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1 Introduction

In the 2015 Paris Agreement, 196 parties committed to holding global average temperature increases

to below 2°C above pre-industrial levels. The agreement explicitly calls on the financial industry

in helping to make finance flows ‘consistent with a pathway towards low carbon emissions ...’ (p.

3, United Nations, 2015). Investors are becoming increasingly aware of their role in mitigating

climate change and the potentially enormous societal and economic consequences of failing to do so.

As a result, asset owners and investors representing over $120 trillion in assets have signed up for

the UN Principles for Responsible Investment in 2021.1 Nonetheless, many institutional investors

report challenges in addressing climate risks, citing a lack of best practices, problems around data

availability, and inherent difficulties with assessing climate change (Krueger et al., 2020; Giglio et al.,

2020).

Development of scientific methods and metrics to measure climate risk exposure is urgently needed

(Krueger et al., 2020; Giglio et al., 2020). We contribute to this need by introducing a new and

complementary measure of asset-level climate risk exposure, determined by the extent to which an

asset’s price correlates with a carbon risk factor. Following the terminology of the asset pricing

literature, we refer to this measure as carbon beta. Our measure is complementary to other measures

of climate risk, of which corporate greenhouse gas emissions and emission intensities are the most

prominent examples.2 Our approach differs in the following three aspects.

First, due to the market-based nature of our measure, carbon betas potentially reflect market par-

ticipants’ expectations regarding an asset’s future transition risk exposure. Besides a company’s

current greenhouse gas emissions, factors such as the availability of clean technologies, quality of

management, innovation ability, competition, and financial health likely affect a company’s ability to

deal with transition risks and reduce future greenhouse gas emissions. If market prices incorporate

expectations about such aspects, then our carbon beta will reflect those too. As such, the distinction

between greenhouse gas emissions and carbon beta’s is akin to the broader distinction in the asset

pricing literature between characteristics and the covariance structure of returns as introduced in

Daniel and Titman (1997).

Second, and related to the former, carbon betas allow a clear distinction between assets that are

expected to benefit from a low-carbon transition and assets that are expected to lose from such a

shift. Corporate emissions, on the other hand, are best at identifying ‘climate losers’ (Sautner et al.,

2022), that is, firms that are currently among the heaviest emitters and likely negatively impacted by a
1See UN PRI Annual Report 2021: https://www.unpri.org/annual-report-2021/how-we-work/
building-our-effectiveness/enhance-our-global-footprint

2Emission intensities are defined as corporate greenhouse gas emissions divided by revenues.
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sudden transition. Moreover, all emissions are assumed equally harmful, while investors might assign

greater weight to some emissions over others. For example, for firms whose emissions occur in the

production of goods that reduce emissions elsewhere (e.g. solar panels), or that operate in sectors for

which abatement is expected to be easier, investors might perceive lower risk exposures. To illustrate

this point, note that the annual direct emissions of Tesla, Inc., a manufacturer of electric vehicles,

and W&T Offshore, Inc., an independent oil and gas producer, are relatively similar, ranking close

to the 80th percentile in our sample. However, the average carbon beta of Tesla is among the bottom

5%, while that of W&T is in the top 5%. Seemingly, investors can hold widely varying expectations

of climate risk exposure as measured by carbon beta even for firms with similar emissions output.

In other words, the carbon beta approach allows investors to hedge the carbon risk in their portfolio

since it can single out climate winners next to climate losers.

Third and finally, the approach allows us to calculate carbon betas for any asset for which returns are

observed. Thus, our procedure allows the estimation of carbon betas for asset classes that have no

other carbon-related measures available, for which it is inherently difficult to construct such measures

(e.g. commodities), or which are by their nature opaque (e.g. hedge funds for which the holdings data

are not publicly available). The estimation procedure is transparent and consistent across assets and

asset classes and does not directly rely on the voluntary disclosure of emissions-related information.

Our carbon risk factor is constructed by forming a long-short portfolio. The long leg of the portfolio

contains relatively pollutive companies whereas the short leg contains relatively clean companies. To

roughly classify companies into pollutive and clean groups, we use companies’ relative greenhouse

gas emissions. The motivation behind this choice is not that emissions are a perfect indicator of

whether a company is green or brown,3 but rather that as a group, heavy emitters are more likely to

be negatively affected by an accelerated low-carbon transition than light emitters are. Our carbon

risk factor thus consists of a long position in the stocks of the heaviest-emitting 30% of firms offset

by a short position in stocks of the least-emitting 30% of firms, controlling for size as in Fama and

French (1993). We refer to this portfolio as the Pollutive-Minus-Clean, or PMC, portfolio.

The economic mechanism behind the carbon risk factor follows that of the Pástor et al. (2020, 2022)’s

model of an ESG factor. If concerns regarding the climate unexpectedly rise, consumer demand will

shift from brown products and services to greener ones. Producers of these products and services

will benefit accordingly, which increases their valuation. Simultaneously, investors who care about

the climate will substitute brown asset holdings for greener alternatives, either because they derive

more utility from holding green assets (for example because they are publicly pressured to do so),
3We use ‘brown’, ‘pollutive’, and ‘unsustainable’ interchangeably to describe firms, products, and services that are
contributing to climate change, while we use ‘green’, ‘clean’, and ‘sustainable’ to describe firms, products, and services
that contribute much less to, or even help in, mitigating climate change.
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or because they anticipate stricter environmental policies. Our proxy for the carbon risk factor is

intended to capture such shifts in the valuation of brown firms relative to green firms that occur due

to changing concerns around climate change.

We perform time-series regressions of equity returns on the carbon risk factor – while controlling for

additional factors known to drive returns – to determine stock return sensitivities to carbon risk.

We regard the loading on the carbon risk factor, the carbon beta, as a firm-level indicator of climate

transition risk exposure. Our results corroborate the existing findings on the pricing of greenhouse

gas emissions and intensities (Bolton and Kacperczyk, 2021a,b), and add a number of new insights

consistent with the complementary characteristics of the carbon beta measure.

Inspired by recent work by Cohen et al. (2020) we explore the relationship between our measure

of climate risk and firms’ green patents output. Cohen et al. (2020) find that green innovation is

largely driven by firms in the Energy sector, yet paradoxically these firms are generally amongst

the worst performers on environmental issues. We download all patents issued by the U.S. Patent

and Trademark Office (USPTO) from 2010 to 2020 and link their patent classes to green patent

classification schemes. Our results indicate a negative and statistically significant association between

carbon beta and green innovation, indicating that green innovators are less exposed to climate risk.

If we only include Energy firms in the analysis, the effect becomes more pronounced. We do not find

similar results when focusing our analysis on carbon intensities or carbon emissions as the indicator

of climate risk exposure. These findings suggest that firm differences in green innovation are taken

into consideration by market participants and are therefore reflected by carbon betas, illustrating

the forward-looking nature of carbon beta.

Assets with positive carbon betas tend to depreciate in value when investors become more concerned

about the climate. On the contrary, negative carbon beta assets tend to appreciate in such times.

These assets can be regarded as ‘climate hedge’ assets because they deliver high returns when climate

change concerns increase. We devise several tests to uncover such an effect. To start, we construct

an index similar to Engle et al. (2020)’s Climate Change News Index. Our index is determined

by the textual similarity between daily news articles published in the Wall Street Journal and a

corpus of texts on climate change collected from official reports and Wikipedia. We theorise that

periods in which climate change is frequently reported in the news tend to coincide with episodes

of heightened uncertainty around future climate policies. As this approach is analogous to that in

the literature on economic policy uncertainty (see, e.g., Baker et al. 2016), we refer to our index as

the Climate Policy Uncertainty (CPU) index. We find that in months when CPU increases, firms

with higher carbon beta have lower returns. A standard deviation increase in carbon beta leads

to around a 15 bps reduction in returns, ceteris paribus, for each standard deviation increase in
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climate policy uncertainty. Based on observations that extreme temperature shocks reduce corporate

earnings (Addoum et al. 2018; Pankratz et al. 2019) and disproportionally diminish the market values

of pollutive firms (Choi et al. 2020), we perform similar analyses using extreme weather events in

the United States. We document that during months with abnormally high temperatures, firms with

high carbon betas tend to generate significantly lower returns, in both economic and statistical terms.

A qualitatively similar pattern is observed in periods of extreme drought, where a standard deviation

increase in carbon beta is associated with a 39 bps lower return. These results are consistent with

the model of Pástor et al. (2020, 2022), implying that carbon beta is indeed functioning as a measure

of climate risk.

A natural question that arises is whether climate risk is priced. If investors dislike states of the world

in which the climate deteriorates, they should demand higher returns for holding high carbon beta

assets that underperform in such scenarios. Likewise, they should be willing to accept lower expected

returns for climate hedge assets with negative carbon betas, in return for these assets’ ability to hedge

climate risks. On the contrary, in times of increasing concern about the environment, assets with

high carbon betas tend to depreciate in conjunction with the PMC portfolio, because these assets

are expected to be negatively affected by a low-carbon transition. As such assets are riskier and

shunned by investors, they should trade at discounts, and offer higher expected returns. In line with

theoretical predictions by Pástor et al. (2020), our asset pricing tests confirm this to be the case.

A one standard deviation increase in carbon beta tends to be associated with, ceteris paribus, an

increase in annualised return by 1.15%-points.

Carbon beta is a relatively simple, flexible, and intuitive approach to assess asset-level climate transi-

tion risk exposure. We demonstrate the flexibility of our methodology by applying it to three different

asset classes: (i) U.S. equities as the core focus of our paper, (ii) national equity indices in Appendix

B, and (iii) U.S. corporate bonds in Appendix D. Theoretically it is possible to apply our approach

to any asset class with a sufficient history of returns observations, but further avenues to apply our

concept are left for future research. As such, the data created for this paper will be made publicly

available by us. Importantly, this means that carbon betas will be distributed and can be used by

investors and researchers. Moreover, the CPU index and green patent data will be made available

and can be used by other researchers.

Our paper relates to a growing literature on climate finance, which studies the interactions between

climate change and financial markets. Addoum et al. (2018) examine the effects of extreme tempera-

ture shocks on corporate earnings and find that such shocks significantly impact earnings in over 40%

of industries. Relatedly, Bansal et al. (2019) estimate stock return sensitivities to long-run tempera-

ture shocks and find that temperature-exposed stocks carry a risk premium. Pankratz et al. (2019)
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establish a causal negative relationship between heat exposure and firms’ operating performance,

and observe that financial analysts and market participants incorrectly anticipate the effects of heat

on company performance. Bortolan et al. (2022) argue that variation in temperatures affects asset

prices, and provide empirical evidence to back their claim. Huynh et al. (2021) observe that mutual

fund managers divest from pollutive firms after they experience increased local air pollution. Hong

et al. (2019) explore the stock prices of food producers and conclude that they do not efficiently reflect

long-run drought risks. Engle et al. (2020) construct portfolios to hedge innovations in climate change

news. We adopt their methodology of quantifying climate change news. Choi et al. (2020) study how

people update their beliefs about climate change during periods of high temperatures. The authors

confirm that attention to climate change spikes during such periods, and that stocks of firms with

low carbon emissions outperform their carbon-intensive peers. The effects coincide with selling from

retail investors, yet better-informed institutional traders do not exhibit similar behaviour. Painter

(2020) and Goldsmith-Pinkham et al. (2022) find that physical climate risks are priced in the U.S.

municipal bond market. Goldstein et al. (2022) model how ESG investing affects price informative-

ness. One of the model’s implications is that an increasing share of ESG-motivated investors leads

to prices that are more reflective of ESG signals and less reflective of firm fundamentals.

Görgen et al. (2020) are the first to consider the concept of a carbon risk factor. Their factor is

constructed from several ESG variables provided by MSCI, Sustainalytics, the Carbon Disclosure

Project (CDP), and Thomson Reuters. The authors find that Fama and French (1993) and Carhart

(1997) asset-pricing models perform significantly better after the inclusion of the carbon risk factor.

They find no evidence of a carbon risk premium in the cross-section of returns. After conducting

a Campbell and Vuolteenaho (2004) decomposition, the missing premium is attributed to carbon

risk being associated more with unrewarded cash flow risk than with discount rate risk.4 Görgen

et al. (2020)’s paper is different from ours in several ways. First, Görgen et al. (2020) primarily

adopt an asset pricing perspective of the carbon risk factor as a driver of stock returns, while we

focus more on firm-level sensitivities towards such a factor as a measure of carbon risk. Second, the

construction of Görgen et al. (2020)’s carbon factor relies on a number of ESG variables designed to

capture differences in a firm’s climate change adaptability, its value chain, and the public’s perception.

Considering the many variables available to choose from and given that ESG data are notoriously

inaccurate (see, for example, Chatterji et al. (2016), Kotsantonis and Serafeim (2019), and Berg

et al. (2022)) and costly to obtain, we refrain from making additional assumptions on how firms are
4Campbell and Vuolteenaho (2004) predict that cash-flow risk should be priced at a larger premium than discount
rate risks, as the latter is more transitory. Görgen et al. (2020) however observe the reverse to be the case in their
sample period. Explanations for this finding could lie in the time-varying component of the price of cash-flow risk
and in the fact that after the global financial crisis, cash-flow shocks have been predominantly upward (Maio, 2013;
Campbell et al., 2013).
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exposed to climate risks, other than that such exposure is roughly proxied for by carbon emissions.

Our paper fits into a relatively recent literature that examines forward-looking, firm-level measures

of climate risk. Sautner et al. (2022) and Li et al. (2020) construct measures of corporate climate

risk from textual analysis of earnings call transcripts. Both studies use a similar methodology that

quantifies climate risk via the share of the earnings call conversations devoted to climate-related

topics. Sautner et al. (2022) go to great lengths to validate their Climate Change Exposure. The

measure indicates higher exposure for companies listed in countries with stronger climate regulations.

Compared to more traditional measures of carbon risk, a greater fraction of the variation in Climate

Change Exposures occurs at the firm level rather than at the sector, year, or country level. Based

on climate risk disclosures in annual reports, Kölbel et al. (2020) conclude that transition risks

have statistically and economically significant effects on the spreads in CDS markets, while physical

climate risks do not. Huynh and Xia (2021) consider the covariance between corporate bond returns

and the Engle et al. (2020) Climate Change News Index. Bonds with high climate news betas are

more expensive, consistent with their potential to hedge against climate risks. Similarly, Alekseev

et al. (2022) evaluate climate hedging portfolios formed by going long (short) the stocks that are

disproportionally bought (sold) by mutual fund managers after they have experienced local extreme

heat events.

Finally, our work adds to recent findings on the stock return implications of corporate carbon emis-

sions. Two of the most comprehensive works on this topic are Bolton and Kacperczyk (2021a) and

Bolton and Kacperczyk (2021b) who focus on the pricing of corporate carbon emissions in respec-

tively U.S. and global equity markets. In the former study, the authors conclude that more emissions

are associated with higher returns, yet only the indirect emissions display explanatory power beyond

the industry effect. The latter research utilises levels and percentage changes in firms’ emissions as a

proxy for long-term and short-term transition risks. A transition risk premium is mostly present in

the cross-section of North American, European, and Asian stocks. In Australian, African, and South

American stock markets, transition risk does not seem to be priced. Additionally, the global carbon

premium increased markedly following the 2015 Paris Agreement. A related study by Monasterolo

and De Angelis (2020) finds that the systematic risk of low-carbon assets has decreased after the

Paris Agreement, while carbon-intense assets have become riskier. Using information from option

prices, Ilhan et al. (2021) report larger downside tail risks for stocks with higher carbon intensities.

Moreover, the costs of protection against these tail risks are higher at times of heightened attention to

climate change. Hsu et al. (2023) examine the existence of a pollution premium in the cross-section

of U.S. stock returns. Their focus lies on mandatory toxic emissions disclosures, rather than on

greenhouse gas emissions. A long-short portfolio sorted on toxic emissions generates a return spread
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of 5.52% annually. The authors explain this ‘pollution premium’ through higher regulatory risks

faced by pollutive firms and provide empirical support for this hypothesis.

The remainder of this paper is organised as follows. Section 2 introduces our main sources of data

and our dataset construction procedure. In Section 3, we describe the construction of the pollutive-

minus-clean portfolio and the estimation of carbon betas. Results follow in Section 4, including the

validation of our estimates and main analyses. Section 5 concludes.

2 Data

2.1 Stock market and corporate data

For the main analysis of this paper, we combine U.S. stock market data from the Center for Research

in Security Prices (CRSP) with financial statements data from S&P Capital IQ Compustat. We

utilise the Wharton Research Data Services (WRDS) Linking Table to match observations from

CRSP’s Monthly Stock File with observations from Compustat’s Fundamentals Annual at the end of

June of the previous year.5 To mitigate survivorship bias resulting from Compustat’s data collection

procedure (Banz and Breen, 1986), we only include firms after they have appeared in Compustat for

two consecutive years.

We proceed by calculating several variables from the combination of fields in CRSP and Compustat.

To compute book-to-market ratios, we divide the book value of equity by the market capitalisation

at the end of January of the associated year. We divide the following items by total assets: book

leverage; capital expenditures; property, plant, & equipment; and research & development expenses,

resulting in the accounting ratios debt-to-assets, investment-to-assets, PP&E-to-assets, and R&D-

to-assets. We calculate return on equity by dividing net income by total shareholder’s equity. All

accounting variables are winsorised at the 1% and 99% cutoff points to mitigate the effect of outliers

and potential data errors. We calculate momentum by compounding a stock’s return over the past

12 months, excluding the most recent month to account for short-term reversal (Jegadeesh, 1990).

We utilise daily returns obtained from CRSP’s daily security file to estimate CAPM-implied market

betas and idiosyncratic return volatilities. Estimations are based on rolling windows containing three

years of daily return observations. We obtain data on U.S. factor returns from Kenneth French’s

data library, which we use in the estimation of CAPM-betas, idiosyncratic volatilities, and carbon

betas.6

5We only make use of the linking information if the link type is any of LU, LC, LS, LX, LD, LN, or LO and if the
link primary is P or C. At the time of matching, the link must be valid according to the link date and link end date.

6https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2.2 Emissions data

We collect information on greenhouse gas emissions from S&P’s Trucost, a leading provider of corpo-

rate emissions data. Trucost data are either reported or estimated by Trucost’s proprietary models.

Reported emissions originate from various sources, including the Carbon Disclosure Project (CDP),

MSCI, Sustainalytics, Bloomberg, ISS, and corporate sustainability reports. The extent to which

non-reported emissions are estimated varies. Some values are partial estimates, for example, derived

from a company’s usage of fossil fuel. Other estimates might be derived from partial disclosure in

corporate sustainability reports or private conversations with company representatives. A major-

ity of estimations result from Trucost’s proprietary model, which utilises an extensive input-output

model that associates business activities with environmental impacts. Trucost reports emissions ac-

cording to the standards set forth by the Greenhouse Gas Protocol.7 The Greenhouse Gas Protocol

decomposes emissions into three ‘scopes’. Scope 1 emissions include the direct emissions occurring

in a company’s production process. Scope 2 emissions are the indirect emissions associated with

the purchase of electricity, heat, or steam. All other emissions taking place in a company’s value

chain are accounted for as scope 3. As our database does not contain the complete data for scope 3

emissions, we only include scope 1 and scope 2 emissions in our analyses.8 We sum scope 1 and scope

2 to a combined scope 1 & 2, and calculate emission intensities for the combined and separate scope

1 & 2 emissions by dividing each of the total emissions by the associated firm’s revenues as reported

by Trucost. In the remainder of this paper, we refer to the combined scope 1 & 2 emissions when

using the terms emissions or total emissions, and we refer to the combined scope 1 & 2 emissions

scaled by revenues when we use the terms emission intensity or intensity.

2.3 Climate Policy Uncertainty Index

We follow Engle et al. (2020) in creating an index for climate news risk. The index levels are

determined by the textual similarity of news articles in the Wall Street Journal with a corpus of

climate change terms constructed from authoritative sources. We theorise that periods of high climate

change news are indicative of increased uncertainty around climate change regulation. Following

similarly constructed indices for Economic Policy Uncertainty (see Baker et al. 2016), we refer to this

index as the Climate Policy Uncertainty (CPU) index.

The CPU index is constructed as follows. First, we collect documents on climate change. Our corpus

includes the five Assessment Reports written by the UN Intergovernmental Panel on Climate Change
7https://ghgprotocol.org.
8Our Trucost data only includes the downstream scope 3 emissions, which are the indirect emissions that occur further
‘down’ a company’s value chain. These are emissions by a firm’s customers, but not by its suppliers.
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(IPCC). Because these reports are technical (see Sautner et al. 2022; Li et al. 2020), we extend the

climate change corpus with articles in the ‘climate change’ category on Wikipedia.9 We assume that

the writing in Wikipedia articles is more representative of the language used in newspapers than

the writing in official reports on climate change. We refer to the collection of texts from the IPCC

reports and the Wikipedia articles as the climate change corpus, denoted by CCC . We collect texts

of daily articles published in the Wall Street Journal starting from 1997. The collection of each

daily archive’s texts is referred to as CWSJ,t. We determine the CPU index as follows. We start

by applying several text preprocessing steps commonly used in Natural Language Processing.10 We

then perform a term frequency - inverse document frequency (TF-IDF) transformation to convert our

collection of text articles into numerical vector form.11 We apply the same TF-IDF transformation

to the climate change corpus CCC and each day’s collection of news article texts CWSJ,t, yielding

TF-IDF vectors denoted by vCC and vWSJ,t. Finally, for each day we compare vWSJ,t with vCC by

cosine similarity.12 The intuition behind this approach is that when news articles use climate change

terms in similar proportions as the texts related to climate change, the index indicates a high level

of climate change news risk (Engle et al., 2020). We lower the frequency of our measure from daily

to monthly by taking monthly averages of daily index levels. For ease of interpretability, we scale

index values such that the mean of the index equals 100.

Figure 4 plots the Climate Policy Uncertainty index through time. Along the horizontal axis, various

events related to climate change are reported. As can be seen, the CPU index generally rises when

such events occur. The index peaks in December 2009, when the 15th Conference of the Parties

(COP) was held in Copenhagen. COP15 was one of the first international conferences to bring

climate change to the highest political level. As a result of the conference, the Copenhagen Accord

was signed. The Accord expressed clear political intent to limit carbon emissions and respond to

climate change. The CPU index reached its second-highest level in November and December 2015,

during COP21 in Paris. At this conference, the Paris Agreement was negotiated. Around the end of

2019, the index remained at elevated levels. This period marked a series of mass protests to demand

action on climate change. These strikes coincided with the Climate Action Summit in New York.
9https://en.wikipedia.org/wiki/Category:Climate_change
10These involve, in the following order: removing punctuation, tokenising (splitting sentences into words), removing

stop words, lemmatising (reducing words to their word roots, e.g. the words ’climate’ and ’climatology’ both become
’climat’), and converting terms into bigrams (two-word collections of consecutive words).

11The TF-IDF algorithm converts words, in our case bigrams, into scores determined by the word’s frequency within a
document, penalised by its frequency across documents. Hence, a word occurring often in one document but rarely
in other documents receives a high score, as it is regarded as being informative for that certain document.

12Formally, the cosine similarity between two vectors is defined as the cosine of the angle between them, or equivalently
by the inner product of the vectors normalised to have unitary length. The cosine similarity reaches its maximum
of 1 when the angle between vCC and vWSJ,t equals 0◦.
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2.4 Other data

We collect data from various additional sources. In this section, we briefly describe the datasets used,

the data collection procedure, and the purpose of collecting the data.

1. Sautner et al. (2022) Firm-Level Climate Change Exposure. We compare our estimates

of carbon beta with Sautner et al. (2022) Climate Change Exposures (hereafter SvLVZ CCEs). This

measure is determined by the extent to which climate change-related words are used by the company’s

management and analysts during earnings calls. Besides general Climate Change Exposure, Sautner

et al. (2022) determine separate vocabularies for risks, opportunities, and regulations related to

climate change.13 We use the three components, as well as general climate change exposure in

our analysis. We cross-sectionally standardise all SvLVZ CCE exposure values to make their scales

comparable.

2. Temperature and drought statistics. We collect monthly temperature anomalies for the

United States from the U.S. Climate Reference Network.14 A month’s temperature anomaly is

defined as the temperature deviation from its 30-year average reference temperature. We download

the Palmer Z-Index, a derivative of the Palmer Drought Severity Index (PDSI; Palmer 1965) as

a measure of drought severity.15 The PDSI uses precipitation, temperature, and geographic data

to model available quantities of water to a location of interest. As the PDSI is inaccurate over

short frequencies (see, e.g. Karl (1986)), we use the Palmer Z-Index which is designed to be more

responsive on a monthly frequency. Negative values of -4 indicate extreme drought, values between

-1 to 1 indicate regular conditions, and values of +4 indicate unusually wet periods.

3. MSCI Climate-Value-at-Risk and MSCI Emissions Data. We obtain Climate-Value-at-

Risk (CVaR) data from MSCI for about 2,200 firms in our sample. CVaR has been designed to capture

firm-specific forward-looking valuation assessments regarding climate risk and opportunities.16 The

measure includes a wide array of information, including - but not limited to - corporate emissions

data, green patent issuance, exposure to physical climate risks, green revenues, and modeled outcomes

in different policy and technology scenarios. Values for CVaR are bounded by -100 and 100, where

-100 (100) indicates that a company is expected to be harmed by (benefit from) climate change. We

reverse the sign of CVaR to align it with traditional Value-at-Risk, and cross-sectionally standardise

it to enable comparison with other metrics. In additional robustness checks, we base the construction

of the PMC portfolio on MSCI’s corporate emissions data rather than Trucost’s.
13The data are available at https://osf.io/fd6jq/
14https://www.ncdc.noaa.gov/temp-and-precip/national-temperature-index/time-series/anom-tavg/1/0
15https://www.ncei.noaa.gov/access/monitoring/historical-palmers/
16https://www.msci.com/documents/1296102/16985724/MSCI-ClimateVaR-Introduction-Feb2020.pdf/
f0ff1d77-3278-e409-7a2a-bf1da9d53f30
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4. MSCI Country Indices. For tests on international carbon betas, we download daily returns

on 48 national equity indices from Refinitiv (formerly Thomson Reuters) Eikon. All index prices are

denominated in U.S. dollars. We collect data from January 2015 to December 2020. We use national

equity indices to estimate carbon betas on the country level, which we use for our validation tests in

Appendix 6.

5. Green Patents. Following Cohen et al. (2020), we download U.S. patents through the U.S.

Patent and Trademark Office’s (USPTO) Bulk Data Storage System.17 The USPTO provides text

files for all patents issued in the United States from 1976 onwards. We download patents granted

from 2010 up to and including 2020. We rely on two techniques to link patent issuance to our

dataset. First, we download the patent-to-company mapping from the Compustat Link table of

WRDS’ newly released US Patents (Beta) product.18 This patent-company linkage is available for

the 2011-2019 period. For this period, our patent database and that of WRDS cover almost the same

patents.19 A small difference (less than 1%) in patent coverage is likely the result of retrospective

changes in USPTO’s data or an occasional error in our or WRDS’s retrieval of patent files. Second,

we map the stated assignees in patent grants to the company names in our Compustat sample by

applying an approximate-string matching algorithm based on a cosine similarity comparison utilised

in section 2.3. We only match records if the confidence level exceeds 85%. At this level, manual

inspection of matching outcomes yields very few incorrect matches, yet this conservative approach

comes with the risk of overlooking valid links. We assume, however, that such valid links are covered

by WRDS’s linking table. When our matching algorithm disagrees with that of WRDS, we follow the

link proposed by WRDS, as we believe the linking table by WRDS is better able to deal with company

subsidiaries and name changes. For patents outside the 2011-2019 window, we first extrapolate the

WRDS linking table and otherwise rely on our linking procedure. To check the robustness of our

green patent construction procedure, we also download information on green patent shares from

MSCI.

To identify green patent issuance, we follow guidelines by the OECD as described by Haščič and

Migotto (2015). These guidelines describe the patent classifications that are related to a wide variety

of green technologies, for example, environmental management, water pollution abatement, waste

management, climate adaptation, biodiversity protection, renewable energy, greenhouse gas capture

and storage, and fuel efficiency. We supplement the guidelines of the OECD with the International

Patent Classification (IPC) Green Inventory.20 In our analyses, we proxy for green innovation by
17https://bulkdata.uspto.gov/
18Available at https://wrds-www.wharton.upenn.edu/pages/analytics/wrds-us-patents/
19We obtain over 99% of the patents in the WRDS database for the 2011-2019 period for which WRDS has patent

data available.
20See https://www.wipo.int/classifications/ipc/green-inventory/home
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Green Share; the number of green patents as a percentage of the total number of patents issued to

a company (Cohen et al., 2020). We download over 750,000 unique patents, matched to over 3,000

firms. A little under 10% of total patent issues are classified as green. Top green patent issuers, by

the total number of green patents, are IBM, Ford, General Electric, Intel, Apple, and Raytheon.

3 Methodology

3.1 The Pollutive-Minus-Clean portfolio

We regard the pollutive-minus-clean (PMC) portfolio as an observable proxy for carbon risk. The

PMC portfolio captures differences in the returns to a portfolio of polluting firms relative to the

returns to a portfolio of cleaner firms. The working of our carbon risk factor follows the mechanism

of the Pástor et al. (2020, 2022) model for ESG risk. In this model, ESG risks materialise via

two channels, the customer and the investor channel. A similar mechanism applies to carbon risk.

When climate concerns unexpectedly rise, for example, because the predicted path of temperature

warming worsens, customer demand shifts from ‘brown’ to ‘green’ products and services. Lower

demand negatively shocks the profitability of pollutive companies, and hence reduces these companies’

market values, while the opposite occurs for clean companies. The second channel involves investors’

preferences. Investors derive more utility from sustainable investments in times of climate stress,

either because they care about the climate or because they face public pressure to divest from brown

assets. Indeed, Choi et al. (2020) report that stocks with high carbon intensity underperform stocks

with lower carbon intensities during abnormally warm months. Their findings are mainly driven by

retail investors selling carbon-intensive stocks. Furthermore, investors may anticipate governments

imposing stringent climate change policies, as the likelihood of policy interventions increases in times

of heightened environmental concerns (see Pástor and Veronesi (2013) for political risk in general).

Selling pressure and increased discount rates induced by heightened climate concerns cause pollutive

firms to depreciate, and clean firms to appreciate, in value. As the PMC portfolio holds a net long

(short) position in brown (green) stocks, both channels lead to a reduction in the PMC portfolio’s

value in response to a climate shock. The opposite occurs when concerns regarding climate change

unexpectedly lessen so that the return on the PMC portfolio becomes positive.

We similarly construct the PMC portfolio as the Fama and French (1993) HML portfolio. PMC is

a self-financing portfolio that takes a long position in the most polluting 30% of firms and a short

position in the least polluting 30% of firms. We perform this sorting on scope 1 & 2 emissions, which

include both estimated and reported emissions. We do not consider scope 3 emissions for several
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reasons. First, our data only includes downstream scope 3 emissions, which measures the emissions

further ‘down’ a company’s value chain.21 As different firms operate at different levels in the value

chain, downstream emissions are less comparable between companies. Second, scope 3 emissions data

are by definition estimated rather than reported. There are considerable complexities in accurately

modeling emissions associated with all activities in a company’s value chain. As a result, when

comparing firms’ emissions, Busch et al. (2018), Berg et al. (2022), and Kalesnik et al. (2022) report

much lower pairwise correlations for scope 3 emissions than for scope 1 & 2 emissions. Third, because

scope 3 emissions are double-counted for firms active in the same value chains (see Kalesnik et al.

2022), they are much larger in magnitude than scope 1 and 2 emissions. Hence, combined scope

1, 2 & 3 emissions tend to be dominated by their scope 3 component and are relatively similar to

scope 3 emissions in isolation. While constructing the PMC portfolio, we adjust for the size bias that

results from sorting on corporate emissions. We do so by explicitly forming separate portfolios for

firms valued below and above the median NYSE firm, following Fama and French (1993). We define

breakpoints for polluting and clean firms at the 70th and 30th percentiles. For each year we form four

value-weighted portfolios; small/polluting (SP), big/polluting (BP), small/clean (SC), and big/clean

(BC). The return on PMC is then given by:

rPMC,t =
rSP,t + rBP,t

2
− rSC,t + rBC,t

2
, (1)

where rPMC,t is the return on the PMC factor on day t and rSP,t, rBP,t, rSC,t, and rBC,t are the

returns, respectively, on the Small / Polluting, Big / Polluting, Small / Clean, and Big / Clean

portfolios on day t. Figure 1 displays the cumulative log return on the PMC portfolio. The mean

return on PMC has been substantially negative over the 2007 to 2021 period. Returns to the PMC

portfolio are significantly lower in months where climate policy uncertainty increases and in months

that have abnormally high temperatures, as Panel B of Figure 1 shows. Table 1 compares the PMC

factor to the Fama and French (1993) factors and the Carhart (1997) momentum factor. Returns

to the PMC portfolio are negatively correlated with the market factor, indicating that the pollutive

leg on average holds firms with lower systematic risk. The PMC portfolio correlates positively with

value. This is expected, as the most pollutive firms tend to be value firms, while cleaner firms tend

to be growth firms. The procedure we follow to ensure size neutrality seems to work, as indicated

by the insignificant association between the carbon risk and size factors. To verify the robustness

of some of our portfolio construction choices, we alternatively construct PMC portfolios on other

sorting variables besides Trucost’s reported and estimated emissions. Figures A1 and A2 and Table
21E.g. for a gas station, downstream emissions include emissions from the cars consuming the station’s gasoline, while

upstream emissions include the emissions involved with the extraction of crude oil or refining of oil into gasoline.
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A3 in Appendix A report evidence that portfolios constructed by (i) using only reported emissions;

(ii) using only estimated emissions; (iii) using emissions intensities; and (iv) using emissions provided

by MSCI yield relatively similar portfolio returns.

3.2 Estimating Carbon Betas

To estimate carbon betas – i.e. return sensitivities to the PMC factor – we run time-series regressions

of the corresponding firm’s daily stock returns on PMC while controlling for the Fama and French

(1993) market, size, and, value factors and the Carhart (1997) momentum factor. We estimate:

Ri,t = αi+βRMRF
i RMRFt+βSMB

i SMBt+βHML
i HMLt+βUMD

i UMDt+βPMC
i PMCt+ϵi,t, (2)

where Ri,t is the excess return on stock i on day t, αi is the stock’s risk-adjusted outperformance, β’s

denote sensitivities to the factors, RMRFt, SMBt, HMLt, UMDt, and PMCt are respectively the

daily returns on the market, size, value, momentum, and carbon risk factors, and ϵi,t is the residual

term. Our interest lies in βPMC
i , which denotes the stock i’s carbon beta. We use a 36-month

estimation window, which thus contains about 750 daily return observations.22 In later tests, we

cross-sectionally standardise estimates of carbon beta when comparing them to other measures of

carbon risk. In all cases, we winsorise estimates at the 1% and 99% levels to mitigate the impact of

outliers.23

4 Results

4.1 Summary of validation exercises

To verify that our estimates of climate risk exposure align with expectations, are not overly governed

by industry effects, or are driven by spurious correlations, we subject firm-level estimates of carbon

betas to a battery of validation tests. The goal of these exercises is to make sure that variation

in carbon betas aligns with prior expectations from related studies on other climate risk measures

and with commonly held views on climate exposures. We first compare carbon betas across industry
22Besides considering several alternative carbon risk factor definitions (as shown in Figure A1 and Table A3 in Appendix

A), we have further included the Fama and French (2015) profitability and investments factors, performed the
regression on monthly instead of daily return observations, utilised an industry-neutral carbon risk factor, and
considered a carbon risk factor based on carbon intensities. Our validation results remain qualitatively similar.

23Our results are virtually unaffected by omitting to winsorise and by increasing the extent of winsorisation to 2% and
98% cutoff points.
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sectors. Figure 2A shows that we find the highest carbon betas in the Energy, Materials, and Utilities

sectors. These sectors are collectively responsible for over 70% of scope 1 & 2 emissions in our sample,

so their high loadings on the carbon risk factor are expected. On the contrary, we observe that firms

in the IT, Financial, and Health Care sectors tend to exhibit the lowest average carbon betas. The

negative carbon betas of the stocks in these industries indicate a tendency for high stock returns

in times of increasing climate concerns. Continuing our validation tests, we investigate how firm

characteristics correlate with estimates of carbon beta. We theorise that smaller, more capital-

intensive, lower-valued, less profitable, and less innovative firms are more exposed to climate risks.

These predictions largely turn out to be true. As demonstrated in Table 3, firms with higher climate

transition risk exposure tend to have, ceteris paribus, lower market capitalisation, higher property,

plant & equipment on their balance sheets, higher capital investments, lower research & development

expenses, lower profitability, and higher greenhouse gas emissions. We next turn to comparisons of

carbon beta with alternative measures of climate risk. Correlation Table 4 reveals robust associations

with emissions, emission intensities, Sautner et al. (2022) Climate Change Exposures, MSCI Climate-

Values-at-Risk, and MSCI Green Scores. These associations go in a direction that is ex-ante in line

with expectations. Appendix B describes our validation tests in greater detail and provides additional

validation efforts.

4.2 Carbon Beta and Realisations of Climate Risk

In this section, we investigate equity return dynamics during times in which climate change risks

materialise. We evaluate two proxies for aggregate climate risks. First, we consider shocks to an

index that captures how frequently climate change is reported in the news, where we assume such

shocks coincide with uncertainty regarding future climate policies. Second, we consider extreme

weather events in the contiguous United States. Research shows that during extreme weather events,

investors become more concerned about climate change (Alekseev et al., 2022; Huynh et al., 2021;

Choi et al., 2020; Bansal et al., 2016). Our interest lies specifically in the interaction effect between

carbon beta and the proxy for materialising climate risk on stock returns. Specifically, we seek to

answer the question of how market responses to materialising climate risks are different for firms

with high versus low carbon betas.

To answer this question, we adopt the framework of Daniel and Titman (1997) and Bolton and

Kacperczyk (2021a,b). We utilise specifications of the form:

Ri,t = βCBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (3)
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where Ri,t is firm i’s excess stock return in month t, CBi,t−1 is the carbon beta at the end of month

t-1, Xi,t−1 is a vector of lagged control variables including the natural logarithm of firm i ’s market

capitalisation, its book-to-market, return on equity, book leverage, investment-to-assets, PP&E-to-

assets, and stock i’s CAPM beta, idiosyncratic volatility, and momentum, ci is a sector fixed effect,

and µt is a time fixed effect. Alternatively, we replace CBi,t−1 with other measures of climate risk,

in which case we cross-sectionally standardise both measures to enable comparison. We include

industry sector and time-fixed effects to mitigate possible bias resulting from unobserved effects that

vary across sectors respectively in time. Robust standard errors are clustered at the firm level to

adjust for possible serial correlation of residuals within firms.

4.2.1 Carbon Beta and Climate Policy Uncertainty

As a first proxy for realisations in climate risks, we utilise the Climate Policy Uncertainty index.

We study the effects of innovations in the CPU index and its interaction with carbon beta on stock

returns. Our specification is the following variation on Equation (3):

Ri,t = α+ βCBi,t−1 + γ CBi,t−1 ×∆CPUt + θ ∆CPUt + λXi,t−1 + ci + µt + ϵi,t, (4)

where Ri,t is the excess return on the company i ’s stock in month t, CBi,t−1 denotes the stock

i ’s carbon beta at the end of month t-1, ∆CPUt is the standardised percentage change in the

CPU index from month t-1 to month t, Xi,t−1 is a vector of lagged control variables including

the natural logarithm of firm i’s market capitalisation, its book-to-market, return on equity, book

leverage, investment-to-assets, PP&E-to-assets, and stock i’s CAPM beta, idiosyncratic volatility,

and momentum, ci is the sector effect, and µt is the year-month effect. We are primarily interested

in γ, as it signifies the incremental monthly return associated with a one standard deviation increase

in carbon beta for each standard deviation with which the CPU index increases. We estimate

similar regression models where we replace carbon beta and its interaction term with standardised

log-transformed scope 1&2 emissions or standardised emission intensities to uncover any potential

differences in market responses to CPU shocks.

Table 6 reports our findings. Our results show that in months where the CPU index increases

(decreases), stocks with higher carbon betas tend to have lower (higher) returns. This finding is

economically sizeable: for two firms that differ only by a one standard deviation difference in carbon

beta, the firm with the higher carbon beta will tend to underperform the other firm by 15 bps

(equivalent to 1.80% annualised) for each standard deviation with which the CPU index increases.

To provide a more precise comparison with emissions intensities and emissions, column (2) reports
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regression estimates for the subsample of observations that have available emissions data. Within this

smaller subsample, the coefficient roughly halves, but the effect remains economically meaningful and

statistically significant at the 1% level. Turning to column (3), we repeat the analysis for emissions

and emissions intensities instead of carbon betas. We do not find a similar effect when interacting

innovations in the CPU with companies’ emissions intensities. Column (4), on the contrary, does

reveal a similar pattern for emissions. The effect however is subsumed by the inclusion of the carbon

beta interaction in column (5), in which the interaction effect of carbon beta remains statistically

significant. Our findings suggest that carbon betas are able to sort stocks according to their exposure

to climate policy uncertainty. The evidence is also consistent with an explanation of carbon betas

being able to identify green firms that act as hedging assets against sudden realisations of climate

change risks, to the extent that such realisations are reflected by our CPU index.

4.2.2 Stock Returns and Extreme Weather Events

Bansal et al. (2016) and Choi et al. (2020) theorise and empirically validate that pollutive firms tend

to exhibit poorer returns during extreme weather since the effects of climate change are more salient

in such periods. In our first test, we use temperature anomaly observations from the U.S. Climate

Reference Network above the 90th percentile of past 30-year observations to classify months in which

temperatures are abnormally high. Our second test focuses on drought events. We utilise values of

the Palmer Z-Index (Palmer, 1965) below the 10th percentile of past 30-year observations to classify

periods of extreme drought. The 10th percentile equates to a Z-Index of just below -2 in our sample,

which according to Palmer (1965) indicates moderate drought conditions. We estimate the model:

Ri,t = σEWt + ηCBi,t−1 + ϕEWt × CBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (5)

where Ri,t is firm i’s excess stock return in month t, EWt is an extreme weather dummy equal to

1 if the temperature anomaly or drought severity of month t ranks among the 10% most extreme

months, CBi,t−1 is the carbon beta at the end of month t-1, Xi,t−1 is a vector of lagged control

variables including the natural logarithm of firms i’s market capitalisation, book-to-market, return on

equity, book leverage, investment-to-assets, PP&E-to-assets, and stock i’s CAPM beta, idiosyncratic

volatility, and 12-month-minus-1-month momentum, ci is a sector fixed effect, and µt is a time fixed

effect. Our coefficient of interest is ϕ, which can be interpreted as the additional return associated

with a one standard deviation increase in carbon beta, ceteris paribus, in times of an extreme weather

event.

We find that firms with higher carbon betas experience lower returns during abnormally warm
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months. The results are presented in Table 7. We repeat the analysis for two alternative firm-

level indicators of carbon risk: Scope 1 & 2 emissions intensity and the natural logarithm of Scope

1 & 2 emissions. These variables do not show a similar pattern in extreme temperature months.

In months with temperature anomalies above the 90th percentile, a standard deviation increase in

carbon beta tends to be associated with about a 33 bps lower monthly excess return.

In Table 8, we turn our attention to drought spells. Again, we find that carbon beta is the only

proxy that shows a significantly negative interaction effect with equity returns. These findings can be

explained in several ways. For one, it could be the case that during extreme weather events, investors

are more aware of the consequences of climate change, leading them to disproportionally sell holdings

they perceive as contributing to a changing climate. This could follow a similar mechanism as in

Huynh et al. (2021), who find that fund managers divest from carbon-intense investments after they

experience local air pollution. In our case, carbon beta might partially capture investors’ perception

of firm-specific contribution to climate change. Second, investors might regard extreme weather

events as realisations of climate risk, and therefore buy stocks that they deem a ‘hedge’ against

such risk. Here, negative carbon betas proxy for such hedging potential. Yet we cannot rule out a

potential third explanation, in which extreme weather directly affects the earnings of high carbon

beta companies more so than the earnings of lower carbon beta companies.

4.3 Capturing forward-looking aspects of carbon risks

4.3.1 Green Innovation

Cohen et al. (2020) report a striking disconnect: firms operating in the Energy sectors are responsible

for a large share of greenhouse gasses and are amongst the worst performers on environmental issues,

yet they are the most active in patenting low-carbon technologies. As ‘green innovators’ are likely

to be less exposed to climate-related risks and might even benefit from a low-carbon transition, we

expect carbon beta to partially pick up differences in green innovation output. Especially in the

Energy sector, we expect this result to appear, as here the ‘ESG-innovation disconnect’ is most

pronounced. To test whether active issuers of green patents have lower carbon beta, we exploit the

main measure of green innovation used by Cohen et al. (2020): Green Share, determined by the

number of green patents granted to a company at time t as a fraction of total patents granted to

that company. Specifically, we estimate:

Si,t = σGreenSharei,t + λXi,t−1 + ci + µt + ϵit, (6)
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where Sit is either firm i’s cross-sectionally standardised carbon beta, scope 1 & 2 emissions intensity,

or the natural logarithm of total scope 1 & 2 emissions in month t; Xi,t−1 is a vector of lagged firm

characteristics that includes the natural logarithm of the firm’s market capitalisation, its book-to-

market ratio, return on equity, book leverage, investments-to-assets, PP&E-to-assets, and R&D-to-

assets; ci is an optional sector fixed effect; and µt is a time fixed effect.

Table 9 reports our estimates for the specification in Equation (6). In column (1), we regress carbon

beta on green innovation and firm-level control variables using our complete sample. In this sample,

which includes firms in sectors other than the Energy sector, an economically small yet statistically

significant negative relationship is observed between green innovation and carbon beta. That is, firms

that are more active in issuing green patents tend to have lower climate risk exposure as indicated

by carbon beta. The effect is small, however, as a unit (theoretically, the maximum increase possible

in green innovation) increase in green innovation is only associated with a reduction of about 7%

of a cross-sectional standard deviation in carbon beta. In column (2), we focus our analysis on

the Energy sector, where we expect green patenting to be most important based on Cohen et al.

(2020)’s findings. The negative relationship between carbon beta and green innovation is much more

pronounced within the Energy sector. A unit increase in green share is associated with about 0.3

of a standard deviation reduction in carbon beta. Moving to emission intensity in column (3) and

the natural logarithm of emissions as the dependent variable in column (4), we do not find a similar

effect. As a robustness check, we repeat the analysis using MSCI Green Patent Share as the measure

of green innovation. Table A2 in Appendix A presents the results. Here, the coefficient on green

innovation for all sectors is not significant at the 10% level. When focusing the analysis only on the

Energy sector, we do however find the same pattern. That is, within the energy sector, firms that are

more active in patenting green technologies have lower carbon betas yet are not significantly different

in terms of emissions or emission intensities. Coupled with Cohen et al. (2020)’s observation that

much of green innovation is driven by the Energy sector, our findings hold important implications

for investors. Our results suggest that divestment from the Energy sector also cuts funding to green

innovators, while a divestment strategy that targets high-carbon beta firms operating in the Energy

sector still allocates to those firms most productive in researching low-carbon innovation.

4.3.2 Unobserved Factors of Forward-Looking Climate Risk

Climate-Value-at-Risk (CVaR) is a measure developed by MSCI that incorporates forward-looking

and corporate valuation assessments of the impact of climate change and related policies on asset

prices. MSCI includes a wide variety of aspects in the estimation of CVaR. Firm emissions and

green patent innovations are its main determinants. The measure also incorporates various proxies
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for physical climate risks, transition scenario analyses, low-carbon revenues, and abatement policies.

The objective of our analysis is to investigate whether or not carbon betas correlate with forward-

looking aspects of carbon risk as modeled by CVaR. We are specifically interested in the components

of CVaR unrelated to emissions and green innovation. To achieve this objective, we estimate:

CVaRit = α+ σGreenShareit + λln(Emissions)it + γCBit + ci + µt + ϵit, (7)

where CVaRit is MSCI’s Climate-Value-at-Risk; GreenShareit is a firm’s share of green patents

relative to total patents; ln(Emissions)it is the natural logarithm of scope 1 & 2 emissions; CBit is

a firm i’s carbon beta at time t; and ci is an optional industry fixed effect. Note that we make use

of the information provided by MSCI rather than our manually collected data on green innovation.

We do so because the measure of green innovation provided by MSCI is used as one of the inputs to

the estimation of CVaR, and thus is most suited for orthogonalising CVaR to green innovation.

Regression estimates are presented in Table 10. The specification in column (1) does not include

sector-fixed effects while the specification in column (2) does. Emissions and green innovation are

positively, respectively negatively, associated with CVaR. This result is by construction, as emis-

sions and green innovation are used in the evaluation of CVaR by MSCI. In both specifications, the

coefficient on carbon beta is positive and statistically significant. Our findings indicate a strong as-

sociation between components of CVaR unrelated to emissions characteristics and green innovation

and between carbon beta. Even while controlling for industry effects, the coefficient on carbon beta

remains statistically significant, indicating that the information captured by carbon beta does not

only vary at the industry level and must thus partly be firm-specific. As column (2) in Table 10 re-

ports, increasing carbon beta by one standard deviation, while keeping emissions, green innovation,

and industry membership constant, is associated with about a 7.7% standard deviation increase in

CVaR. This indicates that carbon beta correlates with factors included in CVaR other than emis-

sions and green innovation, for example, exposure to low-carbon technologies, exposure to carbon

abatement policies, or green revenues.

4.4 Pricing of Carbon Risk

In this section, we provide evidence on the asset-pricing implications of climate transition risk ex-

posures as proxied for by carbon beta. We employ a similar specification as in our other return

regressions:
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Ri,t = α+ θCBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (8)

where Ri,t is the excess return on the company i ’s stock in month t, CBi,t−1 denotes the stock i ’s

carbon beta at the end of month t-1, Xi,t−1 is an optional vector of lagged control variables includ-

ing company size, book-to-market, return on equity, book leverage, investment-to-assets, PP&E-to-

assets, and stock i’s CAPM beta, idiosyncratic volatility, and momentum, ci is the sector effect, and

µt is the year-month effect. We are interested in θ, the carbon risk premium, which can be interpreted

as the additional return associated with a one standard deviation increase in carbon beta. As carbon

betas are estimated imprecisely – due to estimation errors – their use as explanatory variables creates

an errors-in-variables (EIV) problem. This biases the estimated coefficient toward zero. If the ‘true’

carbon premium would be positive, then it would be underestimated by regression Equation (8). We

employ Jegadeesh et al. (2019)’s approach to correct this issue. Jegadeesh et al. (2019) propose an

instrumental variable methodology that adjusts for the EIV bias by estimating betas on disjoint sam-

ple periods. In practice, this amounts to estimating carbon betas separately using only the (daily)

returns in odd or even months. As the measurement errors are thus by definition uncorrelated, the

EIV bias is then resolved by a two-stage least-squares regression estimation where the prior month

beta is used as an instrument. The procedure is outlined in detail in Appendix C.

Table 11 reports our results. In column (1), where we do not additionally control for other factors

known to affect returns and exclude industry-fixed effects, the carbon risk premium shows negative.

This “carbon risk discount" is consistent with the underperformance of the PMC portfolio displayed

in Figure 1. Including control variables in column (2) takes away some of the negative coefficient

suggesting that the negative premium observed in column (1) is partly driven by factors attributable

to characteristics that were negatively rewarded over the sample period and positively correlated with

carbon beta, or vice versa. Our analysis also reveals that the perceived underperformance of high

carbon beta firms is driven by an industry effect: firms with high (low) carbon betas tend to operate

in sectors that have shown below (above) average returns over the sample period. Including industry

fixed effects to correct for this pattern, as column (3) does, turns the carbon risk premium insignificant

from zero. We believe that both controlling for additional factors and including industry-fixed effects

results in the most credible and precise identification of a carbon risk premium. The coefficients

estimated according to this specification, reported in column (4) of the Table, uncover that a standard

deviation increase in carbon beta tends to be associated with an additional 9.6 bps monthly return,

ceteris paribus, or about 1.15% annualised. Table C1 in Appendix C presents the results without

the application of Jegadeesh et al. (2019)’s correction. In this case, the (underestimated) carbon

risk premium equals about 5.6 bps a month, or 0.6% annualised, suggesting the size of the EIV bias
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amounts to about half of the carbon risk premium.

4.5 Corporate Bond Carbon Betas

Appendix D extends the concept of carbon beta to corporate bonds. We download information on

U.S. corporate bond trades from the FINRA’s Trade Reporting and Compliance Engine (TRACE)

Enhanced and follow the procedures of Dick-Nielsen (2009) and Dick-Nielsen (2014) to clean prices.

More details about dataset construction are provided in Appendix D, which also includes descriptive

statistics for the bond sample in Table D1.

Figure D1 in Appendix D presents average carbon betas by bond issuer industry. The pattern in

industry variation in bond carbon betas is close to that of industry variation in equity carbon betas

in Figure 2A. Large positive carbon betas occur mainly in the Energies and Materials sectors, while

there are negative carbon betas in the Financial sector. Unique to the sample of corporate bonds is

that we can exploit variation in credit ratings and bond maturities. We expect lower credit ratings to

cause higher transition risk exposure, as capital-constrained firms are less able to meet the investment

needed for a low-carbon transition. We also expect bonds of longer maturity to be more exposed,

as the effects of transition are expected to be more severe further into the future. Figure D2 in

Appendix D shows that our expectations hold.

5 Conclusion

We propose a new and complementary measure of climate risk determined by the extent to which an

asset’s return correlates with a carbon risk factor. This carbon risk factor seeks to capture unexpected

changes in consumers’ and investors’ concerns about the climate. As a candidate for the carbon risk

factor, we propose the pollutive-minus-clean (PMC) portfolio. The PMC portfolio is a self-financing

portfolio formed by a long position in the 30% of stocks with the highest carbon emissions, offset by a

short position in the 30% of stocks with the lowest emissions. Regressing individual stock returns on

the PMC portfolio’s returns and the Fama and French (1993) and Carhart (1997) factors, we regard

the loadings on the PMC portfolio as the firm-level exposure to climate transition risk.

Our approach is complementary to conventional approaches that measure climate risk exposure.

First, the methodology covers a large universe of assets for which a sufficient history of returns is

observed. Our framework is not limited to a specific asset class either. Second, the measure is

broad in scope, as it reflects the market’s consensus view on a company’s climate risk. Due to the

market-based nature of our measure, potentially any aspect deemed relevant to climate risk exposure
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might be reflected. For example, the availability of clean technologies, a company’s innovative ability,

leadership quality, industry competition, and financial condition. Regression of carbon beta on firm

characteristics indeed shows that variation in carbon beta aligns with our expectations. Larger,

innovative, and profitable firms have lower climate risk exposure, while capital-intensive and carbon-

intensive firms have higher climate risk exposure. Subsequent comparisons of carbon beta estimates

with alternative (commercial) measures of climate risk at the firm level also reveal robust positive

associations. Finally, our concept enables an intuitive distinction between assets that are most at risk

from a low-carbon transition and assets that are well-posed to benefit from such a shift. We show

in related analyses that returns between low- and high-carbon beta firms differ markedly in months

in which climate shocks materialise. Our results indicate that during months in which uncertainty

surrounding future climate policy spikes, assets with low carbon betas outperform assets with high

carbon beta. We observe similar return patterns for months with abnormally high temperatures, and

for months that are exceptionally dry in precipitation.

A shortcoming of our approach lies in the use of emissions as the basis for the PMC portfolio. As

corporations only started reporting emissions in the early 2000s, our proxy for the carbon risk factor

covers a limited history. Alternative proxies for a carbon risk factor could be informative too. One

could use the price of emission allowances, for example, now that emissions trading schemes are

becoming more prevalent. Weather-related securities, or certain commodities, might also be suitable

candidates. Even non-tradable climate risk factors could be evaluated, perhaps based on textual

information akin to the Climate Policy Uncertainty index which we utilised.

Investors can use our framework to create climate-aware investment strategies. Most investors can

utilise our approach as it is transparent, accessible, and easily replicated. Carbon betas could thus

be used by investors for whom it is too costly to make use of commercial alternatives, e.g. small

retail investors or low-cost ETF providers. Carbon beta can also be employed as an indicator of

‘climate hedge’ potential and used for the construction of hedge portfolios with high returns in periods

of climate stress. Our methodology might be valuable to academics in assessing the asset pricing

implications of climate risk, as our approach yields a cross-sectionally ‘rich’ dataset. Lastly, regulators

and policymakers could use carbon beta to identify highly exposed firms to carbon risk. Our empirical

results indicate that carbon betas capture green innovation, in particular in the emission-intensive

Energies sector. As such, regulators and policymakers could employ our framework as a tool to

disentangle ‘green innovators’ from otherwise pollutive firms.
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6 Tables and Figures

Figure 1: Performance of the PMC Portfolio
The figure in (a) plots the cumulative log return on the pollutive-minus-clean portfolio. The PMC portfolio
is constructed by taking a long position in the 30% of firms with the highest carbon emissions, offset by a
short position in the 30% of firms with the lowest emissions. Similar to Fama and French (1993), we enforce
size neutrality by defining the PMC portfolio separately for samples of small and large firms. Details of the
construction procedure are described in Section 3.1. The figure in (b) plots the performance of the PMC
portfolio conditional on two proxies for materialising climate risks: Terciles of month-to-month changes in
the Climate Policy Uncertainty index introduced in Section 2.3 and the 10% of months with the highest
temperature deviations from long-term averages (see Section 2.4).

(A) Performance of the PMC Portfolio

(B) Performance of the PMC Portfolio Conditional on Materialising Climate Risks
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Figure 2: Industry Sector and Geographic Variation in Carbon Beta
The figure displays the coefficients estimated by regressing Carbon Beta on two-digit GICS Industry Sector
fixed effects (Panel A) and headquarter state fixed effects (Panel B). The sample period is January 2007 to
December 2020. The coefficients in Panel A are estimated with the specification in Equation (9), while Panel
B follows a similar specification. The 95% confidence intervals displayed in Panel A are based on robust
standard errors adjusted for clustering at the firm level.

(A) Industry Sector Fixed Effects

(B) Headquarter State Fixed Effects
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Figure 3: International Variation in Carbon Beta
The figure displays the coefficients estimated by regressing international Carbon Beta on country-fixed effects.
Returns are based on each country’s respective MSCI country index. The sample period is January 2015 to
December 2020. Data comes from Refinitiv (formerly Thomson Reuters) Eikon.
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Figure 4: Climate Policy Uncertainty Index
The figure plots the Wall Street Journal-based Climate Policy Uncertainty (CPU) index over time alongside various events related to climate policy. The
CPU index is defined as the textual similarity between daily articles published in the Wall Street Journal and a corpus of documents on climate change.



Table 1: Factor Return Descriptive Statistics
This table reports the mean monthly returns, the monthly return volatilities, and pairwise return correlations
of the market (RMRF), value (HML), size (SMB), momentum (UMD), and carbon (PMC) factors. Returns
on the RMRF, HML, SMB, and UMD factors are obtained from Kenneth French’s website. The sample
period is January 2004 to December 2020. *, **, and *** denote statistical significance at the 10%, 5%, and
1% level, respectively.

Correlations

Mean Return (%) Std. Dev. (%) RMRF HML SMB UMD PMC

RMRF 0.62 4.35 1.00 - - - -
HML -0.12 2.71 0.24*** 1.00 - - -
SMB 0.14 2.40 0.34*** 0.19*** 1.00 - -
UMD 0.17 4.62 -0.43*** -0.33*** -0.10 1.00 -
PMC -0.28 1.97 -0.13** 0.18*** -0.09 0.13* 1.00
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Table 2: Descriptive Statistics CRSP - Compustat - Trucost Merged
The table reports descriptive statistics on the variables used in our analysis. Panel A reports company and market variables. Panel B reports emissions variables.
Panel C reports descriptive statistics for firms with high emissions × market capitalisation: firms in the top 30% of emissions with market capitalisations below the
median NYSE firms (Small / Polluting) and firms in the top 30% of emissions with market capitalisations above the median NYSE firm (Big / Polluting). These
firms constitute the long leg of the Pollutive-Minus-Clean portfolio. Panel D reports descriptive statistics for firms with low emissions × market capitalisation: firms
in the bottom 30% of emissions with market capitalisations below the median NYSE firms (Small / Clean) and firms in the bottom 30% of emissions with market
capitalisations above the median NYSE firm (Big / Clean). These firms constitute the short leg of the Pollutive-Minus-Clean portfolio. See Section 3.1 for more
details.

Percentiles

N.o. Obs. Mean SD 1% 5% 25% Median 75% 95% 99%

Panel A: Firm-level and market variables

Excess Return (%) 786,481 0.676 14.712 -39.801 -21.837 -6.243 0.359 6.764 23.540 51.866
Market Cap. (millions) 701,774 5,358 24,972 7 19 132 592 2,545 21,098 88,765
Book/Market* 701,774 0.663 0.678 -0.617 0.034 0.268 0.509 0.856 1.852 4.152
Return on Equity* 788,412 -0.015 0.711 -3.970 -0.934 -0.040 0.073 0.148 0.445 3.209
Debt/Assets* 785,576 0.190 0.208 0.000 0.000 0.006 0.124 0.312 0.603 0.901
Investment/Assets* 783,907 0.041 0.057 0.000 0.000 0.005 0.021 0.052 0.156 0.324
Property, Plant, & Equipment/Assets* 701,774 0.418 0.436 0.000 0.000 0.066 0.268 0.674 1.242 1.936
Research & Development/Assets* 701,774 0.049 0.119 0.000 0.000 0.000 0.000 0.037 0.261 0.672
Carbon Beta 682,022 0.052 0.557 -1.197 -0.777 -0.266 0.013 0.312 1.034 1.830
Idiosyncratic Volatility (%) 765,204 40.823 21.938 11.855 15.195 23.903 35.437 52.546 85.790 110.428
CAPM Beta 765,204 0.976 0.510 -0.127 0.125 0.631 0.976 1.304 1.850 2.303
Momentum 737,261 0.065 0.469 -0.831 -0.621 -0.216 0.031 0.265 0.879 2.033

Panel B: Emission variables

Scope 1 Emissions (millions tons CO2) 238,902 1.558 8.921 0.000 0.000 0.003 0.020 0.128 4.692 40.364
Scope 2 Emissions (millions tons CO2) 238,902 0.276 0.987 0.000 0.000 0.006 0.032 0.136 1.227 4.600
Scope 1 & 2 Emissions (millions tons CO2) 238,902 1.834 9.298 0.000 0.000 0.011 0.065 0.339 6.091 42.451
Scope 1 Emission Intensity (tons CO2/$ mil-
lion)

238,902 161.869 596.842 0.234 0.540 3.716 13.580 30.009 764.240 4303.386

Scope 2 Emission Intensity (tons CO2/$ mil-
lion)

238,902 33.099 45.600 0.929 1.127 7.822 17.611 41.608 117.576 285.483

Scope 1 & 2 Emission Intensity (tons CO2/$
million)

238,902 198.877 623.588 1.731 2.133 13.942 38.246 77.493 893.624 4447.235

*Winsorised at the 2% level.



Table 3: Carbon Beta and Firm Characteristics
This table reports the regression coefficients obtained from regressing monthly, firm-level estimates of
Carbon Beta on firm characteristics. The regression equation is given by Equation (10). Firm-specific
characteristics are derived from Compustat data. Corporate greenhouse gas emissions are obtained from
Trucost. Standard errors are clustered at the firm level. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.

Dependent variable: Carbon Beta†

(1) (2) (3) (4)

ln(Market Cap.) -0.023*** -0.197*** -0.052*** -0.127***

(0.005) (0.012) (0.004) (0.011)
Book/Market 0.124*** 0.100*** 0.078*** 0.051*

(0.014) (0.033) (0.013) (0.027)
Return on Equity -0.013 -0.024* -0.012* -0.012

(0.009) (0.013) (0.007) (0.011)
Debt/Assets 0.368*** 0.310*** 0.164*** 0.166***

(0.044) (0.067) (0.035) (0.053)
Investment/Assets 2.944*** 3.138*** 1.136*** 1.100***

(0.237) (0.493) (0.169) (0.289)
Property, Plant, & Equipment/Assets 0.740*** 0.524*** 0.183*** 0.151***

(0.032) (0.058) (0.025) (0.040)
Research & Development/Assets -0.886*** -1.244*** -0.526*** -1.171***

(0.076) (0.144) (0.077) (0.147)
ln(Emissions)† - 0.510*** - 0.266***

- (0.025) - (0.025)

Year - Month FE Yes Yes Yes Yes
Industry FE No No Yes Yes
N.o. Obs. 595,293 200,917 595,202 200,917
R2-Adj. 0.243 0.472 0.421 0.608

†Indicates a cross-sectionally standardised variable.
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Table 4: Correlations Between Carbon Beta and Alternative Measures of
Climate Risk
This table reports pairwise correlation coefficients between carbon beta and alternative
firm-level measures of climate risk. The sample period is January 2007 to December
2020. SvLVZ CCE is the Sautner et al. 2022 Climate Change Exposure measure. MSCI
CVaR is the MSCI Climate-Value-at-Risk measure. Emissions and emission intensity
data are from Trucost. Other data collection procedures are described in Section 2.4. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Carbon ln( Emission SvLVZ MSCI
Beta Emissions) Intensity CCE CVaR

Carbon Beta 1.00 - - - -
ln(S1&2 Emissions) 0.49*** 1.00 - - -
S1&2 Emission Intensity 0.34*** 0.48*** 1.00 - -
CC Exposure 0.19*** 0.24*** 0.50*** 1.00 -
CVaR 0.36*** 0.44*** 0.41*** -0.03 1.00
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Table 5: Carbon Beta and the Sautner et al. (2022) Climate Change
Exposures
This table reports the full set of coefficients obtained from estimating a similar model
as in Equation (10). The sample period is from January 2007 to December 2020.
CCE is the Sautner et al. (2022) Climate Change Exposure defined as the extent to
which a company’s earnings analyst calls are devoted to discussing regulatory risks,
opportunities, and physical risks related to climate change. This table reports the
coefficients obtained from estimating a similar regression as in Equation (10). All
variables are standardised. Standard errors are clustered at the firm level. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Carbon Beta†

(1) (2) (3) (4) (5)

CCE† 0.205*** - - - -
(0.012) - - - -

CCERegulatory
† - 0.158*** - - 0.112***

- (0.009) - - (0.009)
CCEOpportunities

† - - 0.159*** - 0.114***

- - (0.012) - (0.011)
CCEPhysical

† - - - 0.044*** 0.027***

- - - (0.006) (0.005)

N.o. Obs. 350,339 350,339 350,339 350,339 350,339
R2-Adj. 0.043 0.026 0.026 0.002 0.038

†Indicates a cross-sectionally standardised variable.
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Table 6: Carbon Beta, Climate Policy Uncertainty, and Stock Returns
This table reports the full set of coefficients obtained from estimating Equation (4). The sample period
is from January 2007 to December 2020. ∆CPU is the monthly percentage change in the Climate Policy
Uncertainty index, as defined in Section 2.3. All regressions include sector and year-month fixed effects.
Standard errors are clustered at the firm level. *, **, and *** denote statistical significance at the 10%,
5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta† × ∆CPU† -0.150*** -0.072*** - - -0.058*

(0.019) (0.025) - - (0.029)
Carbon Beta† 0.037 0.045 - - 0.014

(0.028) (0.047) - - (0.047)
Emissions Intensity† × ∆CPU† - - -0.026 - 0.012

- - (0.018) - (0.022)
Emissions Intensity† - - -0.052* - -0.112***

- - (0.031) - (0.038)
ln(Emissions)† × ∆CPU† - - - -0.064** -0.040

- - - (0.028) (0.037)
ln(Emissions)† - - - 0.181** 0.245***

- - - (0.081) (0.092)
∆CPU† 0.873** 1.293* 1.275* 1.274* 1.293*

(0.398) (0.743) (0.742) (0.743) (0.741)
ln(Market Cap.) -0.014 0.062*** 0.064*** -0.003 -0.019

(0.013) (0.023) (0.023) (0.035) (0.038)
Book/Market 0.130*** -0.175 -0.161 -0.239* -0.253**

(0.046) (0.120) (0.119) (0.126) (0.127)
Return on Equity 0.143*** 0.109 0.109 0.100 0.096

(0.042) (0.076) (0.076) (0.076) (0.076)
Debt/Assets 0.149 0.291 0.314 0.219 0.193

(0.111) (0.202) (0.203) (0.201) (0.201)
Investment/Assets -1.645*** -1.139 -1.145 -0.888 -0.942

(0.596) (1.217) (1.206) (1.211) (1.202)
Property, Plant, & Equipment/Assets 0.075 -0.145 -0.108 -0.242* -0.237*

(0.073) (0.133) (0.135) (0.138) (0.138)
CAPM Beta 0.153*** -0.481*** -0.491*** -0.494*** -0.495***

(0.044) (0.111) (0.109) (0.109) (0.112)
Idio. Volatility -1.520*** 3.918*** 3.930*** 3.905*** 3.951***

(0.189) (0.540) (0.538) (0.539) (0.537)
Momentum 0.296*** -0.086 -0.088 -0.091 -0.093

(0.054) (0.112) (0.112) (0.112) (0.112)

Year - Month FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.253

†Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Table 7: Carbon Beta, Extreme Temperature, and Stock Returns
This table reports the full set of coefficients obtained from estimating regression Equation (5). The sample
period is from January 2007 to December 2020. Temp.Anomaly is a dummy variable equal to 1 if the associated
month’s temperature anomaly is above the 90th percentile and 0 otherwise. All regressions include sector and
year-month fixed effects. Returns are multiplied by 100. Standard errors are clustered at the firm level. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta† × Temp. Anomaly -0.330*** -0.315*** - - -0.352***
(0.070) (0.098) - - (0.114)

Carbon Beta† 0.069** 0.083* - - 0.057
(0.028) (0.048) - - (0.049)

Emissions Intensity† × Temp. Anomaly - - -0.052 - 0.062
- - (0.067) - (0.073)

Emissions Intensity† - - -0.045 - -0.119***
- - (0.029) - (0.037)

ln(Emissions)† × Temp. Anomaly - - - -0.105 0.046
- - - (0.085) (0.106)

ln(Emissions)† - - - 0.192** 0.236**
- - - (0.081) (0.093)

Temp. Anomaly -1.552* -2.447 -2.460 -2.405 -2.456
(0.888) (1.660) (1.651) (1.655) (1.655)

ln(Market Cap.) -0.013 0.064*** 0.065*** -0.001 -0.017
(0.013) (0.023) (0.023) (0.035) (0.038)

Book/Market 0.132*** -0.169 -0.161 -0.238* -0.245*
(0.046) (0.120) (0.119) (0.126) (0.127)

Return on Equity 0.143*** 0.109 0.109 0.100 0.097
(0.042) (0.076) (0.076) (0.076) (0.076)

Debt/Assets 0.154 0.296 0.314 0.222 0.198
(0.111) (0.202) (0.203) (0.201) (0.201)

Investment/Assets -1.682*** -1.152 -1.140 -0.877 -0.967
(0.596) (1.217) (1.208) (1.213) (1.203)

Property, Plant, & Equipment/Assets 0.082 -0.139 -0.109 -0.242* -0.229*
(0.073) (0.133) (0.135) (0.138) (0.137)

CAPM Beta 0.152*** -0.485*** -0.492*** -0.493*** -0.501***
(0.044) (0.111) (0.109) (0.109) (0.111)

Idio. Volatility -1.514*** 3.942*** 3.933*** 3.912*** 3.978***
(0.189) (0.539) (0.538) (0.539) (0.535)

Momentum 0.298*** -0.088 -0.088 -0.091 -0.094
(0.054) (0.112) (0.112) (0.112) (0.112)

Year - Month FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.253

†Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Table 8: Carbon Beta, Extreme Drought, and Stock Returns
This table reports the full set of coefficients obtained from estimating regression Equation (5). The sample
period is from January 2007 to December 2020. Drought is a dummy variable equal to 1 if the associated
month’s Palmer Z-Index is below the 10th percentile and 0 otherwise. All regressions include sector and year-
month fixed effects. Returns are multiplied by 100. Standard errors are clustered at the firm level. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta† × Drought -0.393*** -0.310*** - - -0.445***
(0.069) (0.112) - - (0.132)

Carbon Beta† 0.066** 0.064 - - 0.042
(0.028) (0.047) - - (0.047)

Emissions Intensity† × Drought - - -0.077 - -0.068
- - (0.093) - (0.102)

Emissions Intensity† - - -0.047 - -0.108***
- - (0.031) - (0.038)

ln(Emissions)† × Drought - - - 0.063 0.337**
- - - (0.107) (0.142)

ln(Emissions)† - - - 0.177** 0.220**
- - - (0.083) (0.094)

Drought -1.965** -2.437 -2.432 -2.364 -2.431
(0.872) (1.644) (1.634) (1.637) (1.637)

ln(Market Cap.) -0.014 0.062*** 0.064*** -0.003 -0.019
(0.013) (0.023) (0.023) (0.035) (0.038)

Book/Market 0.128*** -0.181 -0.161 -0.240* -0.258**
(0.046) (0.120) (0.119) (0.126) (0.127)

Return on Equity 0.142*** 0.106 0.109 0.100 0.095
(0.042) (0.076) (0.076) (0.076) (0.076)

Debt/Assets 0.149 0.290 0.314 0.218 0.192
(0.111) (0.202) (0.203) (0.201) (0.201)

Investment/Assets -1.678*** -1.169 -1.147 -0.885 -0.987
(0.596) (1.216) (1.206) (1.211) (1.201)

Property, Plant, & Equipment/Assets 0.076 -0.142 -0.108 -0.243* -0.232*
(0.073) (0.133) (0.135) (0.138) (0.138)

CAPM Beta 0.151*** -0.484*** -0.493*** -0.493*** -0.491***
(0.044) (0.111) (0.109) (0.109) (0.112)

Idio. Volatility -1.523*** 3.908*** 3.931*** 3.906*** 3.932***
(0.189) (0.540) (0.538) (0.539) (0.536)

Momentum 0.294*** -0.091 -0.087 -0.091 -0.098
(0.054) (0.112) (0.112) (0.112) (0.112)

Industry FE Yes Yes Yes Yes Yes
Year - Month FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.254

†Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Table 9: Carbon Beta and Green Innovation
This table reports the coefficients obtained from estimating regression Equation (6). Green Share
(%) is the measure of green patent innovation from Cohen et al. (2020). We collect data on U.S.
patents issuance from the U.S. Patent and Trademark Office’s Bulk Data Storage System. The data
are from December 2010 to December 2020. Standard errors are clustered at the firm level. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Carbon Carbon Emissions ln(
Beta† Beta† Intensity† Emissions)†

Green Share (%) -0.071* -0.344** -0.161 0.297
(0.041) (0.148) (0.274) (0.264)

ln(Market Cap.) -0.044*** 0.006 0.086** 0.413***
(0.006) (0.028) (0.039) (0.028)

Book/Market 0.109*** 0.065 0.158 0.200***
(0.027) (0.082) (0.122) (0.076)

Return on Equity -0.003 0.009 -0.032 0.002
(0.010) (0.050) (0.050) (0.037)

Debt/Assets 0.187*** 0.708** 0.600 0.688**
(0.054) (0.302) (0.475) (0.276)

Investment/Assets 0.078 1.263 -1.639* -1.161**
(0.330) (0.849) (0.869) (0.497)

Property, Plant, & Equipment/Assets 0.380*** 0.636*** 0.509*** 0.246***
(0.045) (0.141) (0.147) (0.092)

Research & Development/Assets -0.686*** -1.712* -4.136 -6.527
(0.104) (1.043) (6.582) (6.580)

Year-Month Yes Yes Yes Yes
Industry FE Yes No No No
Sectors All Energy Energy Energy
N.o. Obs. 223,659 12,660 6,859 6,859
R2-Adj. 0.432 0.342 0.136 0.726

†Indicates a cross-sectionally standardised variable.
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Table 10: Carbon Beta and Unobserved Climate Risk Factors
This table reports the coefficients obtained from estimating regression Equation (7). MSCI
CVaR is MSCI’s Climate-Value-at-Risk. Standard errors are clustered at the firm level. Spec-
ification (1) does not control for industry-fixed effects, while Specification (2) does. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: MSCI CVaR†

(1) (2)

Carbon Beta† 0.209*** 0.077***
(0.030) (0.028)

MSCI S1&2 Emissions† 0.353*** 0.281***
(0.032) (0.038)

MSCI Green Patent Share† -0.191*** -0.191***
(0.073) (0.070)

Year - Month FE Yes Yes
Industry FE No Yes
N.o. Obs 167,055 167,055
R2 0.261 0.317

†Indicates a sectionally standardised variable.
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Table 11: Pricing of Carbon Risk with Errors-in-Variables Correction
This table reports the regression coefficients obtained from regressing monthly excess returns
on estimates of carbon beta. The sample period is from January 2007 to December 2020.
The regression optionally includes the natural logarithm of market capitalisation, book-to-
market ratio, return on equity, book leverage, investments-to-assets, PP&E-to-assets, CAPM
beta, idiosyncratic volatility, and 12-month momentum as control variables. Regressions con-
tain year-month fixed effects and optionally include sector-fixed effects. We use Jegadeesh
et al. (2019)’s IV-estimation methodology to account for errors-in-variables (see Appendix C
for details). Standard errors are clustered at the firm level. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4)

Carbon Beta† -0.137*** -0.043** -0.010 0.096***
(0.019) (0.021) (0.026) (0.027)

ln(Market Cap.) - -0.014 - -0.017
- (0.012) - (0.012)

Book/Market - -0.342*** - -0.167***
- (0.050) - (0.054)

Return on Equity - 0.095** - 0.120**
- (0.047) - (0.047)

Debt/Assets - -0.007 - 0.126
- (0.098) - (0.105)

Investment/Assets - -1.851*** - -1.137**
- (0.536) - (0.560)

Property, Plant, & Equipment/Assets - 0.005 - -0.046
- (0.061) - (0.069)

CAPM Beta - 0.277*** - 0.301***
- (0.045) - (0.048)

Idio. Volatility - -0.807*** - -1.148***
- (0.230) - (0.246)

Momentum - 0.287*** - 0.244***
- (0.059) - (0.059)

Industry FE No No Yes Yes
Year - Month FE Yes Yes Yes Yes
N.o. Obs. 427,876 427,955 427,876 427,876
R2-Adj. 0.229 0.230 0.230 0.230

†Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Appendix A: Additional Tables and Figures

Table A1: Descriptive Statistics on Top and Bottom Subindustries by Carbon Beta
This table reports the mean and median carbon beta of the top and bottom 15 GICS-subindustries by
median carbon beta. The table also reports the number of firms by subindustry and the number of return
and carbon beta observations by subindustry. The sample period is from January 2007 to December 2020.

Sub-Industry Mean Median N. Firms N. Obs.
Panel A: Top 15 sub-industries by mean carbon beta

Silver 1.51 1.46 7 983
Gold 1.28 1.21 67 5507
Oil & Gas Drilling 1.18 1.27 32 2931
Oil & Gas Exploration & Production 1.14 1.13 266 23578
Precious Metals & Minerals 1.08 1.16 10 774
Copper 1.02 1.04 5 624
Coal & Consumable Fuels 0.93 0.89 36 3486
Oil & Gas Equipment & Services 0.90 0.87 119 10272
Steel 0.80 0.77 58 5624
Integrated Oil & Gas 0.79 0.71 24 3191
Aluminum 0.77 0.72 12 866
Diversified Metals & Mining 0.73 0.74 38 2935
Oil & Gas Refining & Marketing 0.69 0.68 49 4574
Oil & Gas Storage & Transportation 0.60 0.58 158 13309
Independent Power Producers & Energy Traders 0.58 0.55 22 1540

Panel B: Bottom 15 sub-industries by mean carbon beta

Financial Exchanges & Data -0.42 -0.41 16 2563
Investment Banking & Brokerage -0.40 -0.42 67 6084
Other Diversified Financial Services -0.38 -0.28 6 490
Internet Services & Infrastructure -0.35 -0.39 27 2293
Biotechnology -0.34 -0.29 561 34386
Systems Software -0.34 -0.33 105 7676
Regional Banks -0.33 -0.29 618 58638
Life & Health Insurance -0.29 -0.26 41 4516
Consumer Finance -0.28 -0.30 68 5762
Highways & Railtracks -0.26 -0.24 2 66
Interactive Media & Services -0.24 -0.25 60 5012
Insurance Brokers -0.23 -0.23 21 1651
Semiconductors -0.21 -0.23 182 17002
Application Software -0.20 -0.21 325 23816
Life Sciences Tools & Services -0.19 -0.20 91 7269
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Table A2: Carbon Beta and MSCI Green Patent Share
This table reports the coefficients obtained from estimating regression Equation (6). Here, Green
Share MSCI (%) is a measure of green patent innovation constructed and provided by MSCI. The
data are from January 2010 to end of December 2020. Standard errors are clustered at the firm
level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable Carbon Carbon S1&2 ln(S1&2
Beta† Beta† Intensity† Emissions)†

MSCI Green Patent Share† 0.020 -0.231*** 0.362 0.130***

(0.021) (0.089) (0.269) (0.046)
ln(Market Cap.) -0.026*** -0.007 -0.190 0.418***

(0.008) (0.035) (0.124) (0.053)
Book/Market 0.126*** 0.207 -0.155 0.395***

(0.039) (0.128) (0.280) (0.107)
Return on Equity -0.004 -0.090* 0.666 0.189

(0.013) (0.055) (0.481) (0.140)
Debt/Assets 0.141** 0.245 1.345 0.676

(0.066) (0.410) (0.841) (0.429)
Investment/Assets -0.283 1.081 -5.444** -2.492***

(0.403) (1.384) (2.473) (0.761)
Property, Plant, & Equipment/Assets 0.392*** 0.481** 1.009** 0.202

(0.051) (0.199) (0.499) (0.167)
Research & Development/Assets -0.984*** 0.583 -20.170 -16.644

(0.141) (1.622) (17.600) (12.999)

Year-Month FE Yes Yes Yes Yes
Industry FE Yes No No No
Sectors All Energy Energy Energy
N.o. Obs. 150,576 6,539 4,423 4,423
R2-Adj. 0.487 0.340 0.227 0.665

†Indicates a cross-sectionally standardised variable.
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Figure A1: Alternative PMC Portfolio Construction
The figure displays PMC portfolios that were constructed in different ways. The baseline PMC as used in
the paper is compared to alternative constructions based on estimated emissions (PMC Estimated), reported
emissions (PMC Reported), emission intensities (PMC Intensity), and emissions provided by MSCI (PMC
MSCI) instead of by Trucost.

Table A3: Correlations Between Alternative PMC Portfolios
The table reports pairwise correlation coefficients between alternatively constructed PMC portfolios. PMC
is the pollutive-minus-clean portfolios as employed in the paper.

PMC PMCEstimated PMCReported PMCIntensity PMCMSCI

PMC 1.00 - - -
PMCEstimated 0.95 1.00 - - -
PMCReported 0.73 0.59 1.00 - -
PMCIntensity 0.79 0.79 0.68 1.00 -
PMCMSCI 0.85 0.83 0.63 0.72 1.00

Figure A2: Returns to Alternative PMC Portfolios Conditional on CPU and Temperature
Anomalies
The figure reports the mean monthly returns of various PMC portfolio definitions during various regimes
of Climate Policy Uncertainty (low change in CPU, neutral change in CPU, high change in CPU) and
Temperature Anomalies. The baseline PMC as used in the paper is compared to alternative constructions
based on estimated emissions (PMC Estimated), reported emissions (PMC Reported), emission intensities
(PMC Intensity), and emissions provided by MSCI (PMC MSCI) instead of by Trucost.
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Appendix B: Validation of Carbon Betas

In our validation test, we first compare estimates of carbon beta across sectors, headquartered states,

and countries. We then run panel regressions to uncover how firm characteristics are correlated with

corporate climate risk. Next, we perform a firm-level comparison of carbon betas with alternative

measures of climate risk, amongst which the Sautner et al. (2022)’s measure constructed from analyst

earnings calls and MSCI’s Climate-Value-at-Risk measure.

B1 Sector, Headquartered State, and Country Variation in Carbon

Betas

In this section, we first seek to analyse how carbon beta is associated with variation in industry sector

membership. To do so, we estimate:

CBit =

11∑
k=1

I[ki = k] + ϵit, (9)

where CBit is firm i ’s carbon beta at the end of time t, k denotes any of 11 GICS industry sectors,

and I[ki = k] indicates whether or not stock i’s industry classification belongs to industry k. The

coefficients obtained from this regression can be interpreted as sector-average carbon betas.

Figure 2A reports the estimated coefficients from regressing individual stock’s carbon betas on their

respective industry dummies. The figure shows that the Energies, Utilities, and Materials sectors

exhibit the highest carbon betas. In contrast, for the Financials, IT, and Health Care sectors, we

observe negative mean carbon betas. These findings are in line with commonly held beliefs about

sectors’ relative carbon risk exposure. While the figure shows differences in the carbon risk exposure

across sectors, the variation of carbon betas within specific sectors is also informative. For example,

the Energies sector houses several firms with very high carbon betas, however, also includes some

firms that hold much lower exposure to climate risks (not reported). Note that in later regression

specifications, we include industry fixed effects, so that we only exploit variation in carbon betas

within industries, rather than the variation across industries reported in Figure 2A. We believe this

is a conservative approach, as we control for any unobserved industry effect and can circumvent the

effect of potential industry biases in the definition of the carbon risk factor.

We now modify Equation (9) to regress on headquarter state dummies. The regression coefficients

can be interpreted as average carbon betas by headquarter state. Figure 2B presents our results.

Particularly in Texas, Oklahoma, and New Mexico, average carbon betas are high. This is likely the
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result of the large concentration of oil and gas firms operating in this region. In California, on the

contrary, carbon betas are on average negative. This might stem from the state’s dominant Technol-

ogy sector. Overall, geographic variation in carbon betas seems to align with prior expectations, yet

is strongly driven by industry effects. As mentioned earlier, we include industry dummies in most

regressions to make sure that such effects do not confound our results.

Lastly, we investigate how carbon betas vary over countries. We exploit international variation

in a sample of carbon betas estimated from the returns of different MSCI Country indices. The

estimation of carbon betas is based on a sample of 48 different MSCI country indices. We estimate

carbon betas with the same estimation window and control factors as described in Section 3, yet

now utilise Ken French’s Developed Market factors rather than their U.S. factor equivalents. We

again estimate a modified version of Equation (9) that includes country-fixed effects. Figure 3 shows

the coefficients from regressing international carbon betas on their respective country dummies, a

similar specification as in Equation (9). As can be seen, carbon betas in South America, South

Africa, and Australia are relatively high. On the one hand, this might be related to the vast amounts

of natural resources present in these regions and the carbon intensity of the industries involved in

extracting them. On the other hand, these regions are well-known to have weak climate policies in

place. Countries in Europe, generally, have low to negative carbon betas. This might be a reflection

of the European Union being at the forefront of regulating climate change. The difference between

the U.S. and Canada is also striking. While both nations have a large oil and gas industry, the

U.S. at the same time houses many technology companies. Besides, Canada’s petroleum industry is

especially pollutive as a large part of its fossil resources are found in oil sands.

B2 Carbon Beta and Firm Characteristics

In this section, we investigate how firm characteristics correlate with corporate climate risk exposure.

Firm characteristics are known to be related to climate risk exposure, see, for example, Bolton and

Kacperczyk (2021a), Hsu et al. (2023), Sautner et al. (2022), and Li et al. (2020). We make several

predictions based on economic theory and related research. First, we expect larger firms to be better

equipped at dealing with transition risks as they are more diversified across operating activities.

Larger firms can also exert greater lobbying power, leaving them less exposed to potentially adverse

effects of climate regulation. On the contrary, we expect that firms holding more physical assets

are vulnerable to rising costs of climate regulation via the greenhouse gas emissions and energy

requirements of their assets (see Sautner et al. 2022 and Li et al. 2020 for empirical evidence). Many

studies report lower firm valuations as a result of higher climate risk exposure (for example, Bolton

and Kacperczyk 2021a, Matsumura et al. 2014, and Li et al. 2020). Moreover, it is more difficult
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for capital-constrained firms to make investments in low-carbon technologies. A reduced ability to

adapt leaves these firms at greater transition risk. The opposite holds for firms that actively invest in

research & development. Such firms will either have better low-carbon technologies available or are

better able to capitalise on such technologies as they become available in the future. Indeed, Sautner

et al. (2022) find firm-level climate risks to be negatively correlated with R&D expenses relative to

assets.

To test our expectations, we estimate via panel regression:

CBi,t = λXi,t−1 + ci + µt + ϵi,t, (10)

where CBi,t is a firm i ’s carbon beta at month t, Xi,t is a vector of lagged firm characteristics that

includes the natural logarithm of the firm’s market capitalisation, its book-to-market ratio, return on

equity, book leverage, investments-to-assets, PP&E-to-assets, and R&D-to-assets, ci is an optional

sector (two-digit GICS) fixed effect, and µt is a year-month fixed effect. We cluster standard errors by

firms, as residuals within firms are correlated over time. We optionally include industry-fixed effects

to control for variation that can be attributed to sector differences. Our model includes time-fixed

effects to exploit the cross-sectional variation in carbon beta estimates and to help mitigate omitted

variable bias by controlling for unobserved effects that vary over time but not over firms.

Table 3 reports our estimates. When the regression specification includes sector-fixed effects, as in

columns (3) and (4), identification only comes from the cross-section of firms active in the same sector.

Negative correlates of climate risk exposure are company size (market capitalisation), profitability

(return-on-equity), and innovation (R&D-to-assets). For company size, we find a positive coefficient

in column (1), yet this specification omits corporate emissions as a control variable and thereby

fails to control for the indirect effect of corporate emissions on transition exposure via company

size. The positive association also turns negative after we account for industry-specific differences

in company size and carbon beta, indicating that within industry sectors, larger firms have lower

carbon betas. We find capital intensity (proxied for by investments-to-assets and PP&E-to-assets)

and corporate greenhouse gas emissions to be positively associated with carbon beta. The association

between emissions and carbon beta is economically sizeable, as a standard deviation increase in the

log-transformed emissions variable tends to be associated with a 0.22 to 0.50 standard deviation

increase in carbon beta, depending on whether or not sector effects are considered. Our results for

book-to-market and book leverage are mixed. Columns (1) and (3) report a positive relationship

between the book-to-market ratio and our measure, suggesting that firms exposed to climate risk

trade at lower valuations. Yet this does not survive the addition of corporate emissions as a control
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variable in (2), and therefore merely reflects a tendency of emission-heavy firms to trade at lower

valuations. However, in specification (4), which controls for industry differences, book-to-market

remains to hold explanatory value beyond the effect of corporate emissions. We find a negative

association between book leverage and carbon beta in columns (1) and (2), yet it disappears after

the inclusion of sector-fixed effects in columns (3) and (4), suggesting it can only be attributed to

general differences in leverage and carbon betas across sectors.

B3 Covariation with Alternative Measures of Climate Risk

We now compare carbon betas with alternative firm-level measures of climate risk. Here we consider

the natural logarithm of firm emissions, emission intensity, the Sautner et al. (2022) measure of corpo-

rate Climate Change Exposure (CCE), and MSCI’s Climate-Value-at-Risk (CVaR). We standardise

all measures of corporate climate risks to enable comparison. Table 4 reveals robust correlations be-

tween carbon beta and each of the four alternative measures. The correlation coefficients are highly

significant and their signs are in line with expectations. It is interesting to note that while the log of

emissions and emission intensities show ‘only’ a 51% correlation, the correlation coefficients of carbon

beta with the log of emissions and carbon beta with emission intensities are close, at 51% respectively

40%. This suggests that while there is different information contained in emissions and intensities,

there is still a large overlap between the information in emissions and emissions intensities deemed

relevant to carbon beta. Moreover, the robust associations between carbon beta and the scores on

the forward-oriented CVaR and Sautner et al. (2022) measures are reassuring, as they suggest that

carbon beta partly picks up the information that these measures have been designed to capture,

such as green innovative ability and analyst’s perceptions of firm-level climate risk. We explore the

relationship between our measure and CVaR in more detail in Section 4.3.2.

We now conduct a more detailed comparison between estimates of carbon beta and the Sautner

et al. (2022)’s Climate Change Exposures, where we exploit that Sautner et al. (2022)’s measure is

decomposed into three components: exposure to regulatory risks, climate opportunities, and physical

risks. This allows us to analyse which aspects of climate risk are captured by carbon beta. We

estimate a similar model as in Equation (10), yet we alternatively include the main CCE, each of

its three components, and all three of the components. In our regressions, we standardise the CCEs

for reasons of comparability and interpretability. We again cluster standard errors at the firm level

to account for serial correlation in our variables. Table 5 reveals that carbon betas are positively

related to CCE and all of its three components. A standard deviation increase in CCE tends to

be associated with about 23% of a standard deviation increase in carbon beta. We observe effects

of similar magnitudes for the subcomponents measuring exposures related to regulatory risks and
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climate opportunities. Interesting to note is the positive sign on the latter subcomponent’s coefficient:

this indicates that the firms whose carbon beta is higher are also the firms with which analysts

more frequently discuss climate change opportunities. This finding might seem counterintuitive

but suggests that today’s major emitters have an important role to play in enabling low-carbon

technologies. Sautner et al. (2022) observe the same pattern when comparing CCEOpportunities with

ISS Carbon Risk Ratings. Our results for the component of CCE measuring physical climate risks are

somewhat of an exception. Although the coefficient reported in column (4) is statistically significant

at the 1% level, its magnitude is much smaller than the overall CCE coefficients and other components.

The adjusted R-squared reported in column (4) also reveals that physical climate change exposure is

of little help in explaining variation in carbon beta. This finding does not come as a surprise to us.

Physical climate risks are more idiosyncratic and largely unrelated to corporate carbon emissions,

rather much more driven by geographic vulnerabilities. Hence, our approach is unlikely to pick up

differences in physical climate risk exposure, and our analysis confirms that carbon betas are more

related to regulatory and opportunity risks that are more systematic in nature.
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Appendix C: Errors-in-Variables Adjustment

Carbon betas – like all regression coefficients – are subject to estimation error. The use of carbon beta

as an explanatory variable leads to an errors-in-variables (EIV) problem: when explanatory variables

are subject to measurement error, regression coefficients are biased towards zero. This ‘attenuation

bias’ thus overestimates the ‘true’ coefficient when it is negative and underestimates it when it is

positive. We employ the instrumental variable (IV) approach of Jegadeesh et al. (2019) to resolve

these EIV-induced problems. Jegadeesh et al. (2019) propose a framework in which the betas are

estimated on two disjoint sets. Similar to Jegadeesh et al. (2019), we implement this by estimating

carbon betas in even months separately from carbon betas in odd months. In even (odd) months, we

only use the daily returns in previous even (odd) months in the estimation window.24 The estimator

of Jegadeesh et al. (2019) is defined as:

λ̂IV = (XIV X
′
EV )

−1(XIV R
′) (11)

where XIV is the matrix of instrumental variables with odd-month (even-month) estimated carbon

betas in even (odd) months, XEV is the matrix of explanatory variables with even-month (odd-

month) estimated carbon betas in even (odd) months, and R is a vector of stock returns in excess

of the risk-free rate. Note that the matrices XIV and XEV contain estimated (carbon) betas, firm

characteristics, and market variables, so that λ̂IV is a vector of both estimated risk premia and

characteristics premia.

The estimator can be decomposed into two parts by expressing it as a two-stage least squares regres-

sion. In the first stage, the explanatory variables are regressed on the instrumental variables:

δ̂ = (XIV X
′
IV )

−1(XIV X
′
EV ) (12)

Whereas in the second stage, the OLS estimator is pre-multiplied by the inverse of scaling matrix δ̂:

λ̂IV = δ̂−1((XIV X
′
IV )

−1(XIV R
′)), (13)

By estimating betas on disjoint samples, the measurement error is uncorrelated. This property allows

the IV estimation methodology to yield unbiased estimates of the true risk premia. Jegadeesh et al.

(2019) point out that the diagonal elements in δ̂ are smaller than 1 and equal to the ratio of the
24This effectively halves the estimation window, from around 750 daily observations to around 375. While this increases

estimation errors, Jegadeesh et al. (2019) show in simulation exercises that this does not lead to large deviations
from the true coefficients.
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variance in the beta divided by the sum of the variance in beta and in measurement error. Hence,

the inverse of δ̂ effectively scales up the OLS coefficients and thereby alleviates the attenuation bias.

As the standard errors are scaled by the same constants, there is no effect on the t-statistics.

Table C1: Pricing of Carbon Risk without Errors-in-Variables Correction
This table reports the regression coefficients obtained from regressing monthly excess returns
on estimates of carbon beta. The sample period is from January 2007 to December 2020. The
regression optionally includes the natural logarithm of market capitalisation, book-to-market
ratio, return on equity, book leverage, investments-to-assets, PP&E-to-assets, CAPM beta,
idiosyncratic volatility, and 12-month momentum as control variables. Regressions contain year-
month fixed effects and optionally include sector-fixed effects. Standard errors are clustered at
the firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4)

Carbon Beta† -0.084*** -0.017 0.007 0.056**
(0.018) (0.021) (0.026) (0.026)

ln(Market Cap.) - -0.014 - -0.019
- (0.011) - (0.012)

Book/Market - -0.348*** - -0.156***
- (0.050) - (0.053)

Return on Equity - 0.088* - 0.115**
- (0.047) - (0.047)

Debt/Assets - -0.043 - 0.117
- (0.097) - (0.104)

Investment/Assets - -1.866*** - -1.068*
- (0.530) - (0.552)

Property, Plant, & Equipment/Assets - 0.010 - -0.033
- (0.060) - (0.068)

CAPM Beta - 0.263*** - 0.271***
- (0.044) - (0.047)

Idio. Volatility - -0.805*** - -1.136***
- (0.226) - (0.243)

Momentum - 0.302*** - 0.257***
- (0.059) - (0.059)

Industry FE No No Yes Yes
Year - Month FE Yes Yes Yes Yes
N.o. Obs. 437,847 437,847 437,847 437,847
R2-Adj. 0.227 0.227 0.227 0.228

†Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Appendix D: Application to Corporate Bonds

In this section, we apply the concept of carbon beta to a sample of corporate bonds. Our data

collection and estimation procedure follows Huynh and Xia (2021), who estimate bond returns sen-

sitivities to the Engle et al. (2020) Climate Change News Index. We download data on corporate

bond prices for the period January 2012 to December 2021 from the FINRA’s Trade Reporting and

Compliance Engine (TRACE) Enhanced database. We follow the procedure of Dick-Nielsen (2009,

2014) to clean prices in TRACE. Observations in TRACE are merged with Mergent’s Fixed Income

Securities Database (FISD) to obtain the characteristics of the bonds and issuers in our sample.

We also map S&P’s credit ratings25 from Compustat’s Capital IQ to our data. Following Bai et al.

(2019), we eliminate trades reported in: (1) bonds other than corporate bonds, (2) convertible bonds,

(3) bonds with reported prices below $5 or above $1000, (4) bonds with floating coupon rates, (5)

and bonds with maturities shorter than 1 year. We exclude the least liquid bonds from our sample by

requiring bonds to be traded on at least 50% of trading days. Finally, we merge corporate emissions

data from Trucost on 6-digit CUSIP numbers. We calculate the monthly corporate bond return as

of month t as in Lin et al. (2011):

Ri,t =
(Pi,t +AIi,t) + Ci,t − (Pi,t−1 +AIi,t−1)

(Pi,t−1 +AIi,t−1)
, (14)

where Pi,t is the volume-weighted average of intraday transaction prices of bond i on the last trading

day of month t, AIi,t is accrued interest, and Ci,t is the coupon payment.

We construct the pollutive-minus-clean (PMC) portfolio similarly as in our main analysis; by going

long the bonds that are in the top 30% of emissions, offset by a short position in the 30% of emissions.

To estimate carbon betas for corporate bonds, we adjust the factor model of Huynh and Xia (2021):

Re
i,t = αi + βPMC

i PMCt + βMKT
i MKTt + βTRM

i TRMt + βDEF
i DEFt + βTED

i TEDt

+ βILLIQ
i ILLIQt + ϵi,t,

(15)

where Re
i,t is the return on bond i as of month t calculated in (14), in excess of the 1-month T-Bill

rate, αi is the bond’s risk-adjusted outperformance, β’s denote sensitivities to the factors, MKTt is

the aggregate bond market return, TRMt is the term spread of Welch and Goyal (2008),26 DEFt is

the default spread of Welch and Goyal (2008),26 TEDt is the TED spread,27 ILLIQt is the Dick-
25Converted to numerical scale as follows: AAA → 1, AA+ → 2, ... , C → 19, D → 20.
26Available at Amit Goyal’s website: https://sites.google.com/view/agoyal145
27Obtained from Federal Reserve Bank of Saint Louis: https://fred.stlouisfed.org/series/TEDRATE

53

https://sites.google.com/view/agoyal145
https://fred.stlouisfed.org/series/TEDRATE


Nielsen et al. (2012) bond market illiquidity series,28 and ϵi,t is the residual term. Our interest lies

in βPMC
i , which denotes the bond i’s carbon beta.

Table D1 provides descriptive statistics of our sample of corporate bonds as well as the betas es-

timated. The mean corporate bond return equals 53 bps a month, very similar to the mean bond

return in the sample of Huynh and Xia (2021). In contrast to our equities sample, the mean corporate

bond carbon beta is negative. Figure D1 presents mean bond carbon betas by issuer GICS industry.

We obtain a pattern that is similar to the sectoral distribution of carbon betas in equity securities:

the highest exposures are found in the Energy and Materials sectors, while the lowest are found in

the Financials sector. Figure D2 provides empirical evidence on the relationship between climate

risk exposures with credit ratings and bond maturities. We expect that bonds of lower-rated issuers

have higher transition risk exposure, as such firms have greater difficulty in meeting the investments

required for a low-carbon transition. This is also consistent with our findings on the firm-level drivers

of carbon beta in Section B2. Bonds rated investment grade - that is, bonds with a credit rating of

BBB or above - indeed have lower climate risk exposures than bonds with lower ratings. Regarding

bond climate betas and maturities, we expect that longer-dated bonds hold larger climate risk expo-

sures, as the impact of low-carbon transition shifts likely has larger effects in the distant future than

in the near future. In line with this hypothesis, we find a strong positive association between bond

maturities and bond carbon betas.

28Available at Peter Feldhütter’s website: https://feldhutter.com/
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Table D1: Descriptive Statistics TRACE - FISD - Trucost - S&P Ratings Merged
The table reports descriptive statistics on the variables used in our analysis. Our corporate bond sample is the result of merging
trade reports by TRACE, bond and issuer characteristics by FISD, corporate emissions by Trucost, and bond credit ratings by S&P
CapitalIQ Compustat. Bond market betas are obtained by estimating Equation (15). The sample period is January 2010 to December
2021.

Percentiles

N.o. Obs. Mean SD 5% 25% Median 75% 95%

Excess Return (%) 526,880 0.530 2.576 -2.963 -0.270 0.357 1.314 4.381
YTM (%) 456,108 4.630 1.707 1.985 3.256 4.478 5.907 7.723
Maturity (Years) 557,138 8.728 8.350 1.522 3.381 5.875 9.411 27.853
Offering Amount ($ thousands) 557,138 921,933 745,615 250,000 500,000 750,000 1,100,000 2,250,000
Security Rating 222,552 8.926 3.250 4.000 7.000 9.000 10.000 16.000
Equity Market Cap. ($ millions) 213,623 89,012 143,906 1,751 11,778 38,196 119,925 285,479
Scope 1&2 Emissions (millions
tons CO2)

263,721 6.417 19.588 0.037 0.221 0.924 3.600 29.662

Scope 1&2 Emission Intensity
(tons CO2/$ million)

263,721 290.176 998.287 2.673 12.343 35.395 139.658 1344.835

Bond Carbon Beta 183,280 0.022 1.215 -2.207 -0.555 -0.121 0.479 2.805
Bond Market Beta 183,280 0.920 0.551 0.166 0.501 0.814 1.220 2.103
Default Spread Beta 183,280 -0.307 20.737 -46.306 -10.107 2.076 11.497 35.672
Term Spread Beta 183,280 -0.102 0.269 -0.759 -0.206 -0.033 0.068 0.257
Ted Spread Beta 183,280 0.512 3.467 -6.280 -1.019 0.393 1.842 8.020
Illiquidity Beta 183,280 0.001 0.016 -0.030 -0.007 0.000 0.008 0.035



Figure D1: Corporate Bond Carbon Beta by Issuer Industry
The figure displays the coefficients estimated by regressing corporate bond carbon betas on issuer two-digit
GICS Industry Sectors. The sample period is January 2012 to December 2021. The 95% confidence intervals
are based on robust standard errors adjusted for clustering at the bond level.

Figure D2: Corporate Bond Carbon Beta by Rating Group and Maturity Group
The figures display the coefficients estimated from regressing corporate bond carbon betas on groups formed
on bond credit rating and bond maturities. The sample period is January 2012 to December 2021. The 95%
confidence intervals are based on robust standard errors adjusted for clustering at the bond level.
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