑅̂)(𝜗 + 𝜀2 + 𝜀3) + (𝐷1𝑑 − 𝑋𝑑)𝜃(𝜇 − 𝜀3).   (A.8) 

Dealer d’s sources of risk include his error in forecasting the other dealers’ net fix order, 𝜗 ≡ ∑ 𝐹𝑛𝑁 −

𝐸2𝑑{∑ 𝐹𝑛𝑁 }, with variance  𝜎𝜗
2, and his error in forecasting the other dealers’ excess inventory at the 

beginning of period 3, 𝜇 ≡ ∑ 𝑋𝑛𝑁 − 𝐸2𝑑{∑ 𝑋𝑛𝑁 }, with variance 𝜎𝜇
2. The variance of profits conditional 

on period-2 information, 𝑉𝑎𝑟2(𝜋𝑑), also depends on the covariance of these forecast errors, 𝜎𝜗𝑑 ,𝜇𝑑
:  

  𝑉𝑎𝑟2(𝜋𝑑) = 𝜃2 {𝛼𝑅̂
2

𝐹𝑑
2[2𝜎𝜀

2 + (1 − 𝛼𝑅̂)2𝜎𝜗
2] + (𝛼𝑅𝐹𝑑 − 𝑋𝑑)2(𝜎𝜀

2 + 𝜎𝜇
2)}   (A.9) 
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                                                         + 𝜃2{2𝛼𝑅𝐹𝑑(𝛼𝑅𝐹𝑑 − 𝑋𝑑)[(1 − 𝛼𝑅̂)𝜎𝜗𝑑 ,𝜇𝑑
− 𝜎𝜀

2]}. 

The prediction-error properties are partially endogenous because they depend on the dealers’ 

proprietary trading. In equilibrium these errors, as well as their variances and covariance, necessarily 

depend on the three underlying sources of randomness: 𝜑, 𝜂, and 𝜀. 

To identify utility-maximizing period-2 trading, dealer d applies Equations (4) and (5) to his overall 

optimization problem, Equation (2). The first-order condition for Xd implies: 

  𝑋𝑑 = 𝐷1𝑑

1+𝛾𝜃(𝜎𝜀
2+𝜎𝜂

2)+𝛾𝜃(1−𝛼𝑅)𝜎𝜗𝑑,𝜇𝑑

2+𝛾𝜃(𝜎𝜀
2+𝜎𝜂

2)
− 𝐸2𝑑{∑ 𝑋𝑛𝑁 }

1

2+𝛾𝜃(𝜎𝜀
2+𝜎𝜂

2)
.    (A.10) 

  𝜒 =
𝜶

2
−

𝐸2𝑑{∑ 𝑋𝑛𝑁 }

𝐹𝑑
    .   

Dealer d’s proprietary trading is again linear in his period-1 trading but the proportionality coefficient, 

qR, now depends non-linearly on risk. To identify 𝐸2𝑑{∑ 𝑋𝑛𝑁 }we again assume that it is linear in the 

dealer’s information:𝐸2𝑑{∑ 𝑋𝑛𝑁 } = 𝐴(𝑃1 − 𝑃0) + 𝐵𝐷1𝑑 (this excludes Fd based on the analysis of A.1).13  

We once again infer that A = 0 from the rational expectation constraint that a dealer expects his 

proprietary trading, as a share of his fix orders, to equal the unconditional average share of proprietary 

trading. B can once again be identified from the rational expectation constraint that the dealer’s period-

2 expectation error should have expected value of zero conditional on period-1 information: 𝐵 =

𝜌𝑁[1 + 𝛾𝜃(𝜎𝜀
2 + 𝜎𝜂

2) + 1 + 𝛾𝜃(1 − 𝛼𝑅)𝜎𝜗𝑑 ,𝜇𝑑
] (2 + 𝛾𝜃(𝜎𝜀

2 + 𝜎𝜂
2) + 𝜌𝑁)⁄ . 

 Applying this to Equation (A.10) gives the following solution for period-3 inventory: 

  𝑋𝑑 = 𝑞𝑅𝛼𝑅𝐹𝑑  ,    𝑞𝑅 =
1+𝛾𝜃(𝜎𝜀

2+𝜎𝜂
2)+1+𝛾𝜃(1−𝛼)𝜎𝜗𝑑,𝜇𝑑

2+𝛾𝜃(𝜎𝜀
2+𝜎𝜂

2)+𝜌𝑁
         (A.11) 

 Dealer d next identifies the variance of profits from the perspective of period 1, 𝑉𝑎𝑟1(𝜋𝑑): 

  𝑉𝑎𝑟1(𝜋𝑑) = 𝜃2𝜎𝜀
2[2 − 𝑞𝑅(1 − 𝑞𝑅)] + 𝜎𝜗

2[(1 − 𝛼𝑅̂)(1 − 𝑞𝑅)𝑞𝑅𝛼𝑅̂]2   .      (A.12) 

The period-1 trading strategy in Lemma 5 solves the dealer’s period-1 optimization problem:  

𝑀𝑎𝑥
𝛼

 𝛼𝐹𝑑𝜃[𝐹𝑑(1 − 𝛼) + ∑ 𝐹𝑛(1 − 𝛼̂)𝑁 ] + 𝛼𝐹𝑑(1 − 𝑞)𝜃[𝑞𝛼𝐹𝑑 + ∑ 𝑋𝑛}𝑁 ] −
𝛾

2
(𝛼𝐹𝑑)2𝑉𝑎𝑟1(𝜋𝑑) ,  (A.13) 

where the superscript “R” is suppressed for brevity.  

 

  

 
13 The irrelevance of Fd is confirmed in unreported analysis. 
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Figure 1: Exchange rate dynamics around the London 4 pm fix 
Mean price path from 60 minutes before to 60 minutes after the London 4 pm fix using tick-by-tick quotes from 
Reuters Dealing, and interbank trading platform, for EUR-USD, GBP-USD, USD-JPY, USD-CHF, CAD-USD, NZD-USD, 
and DKK-USD. The series begin in February 1, 1996, except EUR-USD, which begins January 1, 1999. All series end 
on December 31, 2013 except CHF-USD, which ends in October 2011. All series are indexed to 100 at 3:45 pm. 
Declining prices have trends reversed for the average.  
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Figure 2: Banging-the-close under risk aversion  

Reproduction of the image at minute 10:00 from the fix trading history in FCA (2014b) showing fix-dealer trading before an ECB fix (1:15 CET)  
during the period of admitted collusion. Best bid (ask) shown as thin blue (red) line; best Size and time of marketable limit orders (MLOs) are 
indicated by vertical green bars.  
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Figure 3: Banging-the-close under risk aversion  

Charts show simulated levels of proprietary trading and period-2 trading relative to period-1 trading for N risk-averse dealers trading 

independently (N1) or colluding (N=0). For all simulations  = 0.5 and 𝜎𝜀
2 = 1. Charts end at N = 9 to ensure differences at N=0 are readily 

apparent. With high (moderate) risk aversion  = 0.5 ( = 0.25). With high (low) fix-order risk 𝜎𝜂
2 = 𝜎𝜀

2 = 1 (𝜎𝜂
2 = 𝜎𝜀

2 = 0.1). 
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Figure 4. Testing for rising in convexity after 2007 

4A. Measuring convexity. We measure convexity as the ratio of (i) the difference between the area of 

triangle ABC and the shaded area; (ii) the area of triangle ABC. If the price path accelerates to the fix, on 

average, this measure is positive and vice versa. 

 

 

 

 

 

 

 

 

 

4B. Convexity time series: Chart shows convexity of the average month-end price path over 3:45-4:00. 

Data for each observation span the beginning of the sample through the end of December in the year 

specified. One-minute returns calculated from tick-by-tick data from Reuters Dealing. For most 

currencies these begin January 1996, and end May 2013. For EUR the data begin January 1999. For CHF 

the data end October 2011. 
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4C. Convexity before and after December 2007. 
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