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How Informationally Efficient is the Options Market?

Abstract

We argue that the ability of option measures to predict future stock returns does not necessarily

imply incremental information in options. If options markets are more efficient, option measures

may predict actual stock returns, but should show weaker predictability for synthetic (option-

implied) stock returns. We propose to assess the incremental information in option measures

by their ability to predict the spread between actual and synthetic stock returns. Our findings

suggest that proxies for informed option trading cannot predict this spread around firm-specific

news, providing evidence inconsistent with options markets’ greater informational efficiency. A

noisy rational expectations model with informed investors who can trade in stock and options is

used to motivate the empirical analysis.



I Introduction

Can we use option-based measures to forecast future stock returns? Are option markets

informationally more efficient than stock markets? Do they provide incremental information

that is not already reflected in stock prices? Since the advent of the many existing derivatives

markets around the world, these are among the oldest and most debated questions in the

literature.

We investigate these questions, both theoretically and empirically, and propose a new

method to measure stock price information from options. We argue that the ability of option-

based measures to predict actual stock returns is not a sufficient condition for the existence

of incremental information in options. We claim that the appropriate way to measure the

information contained in options is not to look at predictability of actual stock returns alone

(which is what the majority of the existing research does), but to look at predictability of

the difference between actual and synthetic (option-implied) stock returns. We find that

existing proxies for informed option trading predict both actual and synthetic stock returns

to the same extent, around the release of scheduled and unscheduled firm-specific news. This

is inconsistent with the idea that options convey incremental information that is not already

reflected in the underlying stocks.

In the frictionless world of Black and Scholes (1973), markets are complete, and option

payoffs can be perfectly replicated by continuously trading the underlying stock and a risk-

free bond. In that world, options are redundant securities. However, the real world is plagued

with frictions, markets are incomplete, and information is asymmetric. In the real world,

option payoffs cannot be perfectly replicated, and options are not redundant securities. Thus,

informed investors may prefer to trade in options rather than stocks, for three main reasons:

(i) the embedded leverage and the downside protection of options (e.g., Black (1975), Biais

and Hillion (1994)), ii) the short-sale constraints often imposed on stocks (e.g., Lamont

and Thaler (2003), Ofek, Richardson, and Whitelaw (2004)), and (iii) the ability to bet on
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volatility using options (e.g., Cremers, Fodor, Muravyev, and Weinbaum (2022)).

Another very closely related strand of the literature delves into the reasons why options

might be viewed as superior trading vehicles by informed traders (among others: Stephan

and Whaley (1990a), Chan, Chung, and Johnson (1993a), Manaster and Rendleman (1982),

and Lee and Yi (2001)). If informed investors are more likely to trade in options, then

one can use option prices and option volume to predict future stock returns. Prior research

has shown that option-implied volatilities (Cremers and Weinbaum (2010)), option-implied

skews (Xing, Zhang, and Zhao (2010)), and changes in option-implied volatilities (An, Ang,

Bali, and Cakici (2014)), are all strong predictors of future stock returns. In addition, it has

been shown that measures based on option volume can also strongly predict future stock

returns, such as the (signed) put-to-call volume ratio (Pan and Poteshman (2006)), and the

(unsigned) option-to-stock volume ratio (Roll, Schwartz, and Subrahmanyam (2010)). They

all argue that the return predictability derived from option metrics is evidence in favour of

the hypothesis that the activity in the options market conveys information that is not yet

reflected in stock prices.

We argue that the stock return predictability derived from option measures is not a

sufficient condition to establish that the options market is informationally more efficient

than the stock market, and that there is incremental information in options.

If informed investors do prefer to trade in options, and stock and options markets are not

tightly interconnected because of market frictions, then synthetic stock prices should adjust

to the fundamental stock values to a larger extent than actual stock prices. Therefore, one

should be able to use option signals to predict future actual stock returns, but there should

be weaker or no predictability regarding future synthetic stock returns, depending on the

extent of noise trading in options. This second condition has never been examined in prior

research, and this project aims to fill this gap. To better understand why this must be the

case, Figure 1 illustrates a very stylized example.
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[Insert Figure 1 about here]

Panel A of Figure 1 shows the case in which an informed investor prefers to trade in

options, and noise trading is absent from the options market. To take advantage of a pos-

itive signal received at time t = 1, the informed investor purchases call options and sells

put options. This pushes up the synthetic (option-implied) stock price immediately to the

fundamental value of the stock. This is because of the assumption that noise trading is

absent from the options market. As the new information gets revealed to the stock traders,

the actual stock price converges to the fundamental value at time t = 2. The increase in

the synthetic price relative to the actual stock price at time t = 1 then signals that there is

positive information in the options market not yet reflected in stock prices, and one should

buy the stock because it is expected to increase in the near future. Moreover, given that the

synthetic stock price is already at its efficient level at time t = 1, and the fundamental stock

value is a random variable, there should be no predictability for synthetic stock returns (i.e.,

the percent change in synthetic prices).

However, as argued in Grossman and Stiglitz (1980), the situation illustrated in Panel A

of Figure 1 can never be an equilibrium, because if the options market is fully efficient, and

prices adjust immediately to their efficient levels, this reduces the profitability of informed

investors to zero, and they have no incentive to gather information in the first place. There-

fore, there needs to be a certain degree of inefficiency in the options market to encourage

informed investors to participate.

Panel B illustrates the case with noise traders in the options market. Like in Panel A, at

time t = 1 the informed investor trades on a positive signal by purchasing calls and selling

puts, and the synthetic stock price increases towards the fundamental stock value. However,

due to the presence of noise traders, prices only adjust partially towards their efficient levels.

This means that the informed investor can profit from the trades, and is willing to participate.

The increase in the synthetic price of the stock relative to its actual price is a signal that
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there is positive information in options not yet reflected in stocks, and one should buy the

stock as its price is expected to increase in the near future, i.e., there is predictability in

actual stock returns. There is also predictability in synthetic stock returns, because option

prices did not adjust fully to their efficient levels at time t = 1, and are expected to continue

to adjust towards time t = 2. However, the predictability in actual stock returns should

be stronger than the predictability in synthetic stock returns, because synthetic stock prices

have already moved towards the fundamental stock value at time t = 1, while the actual

stock price still needs to experience a full adjustment towards the fundamental value, like in

Panel A.

To distinguish the different degrees of market efficiency across Panels A and B, one could

simply examine how much the option signals at time t = 1 are able to predict actual compared

to synthetic stock returns. In other words, if one subtracts the synthetic stock return from

the actual stock return, Panel A shows that option signals at time t = 1 should predict actual

stock returns and the difference between these returns equally. However, in Panel B, option

signals should be strong predictors of actual stock returns, but weaker predictors of the

difference in returns. Therefore, the weaker the predictability of the difference in returns,

the lower the efficiency of the options market. At the extreme, if option signals fail to predict

the difference in returns, this can be interpreted as stock and options markets being equally

inefficient, and options failing to convey any incremental information relative to the stocks.

Panels A and B assume that the stock and options markets are not fully interconnected.

This occurs when there exist market frictions, such as transaction costs, and when options

are American-type, which is typically the case for options on individual equities. The two

markets are not tightly linked because the put-call parity is not an equality but a set of

inequalities (Cox and Rubinstein (1985)). Therefore, the synthetic and actual stock prices

can diverge considerably from each other, without leading to arbitrage opportunities. These

examples also assume that informed investors choose to trade only in options, which may
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not always be the case in reality.

Panel C illustrates the case in which the two markets are fully interconnected (no fric-

tions), informed investors can trade in both markets, and there exist noise traders in both

markets. This situation can occur when options are European-type, because the put-call

parity is an equality, and any deviation from this relation leads to an arbitrage opportunity.

Therefore, even if the informed investor prefers to trade in options, the options market maker

will arbitrage between the two markets such that the put-call parity will always hold. If the

informed investors prefer instead to trade in the stock market, the results would be identical.

Therefore, synthetic and actual stock prices are always equal to each other in Panel C, and

there is no information in options that is not simultaneously reflected in the stock. This

creates a peculiar situation in which the activity observed in the options market at time

t = 1 can be used to predict future movements in the actual stock price, despite the fact

that options do not convey any additional information compared to the stock, i.e., options

are informationally irrelevant (Chabakauri, Yuan, and Zachariadis (2021)). Moreover, by

construction, in Panel C the predictability of actual stock returns is exactly the same as that

of synthetic stock returns, which results in a zero difference between returns.

It is worth noticing that, by the same tokens, the case in which the informed investor

receives a negative signal at time t = 1 and takes advantage of it by purchasing puts and

writing calls is just the mirroring image of Panels A, B and C of Figure 1.1

Overall, the example illustrated in Figure 1 has two important implications. First, if the

options market is informationally more efficient than the stock market, then one should be

able to use option signals to predict future actual stock returns, but the predictability of

future synthetic stock returns should be weaker (Panel B) or null (Panel A). Second, if the

two markets are equally inefficient, and options do not convey any incremental information

1While we mostly work in a frictionless world, the main difference between a positive versus a negative sig-
nal could lie in the short selling frictions. Depending on their magnitude, frictions can in fact amplify/reduce
the results we report in the paper, but qualitatively they would not change.
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compared to stocks, then option signals should predict both actual and synthetic stock

returns to the same extent, and they should fail to predict the difference (Panel C).

Section III examines this question more formally using a noisy rational expectations

model with informed investors who can trade simultaneously in both markets. The frame-

work is borrowed from An, Ang, Bali, and Cakici (2014), which is an analytic representation

of the situation illustrated in Panel C of Figure 1. In the model, there exists an informed

investor who can trade simultaneously in a stock, a call option, and a put option, there

are noise traders in both markets, and there is a market maker who arbitrages between the

two markets. The options are European-type, which means the put-call parity is a strict

equality, and the market maker ensures that this relation is never violated. Therefore, by

construction, in the model of An, Ang, Bali, and Cakici (2014), the synthetic and actual

stock prices are always identical. The implications derived from Panel C of Figure 1 also

apply to this more formal setting. In particular, the model shows that one can use option

signals to predict future actual stock returns when, by construction, options are in fact infor-

mationally irrelevant. Therefore, the existence of predictability is not a sufficient condition

for the existence of incremental information in options. An, Ang, Bali, and Cakici (2014)

do recognize this serious limitation of their model in their Appendix A (Section A.5). They

state that “the predictability of options does not exist after controlling for past stock re-

turns”. However, they argue that in their empirical analysis they do control for past stock

returns and the predictability of options does not disappear. However, it could be the case

that past stock returns are not a sufficient statistic to capture informed trading in the stock

market to explain the predictability of options. Figure 1 (Panel C) proposes an alternative

way to adjust the predictability of options. Instead of controlling for past stock returns, one

could subtract the synthetic from the actual stock return and test whether option signals

predict this difference. If it does, then the options market is informationally more efficient

than the stock market, and there is incremental information conveyed by options.
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We take these implications to the data and report surprising findings. We show that

existing empirical proxies for informed option trading, such as the option-to-stock volume

(O/S) ratio of Roll, Schwartz, and Subrahmanyam (2010), systematically fails to predict the

difference between actual and synthetic stock returns.2 As discussed above, this evidence is

not consistent with the greater informational efficiency of the options market, implying that

options do not convey incremental information.

The empirical analysis focuses on the periods around the release of scheduled and un-

scheduled firm-specific news. It uses earnings announcements as scheduled news, and non-

earnings 8-K filings as unscheduled news. The period around the release of material corporate

news is one in which investors should exhibit stronger incentives to gather private informa-

tion and trade on this information. The empirical tests show that the O/S ratio on the day

before an earnings announcement is a strong predictor of actual stock (mid-quote) returns

during the announcement window.3 However, it is also a strong predictor of synthetic stock

returns. In fact, the null hypothesis that actual and synthetic stock returns are equal cannot

be rejected in these empirical tests.

Following the implications of the model described above, these results are inconsistent

with the idea that the options market is informationally more efficient than the stock market,

and that the relative trading activity in options versus stocks conveys incremental informa-

tion that is not already reflected in stocks.

This paper also examines the predictive ability of O/S on the days of news releases.

This test is intended to understand whether option traders are better at processing publicly

2The empirical analysis focuses on the predictability derived from option volume-based measures, instead
of option price-based measures, as the primary explanation for the predictability of the latter group of
measures is likely to be price pressure in the stock market, as argued in Goncalves-Pinto, Grundy, Hameed,
van der Heijden, and Zhu (2020).

3The O/S measure consistently predicts returns negatively.Johnson and So (2012) argue that this could
be because informed investors prefer to trade options when holding negative signals. However, the results
show that most of the predictive ability of O/S around earnings releases is derived from stocks with low O/S
values rather than the stocks with high O/S values.
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available information, following Engelberg, Reed, and Ringgenberg (2012) and Cremers,

Fodor, Muravyev, andWeinbaum (2022). The results show that O/S is also a strong predictor

of actual and synthetic long-short returns when portfolios are formed on earnings days.

The test of the difference between actual and synthetic returns is at times significantly

(weakly) different from zero. Overall, the results suggest that option traders may be better

a processing information once it is made public, but they do not appear to have an advantage

in the anticipation of earnings releases.

The rational model of An, Ang, Bali, and Cakici (2014) also predicts that in equilibrium

the informed investor holding a positive signal is more likely to purchase cheap (out-of-the-

money) call options and write expensive (in-the-money) put options. To account for the

effect of leverage on the predictive ability of option volume, this paper repeats the analysis

described above using the volume-weighted strike-stock price (VWKS) ratio of Bernile, Gao,

and Hu (2017). A high (low) value of VWKS indicates that the option volume distribution

across strikes is skewed towards the out-of-the-money call (put) options. Therefore, it sug-

gests that informed investors holding a positive (negative) signal are looking to leverage up

their private information by purchasing out-of-the-money calls (puts).

This measure is also a significant predictor of both actual and synthetic stock returns

around earnings announcements. However, the predictability using VWKS seems to be

stronger than that of O/S right after the announcement, and weaker than that of O/S a

few days after the announcement. This is because the VWKS measure is a function of the

underlying stock price, and is therefore more sensitive to stock price pressure, as argued in

Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020).4 The null hypothesis

that actual and synthetic stock returns are equal cannot be rejected when using the VWKS

as predictor, which is inconsistent with the greater informational efficiency of the options

4In a separate test, it is shown that, the predictive ability of O/S does not appear to be sensitive to stock
price pressure, while VWKS is very sensitive. This is expected given that this measure is a function of actual
stock prices.
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market.

Panel C of Figure 1 suggests that these results could be driven by the tight interconnect-

edness between stock and options markets, which does not allow synthetic prices to deviate

from actual stock prices significantly. However, the option contracts used in the empirical

analysis are generally of the American-type, and bid-ask spreads in the options market are

large. This results in a range between the upper and the lower non-arbitrage bounds of Cox

and Rubinstein (1985) that is between 1.37% and 2.43% of their mid-point. This means

that, on the portfolio formation days, the mid-point between the actual bid and ask stock

prices (which are used to compute mid-quote returns) can vary significantly without leading

to arbitrage opportunities. Therefore, the linkage between the two markets is not tight, and

cannot explain the results reported above.

Lastly, this paper shows that, the results presented above for the period around earnings

announcements, are qualitatively similar when focusing on the period around the disclosure

of (non-earnings) 8-K filings.

The remainder of this paper is organized as follows. Section II reviews the related liter-

ature. Section III describes a noisy rational expectations model with an informed investor

who can trade simultaneously in a stock, a call option, and a put option. Section IV pro-

vides an empirical analysis of some of the implications of the model. Section V concludes

the paper.

II Related Literature

This paper is related to prior research that argues that there is no significant price discovery in

the options market. It focuses on option volume-based measures, and on the periods around

the release of scheduled and unscheduled firm-specific news. Below is a short description

of some of the most closely related existing references. This list is not intended to be
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exhaustive. It is important to highlight that none of the related references mentioned below

uses the predictability of synthetic stock returns to assess the degree of inefficiency of the

options market, which is the main contribution of this paper.

There are a number of prior studies that also argue that options do not convey significant

information about stock returns. For instance, Stephan and Whaley (1990b) and Chan,

Chung, and Johnson (1993b) find no evidence that price changes in the options market lead

price changes in the stock market. Vijh (1990) finds that large option trades have relatively

small price effects, which is inconsistent with such trades being related to information. Chan,

Chung, and Fong (2002) study the cross-market lead-lag effects and show that stock volume

has predictive ability for both stock and option prices, but option volume has no incremental

predictive ability. Muravyev, Pearson, and Broussard (2013) show that, when the stock and

options markets disagree about the stock value (i.e., a deviation from the put-call parity

occurs), it is the option quote that adjusts to correct the disagreement, and the stock quote

does not adjust. More recently, Collin-Dufresne, Fos, and Muravyev (2021) focus their

analysis on stock and option trades by Schedule 13D filers and find that volatility information

is more likely to be reflected in options, while price information is more likely to be reflected

in stocks.

The studies mentioned above are all empirical in nature. The theoretical research on this

topic is more incipient. For instance, Chabakauri, Yuan, and Zachariadis (2021) show that

adding options to an economy with a single stock (like Grossman and Stiglitz (1980)) does

not help reveal any additional information about the distribution of payoffs of the stock, and

options are therefore informationally irrelevant. The studies by An, Ang, Bali, and Cakici

(2014) (described in more detail in the next section) and Easley, O’Hara, and Srinivas (1998)

both fall into this category. Although the latter study is often times cited as predicting a

preference by informed traders to trade in options first, their model does not make such a

prediction, as any information in the history of stock and option trades is simultaneously
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reflected in both markets.

More generally, this paper is related to the literature that argues against the superior in-

formational efficiency of the options market. For instance, Cao, Han, Tong, and Zhan (2022)

show that option returns are predictable using a variety of underlying stock characteristics

and firm fundamentals, such as idiosyncratic volatility, past stock returns, profitability, cash

holding, new share issuance, and dispersion of analyst forecasts. They also conclude that

such predictability patterns have important implications for the efficiency of the options

market.

It is common to use material corporate events (and specially earnings announcements)

as a way to validate the informed trading proxies. For instance, Amin and Lee (1997)

show that option trading predicts stock returns around quarterly earnings announcements,

and conclude that option traders participate in price discovery and in the dissemination of

earnings news. Roll, Schwartz, and Subrahmanyam (2010) show that O/S is higher around

earnings announcements. Hu (2014) finds that option order imbalances predict abnormal

stock returns five days before earnings announcements (hard to reconcile with the previous

two studies). More recently, Cremers, Fodor, Muravyev, and Weinbaum (2022) examine the

predictive ability of signed option volume around both scheduled and unscheduled corporate

news. They find that purchases of options predict returns on news days and ahead of

unscheduled events, but not before scheduled events, and sales of options are informative

only ahead of scheduled news releases.

III Theoretical Framework

This section builds on An, Ang, Bali, and Cakici (2014). They propose a model in which

informed investors are allowed to trade simultaneously in stocks and (European-type) op-

tions. The extent to which they trade depends on the amount of noise trading present in the
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two markets. The prices of stocks and options are determined by a market maker who can

arbitrage between the two markets. Like in a typical noisy rational expectations model, the

prices of stocks and options change via the trading of the informed, but they are not fully re-

vealing, otherwise the informed investors would not profit from gathering information. This

creates predictability from option prices and volume to future stock returns. However, by

construction, the options in this model do not convey any additional information that is not

already reflected in stocks. Therefore, the use of the predictability from option prices and

volume to future stock returns as a way to measure the informational advantage of options,

is a procedure that needs to be redefined.

A Economy

The firm is born at date t = 0, investors trade the stock and options at date t = 1, and the

firm’s cash flows F are realized at time t = 2. The prices of the stock at times t = 0 and

t = 1 are denoted as S0 and S1, respectively.

There exist call and put options written on the stock. Their strike price is K, where

FL < K < FH , and the options mature at time t = 2. The prices of the call (put) option

at times t = 0 and t = 1 are denoted as C0 and C1 (P0 and P1), respectively. The payoffs

of the call and the put at time t = 2 are C2 = max(F − K, 0) and P2 = max(K − F, 0),

respectively.

There exist informed traders, noise traders, and a market maker, all with CARA utility,

and with risk aversion γ. Informed traders receive a signal θ just before date t = 1. This

signal takes the value θ = 1 with probability of 0.5, and the value θ = 0 with probability

of 0.5. If θ = 1, the cash flow of the firm is equal to FH with probability ω, and it is equal

to FL with the probability 1 − ω. If θ = 0, the cash flow of the firm is equal to FH with

probability 1 − ω, and it is equal to FL with probability ω. The parameter ω captures the

quality of the signal θ, where 1
2
< ω < 1. Therefore, the probability that the firm cash flow
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is FH , conditional on the signal θ, is given by p(θ) = ωθ + (1 − ω)(1 − θ). The conditional

probability of a firm cash flow of FL is therefore 1− p(θ).

Informed traders can trade both the stock and the options. Their demand for stock is

denoted as qI , and their demands for call and put options are denoted as dI and uI , respec-

tively. The corresponding demands for stock and options for the market maker are denoted

as qD, dD, and uD, respectively. There exist noise traders in both the stock market and the

options market. Their demand for stock is denoted as z ∼ N(0, σ2
z), and their demands for

call and put options are denoted as νc ∼ N(0, σ2
c ) and νp ∼ N(0, σ2

p), respectively. Noise

traders cannot trade across stock and options markets, which means that z is independent of

νc and νp. However, their demands for calls and puts can be correlated. The market-clearing

conditions for the stock and options markets are as follows:

qI + qD + z = 1 (1)

dI + dD + νc = 0 (2)

uI + uD + νp = 0 (3)

which means that the options are in zero net supply and there is one share of stock.

B Equilibrium

If the informed investor receives no signal, and there are no demand shocks in either market

at time t = 0, the informed investor and the market maker are identical, they buy half of

the stock each at price S0, and there is no trading in options.

If the informed investor receives a signal just prior to time t = 1, her objective is to

maximize CARA utility from terminal wealth:

max
qI ,dI ,uI

E

[
−1

γ
exp(−γWI) | θ

]
(4)
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subject to

qIS1 + dIC1 + uIP1 =
1

2
S1 (5)

where WI = qI(F − S1) + dI(C2 − C1) + uI(P2 − P1), and γ is the absolute risk aversion of

the informed investor. Taking the first order conditions with respect to qI , dI , and uI , gives

the following relation:

qI(FH − FL) + dI(FH −K)− uI(K − FL) = −1

γ
log

(
1− p(θ)

p(θ)

S1 − FL

FH − S1

)
(6)

and the prices of the call and the put at time t = 1 are given by:

C1 =
FH −K

FH − FL

(S1 − FL) (7)

P1 =
K − FL

FH − FL

(FH − S1) (8)

Both the call and the put prices are linear with respect to the stock price. This is because

of the assumption of a binomial distribution for the firm cash flows.

The marker maker does not observe the signal θ and is assumed to have unlimited wealth,

which means that she has no budget constraint. The first order condition for the market

maker is as follows:

qD(FH − FL) + dD(FH −K)− uD(K − FL) = −1

γ
log

(
S1 − FL

FH − S1

)
(9)

The price of the stock is derived from the sum of (6) and (9), which results in:

S1(θ, z, νc, νp) =
G(θ, z, νc, νp)

1 +G(θ, z, νc, νp)
FH +

1

1 +G(θ, z, νc, νp)
FL (10)
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where the function G(θ, z, νc, νp) is given by:

G(θ, z, νc, νp) =

√
p(θ)

1− p(θ)
exp

(
−γ

2
((1− z)(FH − FL)− νc(FH −K) + νp(K − FL))

)

The equilibrium stock price (10) is essentially a weighted-average of the high and low

firm cash flows to be realized at time t = 2, where the ratio G(.)
1+G(.)

represents the weight

allocated to the high cash flow FH , the remaining being allocated to the low cash flow FL.

The numerical example below shows that G(.) is typically lower than 1, which makes S1

skewed towards FL.

C Numerical Example

Following the calibration used in An, Ang, Bali, and Cakici (2014), the options are taken to

be approximately at the money, i.e., K = E(F ), and the baseline parameter values used in

this numerical example are as follows: FH = 103, FL = 97, K = 100, ω = 0.7, and γ = 1.5.

Informed investors trade the stock and the two options, and the extent to which they

trade depends on the amount of noise trading in the two markets. As they trade to take

advantage of their private information, the prices of the stock and the options change at

time t = 1. Figure 2 plots the prices of the stock, call, and put options, as functions of

noise trading demands, conditional on a positive signal θ = 1 arriving just before time t = 1.

Panel A plots the price of the stock as a solid line for stock demand shocks z, while keeping

the call and put demand shocks at νc = 0 and νp = 0. The dash-dotted line represents the

stock price as a function of call demand shocks νc, while holding the stock and put demand

shocks at z = 0 and νp = 0. The dotted line represents the stock price as a function of put

demands shocks νp, holding the stock and call demand shocks at z = 0 and νc = 0. Panels

B and C repeat this exercise but plot instead the prices of the call and the put options,

respectively.
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[Insert Figure 2 about here]

Compared to Figure A1 in An, Ang, Bali, and Cakici (2014), this figure includes the

effect of put demand shocks on stock, call, and put prices. As expected, the higher the noise

trading demand for the put option, the higher the put price, but the lower the prices of the

stock and the call option.

In this example, the put option is significantly more expensive than the call option. The

put prices range between 2.88 and 2.98, while the call prices range between 0.02 and 0.12.

This is because the equilibrium stock price S1 in Panel A is very close to the low cash flow

FL. Therefore, at time t = 1, the call option is out-the-money, and the put option is in-the-

money, given the strike price K = 100.

Comparative Statics

Figure 2 shows that the curves intersect at the point in which all the noise trading shocks

are equal to zero (i.e., z = 0, νc = 0, and νp = 0). This section examines the sensitivity of

that intersection point to changes in some parameter values.

Figure 3 shows the sensitivity of the stock price (Panel A), the call price (Panel B), and

the put price (Panel C), to changes in the probability of the high cash flow (ω), given a

positive signal (θ = 1). The parameter ω can also be interpreted as the quality of the signal.

Its baseline value is ω = 0.7, and Figure 3 takes ω to vary in the interval ]0, 1[. As explained

in Section III.A, for ω to represent the quality of the signal θ it needs to be bounded (i.e.,

1
2
< ω < 1). Therefore, the results in Figure 3 for ω ≤ 1

2
can be ignored.

[Insert Figure 3 about here]

Not surprisingly, as the quality of the positive signal (θ = 1) improves (i.e., ω increases),

the equilibrium prices of the stock and the call increase, and the put price decreases. The

16



sensitivity of the call price is the strongest. Its price increases by 6 times from 0.05 to 0.3 as

the quality of the signal ω changes from its baseline value of 0.70 to 0.99. The price of the

put option decreases by 8.5% from 2.95 to 2.70 and the price of the stock increases by only

0.5% from 97.1 to 97.6, for the same change in ω. The reason for this differential sensitivity

is that the equilibrium stock price is very close to the low cash flow value of FL = 97. Given

the strike price of the options of K = 100, the call option is out-the-money and the put

option is in-the-money. The delta of the call is positive and its gamma increases as the stock

price approaches the strike price.

The results in Figure 3 suggest that an informed investor with a positive signal about the

stock can profit the most when purchasing the out-of-the-money call option and writing the

in-the-money put option. Moreover, these results suggest that there is money to be made

from collecting information to improve the quality of the private signal.

Figure 4 examines the relation between equilibrium prices and changes in the risk toler-

ance of the informed investor (γ), keeping everything else in the baseline model unchanged.

[Insert Figure 4 about here]

The results show that, as the informed investor’s risk aversion increases, the prices of

the stock and the call decrease, and the price of the put increases. The analytic solution for

the equilibrium stock price (10) shows that the value of the function G(θ, z, νc, νp), which

determines the weight on the high cash flow FH , decreases as γ increases. Therefore, as γ

increases, the stock price converges to the low cash flow FL = 97, the call price converges to

zero, and the put price converges to K − S1 = 3.

Lastly, Figure 5 examines the sensitivity of prices to changes in the volatility of the cash

flows at the terminal date t = 2. The cash flow volatility can be captured by the distance

between the high and the low firm cash flows, i.e., FH − FL. The variation in cash flows is

kept symmetric in relation to the strike price K = 100, which means that FH = K + a and
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FL = K − a. In the baseline model, FH −FL = 103− 97 = 6, which corresponds to the case

a = 3. Figure 5 plots the results for values of a between 0.05 and 5.05.

[Insert Figure 5 about here]

In the baseline case (i.e., a = 3), the equilibrium stock price, when noise trading is absent

(i.e., z = 0, νc = 0, and νp = 0), is S1 = 97.10 (see Figure 2, Panel A). This is a value close to

the low cash flow of FL = 97. The results in Figure 5 (Panel A) show that, as the dispersion

in cash flows increases around the strike price (i.e., a increases), the equilibrium stock price

decreases because it continues to be close to the low cash flow. For instance, for a = 2,

FL = 98 and S1 = 98.28, and for a = 5, FL = 95 and S1 = 95.01.

For lower values of the cash-flow dispersion (a), the equilibrium stock price S1 converges

to the strike price K = 100. The gamma of the call option is highest the closer the option is

at-the-money. This explains the hump-shaped results in Panel B of Figure 5. It shows that

the call price increases from 0.029 to a maximum value of 0.255 when a increases from 0.05

to 0.90. For high values of a, the price of the call decreases to zero. This is because, for high

values of a, the call option goes deep out-of-the-money.

Panel C shows the effect of changes in cash-flow volatility of put prices. It shows a

monotonic increase in this price as the dispersion in cash flows increases. This is because,

for a given strike price K = 100, higher a leads to lower S1, and the put option goes deep

in-the-money.

To conclude, Figures 6, 7 and 8 depict, for both the informed investor and the market

maker, the demand sensitivity of stock, call and put options, respectively, as a function of

uninformed demand shocks, given a positive signal, i.e., θ = 1. In particular, the informed

investor’s demands for stock, call and put are depicted in Panels A1, B1 and C1, respectively.

Panel A2, B2 and C2 repeat the same analysis, but for the market maker. This analysis is

of great importance as, throughout the text and in particular in the empirical analysis, we

consider the predictability analysis of volume-based indicators.
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The way in which we produce these figures is similar in spirit to the stock price analysis,

depicted in Figure 2, but replacing the prices with the demands.

Panel A1 of Figure 6 plots the informed demand of the stock as a solid line for uninformed

stock demand shocks z, while keeping the uninformed call and put demand shocks at νc = 0

and νp = 0. The dash-dotted line represents the informed stock demand as a function of

the uninformed call demand shocks νc, while holding the uninformed stock and put demand

shocks at z = 0 and νp = 0. Lastly, the dotted line represents the informed stock demand as

a function of the uninformed put demand shocks νp, holding the uninformed stock and call

demand shocks at z = 0 and νc = 0.

[Insert Figure 6 about here]

Panels B1 and C1 repeat the exercise but plot instead the prices of the call and put

options, respectively. As for the stock price analysis, the parameter values used to generate

these plots are FH = 103, FL = 97, K = 100, ω = 0.7, and γ = 1.5. For the stock demand

Panels A1 and A2 in Figure 6 show that in presence of private signals, informed investors

do trade more in options than in stock. Panel A1 shows that the informed investor keeps

the stock holding nearly flat at the initial value of 1/2 throughout, while most of the stock

demand activity is performed by the market maker to offset the noise trading demand shocks.

[Insert Figure 7 about here]

Figure 7 shows that the informed investor buys most calls when the noise traders are

selling large amounts of stock (solid line in Panel B1, for x = -0.2). This is when the stock

is at its lowest price (see Figure 2), and has most potential to appreciate in value. This is

also the value of x at which the call option is cheapest, so that it intuitive that an informed

investor that receives a positive signal would buy more calls.

[Insert Figure 8 about here]
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Finally, and following the same logic, Figure 8 shows how the informed investor sells most

put options when the noise trader is selling a large amount of stock (solid lines in Panel C1)

for x = -0.2. Again, this happens when the stock price is cheapest, and has most potential

to appreciate in value, which coincides with the value of x at which the put option is most

expensive, so it is intuitive that the informed investor would collect the premium of the put

by going short.

D Predicting Stock Returns with Option Measures

This section discusses the predictability that can be derived from the model described in

III.A and III.B. It argues that such predictability is not a sufficient condition for options to

carry any incremental information, and proposes an extension that would allow options to

convey information that is not already reflected in stocks.

D.1 Single Stock, European Options, and Informational Irrelevance

Chabakauri, Yuan, and Zachariadis (2021) show that adding options to an economy with a

single stock does not help reveal any additional information about the distribution of payoffs

of the stock, and options are therefore informationally irrelevant. The model of An, Ang,

Bali, and Cakici (2014) falls into this category, as well as the highly cited model of Easley,

O’Hara, and Srinivas (1998). In both models, any information in the history of stock and

option trades is simultaneously reflected in both markets.

In the model described in Section III.B, the informed investor can trade a single stock

and European-type call and put options written on that stock. The model-implied synthetic

stock price, which is denoted as S∗
1 , is given by the put-call parity for European-type options:

S∗
1 = C1 − P1 +K (11)

20



and by plugging (7) and (8) into (11), the synthetic stock price is always equal to the actual

stock price, i.e. S∗
1 = S1. This is true not only at time t = 1, but also at time t = 2:

S∗
2 = C2 − P2 +K

= max(S2 −K, 0)−max(K − S2, 0) +K

= S2 (12)

This is because the market maker arbitrages between the stock and the options markets

so that the put-call parity always holds. As a result, and by construction, in this model

the actual and synthetic stock returns are always identical. This means that there is no

information in option prices that is not also reflected in the stock price.

The actual stock price adjustment is due to the link between the informed investor trading

in options first, e.g. the call option price at date 1 being positively linked with the return of

the stock from date 1 to date 2:

Cov(F − S1, C1) = Cov(F, S1)− Var(S1)

= E[(C2 − E(C2)− C1 + E(C1))(S1 − E(S1))]. (13)

By the same token, this rationale applies to put options:

Cov(F − S1, P1) = Cov(F, S1)− Var(S1)

= E[(F − E(F )− S1 + E(S1))(S1 − E(S1))]. (14)

The previous expectation can be computed numerically, where the only difficult part is the

numerical computation of E(S1). We perform it through a Gaussian Hermite quadrature,
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which allows us to control for both weights and location:

∫ +∞

−∞
e−x2

f(x)dx ≈
n∑

i=1

wif(xi) (15)

where n is number of points, wi the weights and xi the roots of the Hermite polynomial.

Given this, we can now control the conditions under which Cov(F−S1, C1) > 0 and Cov(F−

S1, P1) > 0. Next we repeat the same analysis, but for the synthetic stock prices from date

1 to date 2. Following the same logic, and due to Equations (11) and (18), it follows that:

Cov(S∗
2 − S∗

1 , C1) = Cov(C2 − P2 +K − C1 + P1 −K,C1)

= Cov(S2 − S1, C1)

= Cov(F − S1, C1)

= E[(F − E(F )− S1 + E(S1))(S1 − E(S1))] (16)

and for put options:

Cov(S∗
2 − S∗

1 , P1) = Cov(C2 − P2 +K − C1 + P1 −K,P1)

= Cov(S2 − S1, P1)

= Cov(F − S1, P1)

= E[(F − E(F )− S1 + E(S1))(S1 − E(S1))] (17)

which shows that, both for time 1 and 2, we can again control the signs of Cov(S∗
2 − S∗

1 , C1)

and Cov(S∗
2 − S∗

1 , P1) as we did in Equations (13) and (14).

In the presence of noise trading in stock and options, prices no not adjust to their fully

revealing levels, which leads to predictability from time t = 1 to t = 2. This means that,

the existence of predictability from options to future actual stock returns is not a sufficient

22



condition for the existence of additional information in options that is not also reflected in

stocks. An, Ang, Bali, and Cakici (2014) do recognize this limitation of their model in their

Appendix A (Section A.5). They state that “the predictability of options does not exist after

controlling for past stock returns”. However, they argue that in their empirical analysis they

do control for past stock returns and the predictability of options does not disappear. It could

be the case that past stock returns are not a sufficient statistic to capture the information

reflected in the stock market. Figure 1 (Panel C) proposes an alternative way to adjust the

predictability of options. Instead of controlling for past stock returns, which is not a good

proxy for informed trading, one could subtract the synthetic from the actual stock return

and test whether option signals predict this difference. If it does not, then it is hard to argue

that the options market is informationally more efficient than the stock market, and that

there is incremental information in options.

D.2 American Options and Transaction Costs

There can only be incremental information in options if one allows for a looser linkage

between the stock and the options markets. In the model described above, the prices of

stock and options are very tightly linked by the put-call parity. This is because options are

European-type and transaction costs are absent.

The model could potentially be extended to take into account the existence of bid-ask

spreads, dividends, non-zero interest rates, and American-type options. In this extended

model, the put-call parity relation would become a pair of inequalities (Cox and Rubinstein

(1985)).5 This would lead to a lower and an upper bound on the stock bid and ask prices,

and as long as they remain within these bounds there will be no arbitrage opportunities.

5Such an extension is non-trivial and is left for future research.
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The lower bound on the stock ask price is given by:

S∗,ask
1 ≥ S∗,L ≡ Cbid

1 +Ke−rτ − P ask
1 (18)

where τ is the time-to-maturity. The lower bound precludes arbitrage from going long on

the actual stock and short on the synthetic stock. If this condition does not hold, i.e.,

S∗,ask
1 < Cbid

1 +Ke−rτ −P ask
1 , then buy the put and the stock, and write the call and borrow

money with the nominal value K at maturity of the options. This generates a risk-less profit.

Indeed, if the buyer of the call exercises early to capture a large dividend (D1), the arbitrageur

loses the stock, and the value of her portfolio is P1+S1−S1+K−Ke−rτ = P1+K−Ke−rτ > 0.

If the dividend is not large enough to trigger early exercise, the arbitrageur collects the

dividend and holds the options until maturity: P2 + S2 +D1e
rτ − C2 −K = D1e

rτ > 0.

The upper bound on the stock bid price is given by:

S∗,bid
1 ≤ S∗,U ≡ Cask

1 +K +D1 − P bid
1 (19)

which precludes arbitrage from going short the actual stock and going long the synthetic

stock. If this condition does not hold, i.e., S∗,bid
1 > Cask

1 +K+D1−P bid
1 , then buy the call, buy

a risk-free bond in a present value of K +D1, write the put, and short the stock. This leads

to a risk-less profit. Because one is short the stock, the short-seller is responsible for paying

the dividend. If the buyer of the put exercises early, the value of the portfolio at maturity

is C2 +Kerτ − S2 > 0. If the buyer of the put does not exercise early, then the arbitrageur

holds the portfolio until the options expire, and its value becomes C2 +Kerτ − P2 − S2 =

Kerτ −K > 0.

Therefore, as long as the bid and ask prices of the actual stock remain within the bounds

(18) and (19), there will be no arbitrage opportunities. The actual stock price can vary

within these bounds, which means that the stock and the options markets are no longer
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tightly linked like in the model of An, Ang, Bali, and Cakici (2014). In this new setting,

if there is more information in options compared to stocks, then the synthetic stock price

is expected to deviate from the actual stock price. Specifically, if informed traders with a

positive (negative) signal are more likely to trade in options, they will cause the price of

calls to increase (decrease), and the price of puts to decrease (increase), which then increases

(decrease) the synthetic stock price relative to the actual price. The actual stock price will

then adjust with a delay as the new information gets revealed to the stock market. This

corresponds to the cases illustrated in Panels A and B of Figure 1.

IV Empirical Analysis

The theoretical discussion described above leads to a number of implications that can be

tested empirically. In particular, if an option-based measure reflects incremental information,

then it should predict future actual stock returns, but it should not predict (or predict

weakly) future synthetic stock returns. This can be implemented by subtracting the synthetic

stock return from the actual stock return, and then test if the option-based measures predict

this difference. If it does, then the options market is informationally more efficient than the

stock market, and there is incremental information in options. If it does not, then this would

be evidence inconsistent with the greater informational efficiency of the options market, and

it could also cast doubt on the incremental information reflected in option measures. In

particular we test if option-based measures predict (S2 − S1)− (S∗
2 − S∗

1), where for t equal

to 1 and 2 the actual stock price is defined as:

St = (Sask
t + Sbid

t )/2 (20)
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while from Equations (18) and (19) the synthetic stock price is defined as:

S∗
t = (S∗,ask

t + S∗,bid
t )/2 where: (21)

S∗,ask
t ≥ S∗,L ≡ Cbid

t +Ke−rτ − P ask
t (22)

S∗,bid
t ≤ S∗,U ≡ Cask

t +K +Dt − P bid
t (23)

A Sample Construction

The option data, which consists of option prices, implied volatilities, open interest, and

option volume, are extracted from the OptionMetrics database. The stock data, including

prices, returns, volume, and the number of shares outstanding, for common stock (share

codes 10 and 11) traded on the NYSE, NASDAQ, and AMEX (exchange codes 1, 2, and 3),

are extracted from CRSP. Earnings announcement dates are from I/B/E/S, and 8-K filing

dates are from SEC Analytics Suite. The sample used in this paper covers the period from

1996 to 2013.

After applying a number of filters to the option data, the merging of I/B/E/S with

OptionMetrics results in a final sample of about 68k earnings announcements. These are

assumed to be pre-scheduled corporate events.6 The merging of SEC Analytics Suite with

OptionMetrics results in about 85k 8-K filings that are unrelated to earnings. Only the first

filing of every month is included in the sample, and only if it is not within a week before or

after an earnings announcement date. These are all considered to be unscheduled corporate

events.

Following Gao and Ritter (2010), reported volume data for stocks trading on NASDAQ

is adjusted in the period before 2004. The stock data is merged with daily options data from

6It is typical to classify earnings announcement dates as pre-scheduled and non-discretionary since the
SEC requires firms to report earnings within 35 (60) days after quarter (year) end. Prior research finds little
flexibility: Bagnoli, Kross, and Watts (2002) find that only 1.8% (1.6%) of firms are more than 7 days late
(early) compared with their pre-announced release dates, and that being late leads to a negative market
reaction.
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OptionMetrics. Pairs of call and put options with the same maturities and strike prices are

formed whenever both options satisfy the following restrictions: (i) their expiration date is

at least 10 days but not more than 30 days away, (ii) their annualized implied volatility does

not exceed 250%, (iii) their bid prices are non-missing and are strictly positive, (iv) their ask

prices are non-missing and are strictly greater than their bid prices, (v) their open interest

is greater than zero, and (vi) their deltas are non-missing. We delete option pairs for which

the difference between the call delta and the put delta falls outside the interval [0.9, 1.1].

While not explicitly designed to do so, these option filters remove penny stocks (i.e., stocks

with closing prices below $5 ($1) before (after) April 2001) from the final sample.

To compute the option-implied bounds in (18) and (19), continuously compounded risk-

free rates are extracted from the OptionMetrics Zero Coupon Yield Curve dataset and are

used to calculate the present value of the strike price and the present value of dividends with

ex-dates prior to the maturity of the options in each put-call pair. The present value of each

dividend is calculated by discounting back from its payment date.7 A firm is defined to be

a dividend payer if its distribution in the OptionMetrics Dividend dataset is of type 1 (i.e.,

cash dividends) as this is most likely to affect the option-implied stock price bounds.8

The options in the sample are written on individual stocks and are generally of the

American type. The synthetic (option-implied) stock price is taken to be the mid-point of

the lower and the upper bounds, as defined in (18) and (19). The synthetic stock return

is computed as the percent change in the synthetic stock price. To minimize the noise in

the estimation, synthetic stock prices are computed by aggregating across all put-call pairs

using the inverse of option bid-ask spreads in each pair as weight. This assigns a lower

7The standardized set of maturities for risk-free rates in OptionMetrics is linearly interpolated for other
maturities. The realized dividends are then discounted at the risk-free rate. The dividends in this sample
are almost certain since they have almost always been announced and are payable within 22 calendar days.

8The final sample excludes all stocks with a liquidating dividend (LIQUID FLAG=1), a dividend cancel-
lation (CANCEL FLAG=1), a stock dividend, a stock split or a special dividend (DISTR TYPE = 2, 3, or
5, with AMOUNT > 0) before the option expiration date, as these events may give rise to adjustments in
the terms of the option contracts.
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weight to pairs of options with wider bid-ask spreads. This follows the procedure used in

Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020).9

The stock returns used in this empirical analysis are mid-quote returns, i.e., the percent

change in stock mid-quotes. To account for the effect of firm size, the reported portfolio

returns are all value-weighted, using stock-level market capitalization as weight.

B Empirical Results

The period around the release of material corporate news provides investors stronger in-

centives to gather private information and trade on such information. These periods are

then typically used to validate informed trading proxies, like in Amin and Lee (1997), Roll,

Schwartz, and Subrahmanyam (2010), Johnson and So (2012), among others.

The empirical analysis in this paper focuses primarily on the period around scheduled

earnings announcements. The results for unscheduled non-earnings 8-K filings are reported

in Section IV.B.6.

B.1 Scheduled News and Option Trading: Anticipation or Processing?

Table I reports the predictability derived from the option to stock volume (O/S) ratio of

Roll, Schwartz, and Subrahmanyam (2010), around scheduled earnings announcements. This

measure has been used in prior research as a proxy for informed option trading. For instance,

Johnson and So (2012) show that O/S predicts future firm-specific earnings news, and argue

that this is consistent with the idea that this measure reflects private information.

[Insert Table I about here]

Panel A shows that O/S on the day before an earnings announcement (t = −1) is a

9The results would be qualitatively similar if the aggregation across pairs of options on a given stock-date
was done using the open interest of the pair as weight, like in Cremers and Weinbaum (2010).
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strong predictor of actual stock returns during the announcement window.10 The actual

returns are computed as percent changes in mid-quote prices, and reported in rows (1) to

(3).

The long-short portfolio is constructed as follows. First, every quarter, ten groups of

stocks are formed by sorting based on the values of O/S on the day before the earnings

announcement. Second, the portfolio goes long on stocks with high O/S values (top decile),

and goes short on the stocks with low O/S values (bottom decile). The cumulative actual

return of the long-short portfolio during the announcement window (i.e., the announcement

day plus the two subsequent days [0, 2] in row (2)) is −66 basis points (bps). If the an-

nouncement day and the day after are skipped (i.e., the analysis focuses on the window [2, 5]

in row (3)), then the cumulative actual return of the long-short portfolio is −52 bps. These

results are statistically significantly at the 1% level.

This measure consistently predicts returns negatively. Johnson and So (2012) argue

that this could be because informed investors prefer to trade options when holding negative

signals. However, the results show that most of the predictive ability of O/S around earnings

releases is derived from stocks with low O/S values rather than the stocks with high O/S

values.

Rows (4) to (6) of Panel A show that the synthetic returns of the O/S long-short portfolio

formed on the day before the earnings announcement date are very similar to those using

actual returns. Specifically, for the window [0, 2] the synthetic long-short return is −50 bps

(i.e., row (5)), and for the window [2, 5] it is −49 bps (i.e., row (6)). These returns are also

statistically significant at the 1% level.

The difference between actual and synthetic long-short returns is not significantly dif-

ferent from zero in either of the two windows (i.e., the difference between rows (2) and (5),

10The time line used in this section is different from the one used in Figure 1. An earnings announcement
day is denoted as t = 0, and the day before is denoted as t = −1. In Figure 1, the announcement date,
which is the date in which the information is revealed and becomes public, corresponds to t = 2.
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and the difference between rows (3) and (6), respectively). Following the implications of the

model described above, these results are inconsistent with the idea that the options market

is informationally more efficient than the stock market, and that the relative trading activity

in options versus stocks conveys any incremental information that is not already reflected

in stocks. In fact, most of the predictive ability of O/S before earnings announcements is

derived from the stocks with low O/S values.

Panel B examines the predictive ability of O/S on the days of earnings announcements

(t = 0). This test captures whether option traders are good at processing publicly available

information, following Engelberg, Reed, and Ringgenberg (2012) and Cremers, Fodor, Mu-

ravyev, and Weinbaum (2022). The procedure for conducting this test is as above, except

that portfolios are formed on the day of the announcement, instead of the day before. The

results show that O/S is also a strong predictor of actual and synthetic long-short returns

when portfolios are formed on earnings days. Regarding the difference between actual and

synthetic long-short returns, it is not statistically different from zero for the three days after

the announcement (i.e., the window [1, 3]), but it is negative and significant at the 5% level

for the window [2, 5]. This suggests that option traders may be better a processing informa-

tion once it is made public, but they do not appear to have an advantage in the anticipation

of earnings releases (Panel A).

B.2 Option Leverage

The rational model of An, Ang, Bali, and Cakici (2014) described in Section III predicts

that in equilibrium the informed investor holding a positive signal is more likely to purchase

cheap (out-of-the-money) call options and write expensive (in-the-money) put options. To

account for the effect of leverage on the predictive ability of option volume, this paper repeats

the analysis described above using the volume-weighted strike-stock price (VWKS) ratio of
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Bernile, Gao, and Hu (2017). It is computed as follows:

VWKSi,t =

∑n
j=1Volumei,t,j × (

Ki,t,j

Si,t
− 1)∑n

j=1 Volumei,t,j
(24)

where Ki,t,j is the strike price of contract j, for stock i and day t, V olumei,t,j is the trading

volume of contract j, n is the total number of unique option contracts available, and Si,t is

the underlying stock price.

A high (low) value of VWKS indicates that the option volume distribution across strikes

is skewed towards the out-of-the-money call (put) options. Therefore, it suggests that in-

formed investors holding a positive (negative) signal are looking to leverage up their private

information by purchasing out-of-the-money calls (puts). This measure is expected to predict

returns of the underlying stock positively.

Table II reports the returns of the long-short VWKS portfolio formed on the day before

earnings announcement days (Panel A). This predictor variable generates an actual (mid-

quote) return of 94 bps for the window [0, 2], significant at the 1% level. For the window

[2, 5], the return is 51 bps, significant only at the 10% level. The reason why the results

are stronger for VWKS than O/S in [0, 2] but weaker in [2, 5], is that the VWKS measure

includes the underlying stock price in the computation of the moneyness ratio (K/S), and

is therefore more sensitive to stock price pressure, as argued in Goncalves-Pinto, Grundy,

Hameed, van der Heijden, and Zhu (2020).11

[Insert Table II about here]

The difference between actual and synthetic long-short VWKS returns is 5 bps for [0, 2]

and 7 bps for [2, 5], neither of which is statistically different from zero. Similar to using O/S,

the results using VWKS are also inconsistent with the greater informational efficiency of the

options market.

11Section IV.B.5 discusses the issue of stock price pressure in more detail.
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If the VWKS long-short portfolios are formed on the announcement day (Panel B) instead

of the day before (Panel A), the difference between actual and synthetic long-short returns

is −15 bps significant at the 10% level for the window [0, 2], and −3 bps not significantly

different from zero for the window [2, 5]. The negative difference for [0, 2] is also inconsistent

with option traders being superior information processors, because the predictability of syn-

thetic prices is larger than that of actual prices. This result does not follows the rationale

of Figure 1. Instead, in Panel B the actual stock return on the announcement day (t = 0)

is larger than the synthetic return. This means that actual prices lead synthetic prices, and

suggests that stock traders are better processors of public information.

B.3 How Interconnected Are Stock and Options Markets?

Panel C of Figure 1 suggests that the failure of option measures to predict the difference

between actual and synthetic returns could be driven by the tight interconnectedness between

stock and options markets. If the two markets are tightly connected, this does not allow

synthetic prices to deviate significantly from actual stock prices. This would be the case if

the option contracts are European-type, in which case the prices of stock and options are

tightly linked by put-call parity, and any deviation from that relation leads to an arbitrage

opportunity.

However, the options on individual stocks that are used in this empirical analysis are

typically of the American-type, and option bid-ask spreads are quite large. This means

that the put-call parity relation is a pair of inequalities (Cox and Rubinstein (1985)). This

results in a no-arbitrage price range within which the stock price can vary without leading

to arbitrage opportunities.

Table III reports the difference between the upper and the lower no-arbitrage bounds,

as a percent of the mid-point, for the portfolios of stocks created in Tables I and II. The

no-arbitrage price range, as a percent of the mid-point, is defined as follows: NAPR =
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(SU −SL)/MP , where the mid-point is MP = (SU +SL)/2, and the bounds SL and SU are

defined in (18) and (19).

[Insert Table III about here]

Panel A reports the results for the portfolios formed on the the day before the earnings

announcement (t = −1). It shows the NAPR not only for the formation date but also the

days surrounding it. Specifically, it shows the results for days t ∈ {−3,−2,−1, 0, 1, 2, 3},

where day 0 is the day of the earnings announcement, and day −1 is the portfolio formation

date. The results show that NAPR is larger on the day of portfolio formation, but it

continues to be large on the surrounding days. If O/S is used to form portfolios, the values

of NAPR range from 1.37% to 1.46% for the portfolios in the high O/S group, and ranges

from 2.11% to 2.40% for the low O/S group. If VWKS is used to form portfolios, the values

of NAPR range from 1.44% to 1.60% for the portfolios in the high VWKS group, and ranges

from 2.02% to 2.20% for the low VWKS group.

The patterns are similar when forming portfolios on the day of the earnings announcement

(Panel B).

This suggests that synthetic and actual stock prices deviate from each other significantly

without leading to arbitrage opportunities. Therefore, the linkage between the two markets

is not tight, and this cannot explain the results reported in Tables I and II.

B.4 Comparison with Option Price-Based Predictors

Table IV reports the predictability results around earnings news using two sorting variables

based on option prices: (i) the distance between the synthetic and the actual stock price

as a percent of the actual price (DOTS), and (ii) the implied-volatility spread (IVS). The

first measure is from Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020),

and the second is from Cremers and Weinbaum (2010). It can be argued that, under some

assumptions, DOTS and IVS are essentially the same measure, but the first measure has the
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advantage of being model-free. These two measures, and any other measure that depends

on the traded stock price (like the VWKS measure described above) are very sensitive to

price pressure in the stock market. The results reported in Table IV are indeed consistent

with such strong sensitivity to stock price pressure.

[Insert Table IV about here]

The results show that, both DOTS and IVS predict actual stock returns, but they do

not predict synthetic stock returns. This appears to be consistent with Panel A of Figure 1.

However, a closer look at the results reveals that this predictability is driven by the strong

return reversals observed from the formation day (t = −1) to the holding period. This means

that stock price pressure is the likely primary driver of these results.12

The two measures strongly predict the difference between actual and synthetic long-short

returns for the window [0, 2], but after accounting for the effect of stock price pressure (i.e.,

skipping a couple of days between the formation and the holding periods), the predictability

vanishes for the window [2, 5]. It is also clear that there is negative autocorrelation in returns

when comparing the results for the formation day (t = −1) and the holding period [0, 2],

consistent with stock price pressure.

B.5 Contribution of Stock Price Pressure to the Predictability of Option Volume-

Based Measures

Table V examines the impact of stock price pressure on the predictive ability of the option

volume-based measures. It uses the DOTS measure from Goncalves-Pinto, Grundy, Hameed,

van der Heijden, and Zhu (2020) as a proxy for stock price pressure. Then, it performs a

sequential double sort based on the DOTS measure first, and within each DOTS group,

12Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020) also examine the predictability of
DOTS around earnings announcements. However, their results are quantitatively different because Table IV
(Panel A) reports mid-quote returns, while they report traded stock returns.
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sort stocks based on either O/S or VWKS. It uses terciles in both sorts, which results in 9

portfolios. The table only reports the top and bottom terciles of this sequential double sort.

[Insert Table V about here]

Panel A uses O/S as the second sorting variable. The results of this conditional analysis

show that the predictive ability of O/S does not appear to be sensitive to stock price pressure.

It is a strong predictor of returns within both the high and low DOTS groups.

Panel B uses VKWS as the second sorting variable. In contrast to the results in Panel A,

the ability of VWKS to predict future stock returns only works for the high DOTS group,

and only for the window [0, 2]. It fails to predict both actual and synthetic stock returns

when skipping a couple of days between formation and holding (i.e., window [2, 5]). This

is consistent with VWKS being highly sensitive to stock price pressure, which is expected

given that this measure is a function of actual stock prices.

More importantly, the data fails to reject the hypothesis that actual and synthetic long-

short returns are equal, in either the low or the high DOTS groups, for both predictors O/S

and VWKS. This is consistent with the conclusion from Panel A of Tables I and II, that the

options market does not appear to be informationally more efficient than the stock market.

B.6 Unscheduled Corporate Events

The discussion in previous sections focuses on the period around earnings announcements.

This section extends the analysis to the period around the disclosure of (non-earnings) 8-

K filings, extracted from SEC Analytics Suite. This later group of events is generally not

pre-scheduled, unlike earnings announcements. Therefore, the dynamics of price discovery

across stock and options markets can be different around such unscheduled events.

There exist alternative sources of unscheduled corporate events. For instance, Jin, Livnat,

and Zhang (2012) use unscheduled events from the Capital IQ Key Developments database,

Cremers, Fodor, Muravyev, and Weinbaum (2022) use news from Thomson Reuters News
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Analytics, and Augustin, Brenner, Grass, and Subrahmanyam (2016) use Dow Jones news

from RavenPack. The main advantage of using the 8-K filings is that it covers a much

longer time period, including the entire period covered by OptionMetrics. The alternative

databases only cover the more recent period.

Table VI replicates the analysis in Table I for the period around the release of (non-

earnings) 8-K filings. The final sample of 8-K filings includes only the first filing of every

month, and only if it is not within a week before or after an earnings announcement date.

[Insert Table VI about here]

Overall, the results in Table VI are much weaker compared to the results in Table I, but

they are qualitatively very similar: O/S is a good predictor of future stock returns, both

when forming portfolios on the day before the disclose of the 8-K filings (Panel A), and

when forming portfolios on the disclosure date (Panel B). The predictability is stronger in

Panel B, which is consistent with the idea that it is much harder to anticipate the release of

unscheduled 8-K filings, compared to waiting for such news to be released first so that one

can then process them.

More importantly, the null hypothesis that actual and synthetic long-short returns are

equal cannot be rejected in the empirical tests of Table VI, like in the case of earnings

announcements in Table I. This stresses the idea that the options market does not appear

to be informationally more efficient than the stock market, and casts doubt in the existence

of incremental information in options.

V Conclusion

Much of prior research argues that informed investors prefer to trade in the options market

and this explains why option-based measures are strong predictors of future stock returns.
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If informed investors do indeed prefer to trade in the options market, and stock and

options markets are not tightly linked because of market frictions, then the synthetic (option-

implied) stock price should adjust towards the fundamental stock value to a larger extent than

the actual stock price. Therefore, one would be able to use option measures to predict future

actual stock returns, but there should be weaker or no predictability for future synthetic stock

returns, depending on the extent of noise trading in options. To the best of our knowledge,

this latter condition has never been examined in prior research and we do this along three

dimensions. First, we introduce a new method to determine if options contain information

not yet reflected into stock prices, by focusing on the predictability of the difference between

actual and synthetic stock returns. Second, we find that existing proxies for informed option

trading, such as the option-to-stock volume ratio, predict both actual and synthetic stock

returns to the same extent, around the release of scheduled and unscheduled firm-specific

news. This is inconsistent with the idea that options convey incremental information that

is not already reflected in stocks. Lastly, we motivate the empirical approach using a noisy

rational expectations model with informed investors who can trade simultaneously in stock

and options, following An, Ang, Bali, and Cakici (2014).
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Table I: Predictability of O/S Around Earnings Announcements

This table reports the returns of portfolios of stocks formed based on O/S, the option to stock volume
ratio of Roll, Schwartz, and Subrahmanyam (2010), around quarterly earnings announcements. In Panel
A, stocks are sorted into deciles based on O/S on the day before the announcement (t = −1), and in
Panel B the portfolios are formed using the O/S on the announcement day (t = 0). Rows (1) to (3)
report value-weighted mid-quote stock returns in excess of the risk-free rate, and rows (4) to (6) report
value-weighted synthetic stock returns in excess of the risk-free rate. Synthetic returns are computed as
percent changes in synthetic stock prices, which in turn are computed as the mid-point of the upper and
lower no-arbitrage bounds defined in Section III.D.2. The table shows the results for the portfolios of
stocks in the top and bottom O/S deciles (“High O/S” and “Low O/S” respectively), as well as the results
of the long-short portfolio that purchases the “High O/S” group and shorts the “Low O/S” group (i.e.,
“High-Low”). The sample period is from 1996 to 2013. ***, **, and * represent significance at the 1%,
5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Single sort on O/S before earnings days (t = -1)

Return Row Period Low O/S High O/S High - Low

Actual (1) -1 0.199*** 0.318*** 0.119
(0.049) (0.115) (0.125)

Actual (2) [0,2] 0.558*** -0.103 -0.661***
(0.134) (0.159) (0.190)

Actual (3) [2,5] 0.342*** -0.177 -0.518***
(0.117) (0.138) (0.166)

Synthetic (4) -1 0.127*** 0.303*** 0.175
(0.040) (0.110) (0.109)

Synthetic (5) [0,2] 0.336*** -0.167 -0.503***
(0.110) (0.141) (0.165)

Synthetic (6) [2,5] 0.260** -0.232* -0.492***
(0.103) (0.138) (0.158)

Actual - Synthetic (1) - (4) -1 0.071*** 0.015 -0.057
(0.026) (0.029) (0.035)

Actual - Synthetic (2) - (5) [0,2] 0.223*** 0.065 -0.158
(0.069) (0.082) (0.101)

Actual - Synthetic (3) - (6) [2,5] 0.081* 0.055* -0.026
(0.044) (0.031) (0.052)

Panel B: Single sort on O/S on earnings days (t = 0)

Return Row Period Low O/S High O/S High - Low

Actual (1) 0 0.168* 0.426*** 0.258**
(0.100) (0.078) (0.122)

Actual (2) [1,3] 0.523*** -0.365 -0.888***
(0.132) (0.238) (0.289)

Actual (3) [2,5] 0.366*** -0.359** -0.724***
(0.105) (0.158) (0.167)

Synthetic (4) 0 0.064 0.392*** 0.327***
(0.077) (0.074) (0.123)

Synthetic (5) [1,3] 0.407*** -0.460** -0.867***
(0.101) (0.186) (0.217)

Synthetic (6) [2,5] 0.281*** -0.264* -0.545***
(0.088) (0.140) (0.139)

Actual - Synthetic (1) - (4) 0 0.104** 0.035 -0.069
(0.050) (0.039) (0.059)

Actual - Synthetic (2) - (5) [1,3] 0.116** 0.095 -0.022
(0.048) (0.086) (0.103)

Actual - Synthetic (3) - (6) [2,5] 0.084* -0.095 -0.179**
(0.048) (0.065) (0.085)
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Table II: Predictability of VWKS Around Earnings Announcements

This table reports the returns of portfolios of stocks formed based on VWKS, the volume-weighted strike-
spot ratio of Bernile, Gao, and Hu (2017), around quarterly earnings announcements. In Panel A, stocks
are sorted into deciles based on VWKS on the day before the announcement (t = −1), and in Panel B
the portfolios are formed using the VWKS on the announcement day (t = 0). Rows (1) to (3) report
value-weighted mid-quote stock returns in excess of the risk-free rate, and rows (4) to (6) report value-
weighted synthetic stock returns in excess of the risk-free rate. Synthetic returns are computed as percent
changes in synthetic stock prices, which in turn are computed as the mid-point of the upper and lower
no-arbitrage bounds defined in Section III.D.2. The table shows the results for the portfolios of stocks in
the top and bottom VWKS deciles (“High VWKS” and “Low VWKS” respectively), as well as the results
of the long-short portfolio that purchases the “High VWKS” group and shorts the “Low VWKS” group
(i.e., “High-Low”). The sample period is from 1996 to 2013. ***, **, and * represent significance at the
1%, 5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Single sort on VWKS before earnings days (t = -1)

Return Row Period Low VWKS High VWKS High - Low

Actual (1) -1 0.858*** 0.108 -0.750***
(0.131) (0.094) (0.146)

Actual (2) [0,2] -0.011 0.930*** 0.941***
(0.169) (0.156) (0.233)

Actual (3) [2,5] -0.138 0.374* 0.512*
(0.136) (0.198) (0.277)

Synthetic (4) -1 0.785*** 0.118 -0.666***
(0.115) (0.090) (0.106)

Synthetic (5) [0,2] -0.134 0.757*** 0.890***
(0.179) (0.141) (0.210)

Synthetic (6) [2,5] -0.109 0.334* 0.442*
(0.137) (0.177) (0.264)

Actual - Synthetic (1) - (4) -1 0.073 -0.010 -0.083
(0.056) (0.051) (0.082)

Actual - Synthetic (2) - (5) [0,2] 0.122* 0.173** 0.051
(0.067) (0.084) (0.107)

Actual - Synthetic (3) - (6) [2,5] -0.029 0.041 0.070
(0.060) (0.093) (0.111)

Panel B: Single sort on VWKS on earnings days (t = 0)

Return Row Period Low VWKS High VWKS High - Low

Actual (1) 0 2.213*** 0.358*** -1.854***
(0.197) (0.096) (0.197)

Actual (2) [1,3] -0.158 0.673*** 0.830***
(0.206) (0.178) (0.274)

Actual (3) [2,5] -0.210 0.316** 0.526***
(0.177) (0.154) (0.195)

Synthetic (4) 0 2.096*** 0.238*** -1.858***
(0.209) (0.085) (0.198)

Synthetic (5) [1,3] -0.371* 0.610*** 0.981***
(0.201) (0.170) (0.243)

Synthetic (6) [2,5] -0.246* 0.307** 0.553***
(0.130) (0.132) (0.187)

Actual - Synthetic (1) - (4) 0 0.117 0.121* 0.004
(0.082) (0.062) (0.078)

Actual - Synthetic (2) - (5) [1,3] 0.213*** 0.062 -0.151*
(0.073) (0.051) (0.087)

Actual - Synthetic (3) - (6) [2,5] 0.036 0.009 -0.027
(0.073) (0.100) (0.090)
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Table III: No-Arbitrage Price Range Around Earnings Announcements

This table reports the difference between the upper and the lower no-arbitrage bounds, as a percent of the
mid-point, for the portfolios of stocks created in Tables I and II. The no-arbitrage price range, as a percent of
the mid-point, is defined as follows: NAPR = (SU −SL)/MP , where the mid-point is MP = (SU +SL)/2,
and the bounds SL and SU are defined in Section III.D.2. Panel A reports the results for the portfolios
formed on the the day before the earnings announcement (t = −1), and Panel B reports the results for
the portfolios formed on the announcement day (t = 0). It shows the NAPR not only for the formation
date but also the days surrounding it. Specifically, it shows the results for days t ∈ {−3,−2,−1, 0, 1, 2, 3},
where day 0 is the day of the earnings announcement. The table shows the results for the portfolios of
stocks in the top and bottom deciles for each of the sorting variables, as well as the results of the long-short
portfolio (“High-Low”). The sample period is from 1996 to 2013. ***, **, and * represent significance at the
1%, 5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Single sort before earnings days (t = -1)

Sort variable: O/S Sort variable: VWKS

Period Low O/S High O/S High - Low Low VWKS High VWKS High - Low

-3 2.246*** 1.462*** -0.784*** 2.177*** 1.561*** -0.616***
(0.119) (0.109) (0.160) (0.088) (0.078) (0.056)

-2 2.283*** 1.460*** -0.824*** 2.164*** 1.569*** -0.595***
(0.117) (0.112) (0.160) (0.080) (0.077) (0.057)

-1 2.395*** 1.462*** -0.932*** 2.202*** 1.595*** -0.607***
(0.133) (0.108) (0.170) (0.075) (0.076) (0.049)

0 2.333*** 1.458*** -0.874*** 2.169*** 1.580*** -0.589***
(0.127) (0.109) (0.160) (0.077) (0.077) (0.044)

1 2.218*** 1.370*** -0.847*** 2.049*** 1.473*** -0.576***
(0.105) (0.116) (0.140) (0.078) (0.079) (0.041)

2 2.165*** 1.375*** -0.790*** 2.015*** 1.457*** -0.558***
(0.107) (0.117) (0.142) (0.089) (0.080) (0.041)

3 2.113*** 1.366*** -0.747*** 2.016*** 1.436*** -0.579***
(0.106) (0.112) (0.146) (0.080) (0.083) (0.039)

Panel B: Single sort on earnings days (t = 0)

Sort variable: O/S Sort variable: VWKS

Period Low O/S High O/S High - Low Low VWKS High VWKS High - Low

-3 2.322*** 1.488*** -0.834*** 2.225*** 1.554*** -0.671***
(0.152) (0.106) (0.184) (0.077) (0.072) (0.052)

-2 2.346*** 1.492*** -0.854*** 2.267*** 1.577*** -0.690***
(0.144) (0.106) (0.181) (0.072) (0.076) (0.055)

-1 2.427*** 1.484*** -0.943*** 2.284*** 1.595*** -0.689***
(0.152) (0.107) (0.183) (0.072) (0.077) (0.056)

0 2.502*** 1.528*** -0.974*** 2.323*** 1.625*** -0.698***
(0.159) (0.105) (0.194) (0.069) (0.074) (0.059)

1 2.322*** 1.401*** -0.922*** 2.136*** 1.503*** -0.633***
(0.135) (0.112) (0.171) (0.073) (0.078) (0.037)

2 2.305*** 1.372*** -0.933*** 2.073*** 1.469*** -0.603***
(0.130) (0.113) (0.166) (0.073) (0.080) (0.036)

3 2.282*** 1.360*** -0.922*** 2.085*** 1.449*** -0.636***
(0.136) (0.111) (0.176) (0.072) (0.080) (0.036)
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Table IV: Predictability of DOTS and IVS

This table reports the predictability results around earnings announcements using two sorting variables based
on option prices. Panel A uses the distance between the synthetic and the actual stock price as a percent
of the actual price (DOTS), and Panel B uses the implied-volatility spread (IVS). The first measure is from
Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020), and the second is from Cremers and
Weinbaum (2010). In both panels, portfolios are formed on the day before the announcement (t = −1). Rows
(1) to (3) report value-weighted mid-quote stock returns in excess of the risk-free rate, and rows (4) to (6)
report value-weighted synthetic stock returns in excess of the risk-free rate. Synthetic returns are computed
as percent changes in synthetic stock prices, which in turn are computed as the mid-point of the upper
and lower no-arbitrage bounds defined in Section III.D.2. The table shows the results for the portfolios of
stocks in the top and bottom deciles of the sorting variables, as well as the results of the long-short portfolio
(i.e., “High-Low”). The sample period is from 1996 to 2013. ***, **, and * represent significance at the
1%, 5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Single sort on DOTS before earnings days (t = -1)

Return Row Period Low DOTS High DOTS High - Low

Actual (1) -1 0.665*** -0.367** -1.032***
(0.114) (0.158) (0.226)

Actual (2) [0,2] 0.000 0.514** 0.515*
(0.189) (0.240) (0.259)

Actual (3) [2,5] 0.194 0.060 -0.135
(0.225) (0.196) (0.222)

Synthetic (4) -1 0.376*** -0.166 -0.542**
(0.098) (0.150) (0.208)

Synthetic (5) [0,2] 0.344* 0.271 -0.073
(0.201) (0.253) (0.263)

Synthetic (6) [2,5] 0.177 0.093 -0.084
(0.176) (0.182) (0.193)

Actual - Synthetic (1) - (4) -1 0.289*** -0.201*** -0.490***
(0.037) (0.041) (0.062)

Actual - Synthetic (2) - (5) [0,2] -0.344*** 0.243*** 0.587***
(0.074) (0.076) (0.103)

Actual - Synthetic (3) - (6) [2,5] 0.017 -0.033 -0.051
(0.082) (0.078) (0.103)

Panel B: Single sort on IVS before earnings days (t = -1)

Return Row Period Low IVS High IVS High - Low

Actual (1) -1 0.645*** -0.335** -0.980***
(0.150) (0.164) (0.260)

Actual (2) [0,2] -0.050 0.382* 0.433*
(0.203) (0.201) (0.232)

Actual (3) [2,5] 0.081 0.208 0.128
(0.208) (0.172) (0.206)

Synthetic (4) -1 0.371*** -0.090 -0.460**
(0.116) (0.134) (0.189)

Synthetic (5) [0,2] 0.093 0.185 0.092
(0.173) (0.203) (0.222)

Synthetic (6) [2,5] 0.147 0.164 0.017
(0.181) (0.152) (0.193)

Actual - Synthetic (1) - (4) -1 0.275*** -0.245*** -0.520***
(0.062) (0.067) (0.106)

Actual - Synthetic (2) - (5) [0,2] -0.143* 0.197** 0.340***
(0.075) (0.081) (0.104)

Actual - Synthetic (3) - (6) [2,5] -0.066 0.044 0.111
(0.098) (0.066) (0.115)
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Table V: Predictability of O/S and VWKS Controlling for Price Pressure

This table reports the returns of portfolios formed using a sequential double sort, according to which stock are first sorted
into terciles based on DOTS, and then within each tercile of DOTS sort stocks again into terciles based on O/S (Panel A)
or VWKS (Panel B), creating a total of 9 portfolios for each panel. The difference between the synthetic and the actual
stock price (DOTS) is from Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020). The option to stock vol-
ume ratio (O/S) is from Roll, Schwartz, and Subrahmanyam (2010), and the volume-weighted strike-spot ratio (VWKS) is
from Bernile, Gao, and Hu (2017). In both panels, portfolios are formed on the day before the announcement (t = −1).
The table reports actual returns (i.e., value-weighted mid-quote stock returns in excess of the risk-free rate), synthetic re-
turns (i.e., value-weighted synthetic stock returns in excess of the risk-free rate), and their difference. Synthetic returns are
computed as percent changes in synthetic stock prices, which in turn are computed as the mid-point of the upper and lower
no-arbitrage bounds defined in Section III.D.2. The sample period is from 1996 to 2013. ***, **, and * represent signif-
icance at the 1%, 5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Sequential double sort on DOTS (terciles) and O/S (terciles) before earnings days (t = -1)

Actual Synthetic Actual - Synthetic

Period Low DOTS High DOTS Low DOTS High DOTS Low DOTS High DOTS

-1

Low O/S 0.470*** -0.194* 0.354*** -0.068 0.117*** -0.126***
(0.109) (0.105) (0.103) (0.100) (0.027) (0.018)

High O/S 0.579*** -0.128 0.456*** -0.095 0.124*** -0.033
(0.117) (0.085) (0.115) (0.106) (0.044) (0.058)

High O/S - Low O/S 0.109 0.067 0.102 -0.027 0.007 0.094*
(0.149) (0.140) (0.137) (0.153) (0.051) (0.049)

[0,2]

Low O/S 0.208 0.523*** 0.277** 0.397*** -0.069 0.126***
(0.128) (0.140) (0.106) (0.139) (0.051) (0.045)

High O/S -0.213 -0.200 -0.102 -0.227 -0.111* 0.026
(0.201) (0.174) (0.221) (0.185) (0.060) (0.045)

High O/S - Low O/S -0.421** -0.724*** -0.379* -0.624*** -0.042 -0.100*
(0.185) (0.191) (0.192) (0.211) (0.076) (0.056)

[2,5]

Low O/S 0.384*** 0.313* 0.322** 0.300** 0.063 0.013
(0.140) (0.157) (0.140) (0.139) (0.049) (0.044)

High O/S 0.019 -0.082 0.007 -0.190 0.012 0.108**
(0.165) (0.195) (0.132) (0.186) (0.095) (0.045)

High O/S - Low O/S -0.365*** -0.395** -0.315*** -0.490*** -0.050 0.095
(0.117) (0.169) (0.107) (0.143) (0.115) (0.069)

Panel B: Sequential double sort on DOTS (terciles) and VWKS (terciles) before earnings days (t = -1)

Actual Synthetic Actual - Synthetic

Period Low DOTS High DOTS Low DOTS High DOTS Low DOTS High DOTS

-1

Low VWKS 1.018*** 0.369*** 0.901*** 0.436*** 0.117*** -0.067
(0.165) (0.107) (0.159) (0.105) (0.031) (0.054)

High VWKS 0.236** -0.252** 0.108 -0.150 0.128*** -0.102*
(0.109) (0.113) (0.102) (0.099) (0.022) (0.061)

High VWKS - Low VWKS -0.782*** -0.621*** -0.794*** -0.585*** 0.011 -0.036
(0.196) (0.140) (0.186) (0.113) (0.029) (0.073)

[0,2]

Low VWKS -0.037 -0.186 -0.007 -0.269 -0.030 0.083*
(0.202) (0.196) (0.207) (0.189) (0.071) (0.043)

High VWKS 0.262 0.842*** 0.375** 0.686*** -0.112** 0.156***
(0.181) (0.197) (0.180) (0.193) (0.049) (0.056)

High VWKS - Low VWKS 0.300 1.028*** 0.382 0.955*** -0.082 0.073
(0.262) (0.276) (0.262) (0.249) (0.084) (0.078)

[2,5]

Low VWKS -0.017 0.041 -0.004 -0.027 -0.012 0.068*
(0.159) (0.160) (0.144) (0.148) (0.065) (0.037)

High VWKS 0.253 0.171 0.217 0.118 0.036 0.053
(0.187) (0.216) (0.176) (0.201) (0.041) (0.043)

High VWKS - Low VWKS 0.270 0.130 0.222 0.145 0.048 -0.015
(0.245) (0.201) (0.221) (0.194) (0.069) (0.054)
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Table VI: Predictability of O/S Around Non-Earnings 8-K Filings

This table reports the returns of portfolios of stocks formed based on O/S, the option to stock volume ratio
of Roll, Schwartz, and Subrahmanyam (2010), around the disclosure of (non-earnings) 8-K filings, which are
extracted from SEC Analytics Suite. In Panel A, stocks are sorted into deciles based on O/S on the day before
the announcement (t = −1), and in Panel B the portfolios are formed using the O/S on the announcement
day (t = 0). Rows (1) to (3) report value-weighted mid-quote stock returns in excess of the risk-free rate, and
rows (4) to (6) report value-weighted synthetic stock returns in excess of the risk-free rate. Synthetic returns
are computed as percent changes in synthetic stock prices, which in turn are computed as the mid-point
of the upper and lower no-arbitrage bounds defined in Section III.D.2. The table shows the results for the
portfolios of stocks in the top and bottom O/S deciles (“High O/S” and “Low O/S” respectively), as well as
the results of the long-short portfolio that purchases the “High O/S” group and shorts the “Low O/S” group
(i.e., “High-Low”). The sample period is from 1996 to 2013. ***, **, and * represent significance at the
1%, 5%, and 10% levels, respectively. Newey and West (1987) standard errors are reported in parenthesis.

Panel A: Single sort on O/S before news days (t = -1)

Return Row Period Low O/S High O/S High - Low

Actual (1) -1 -0.016 0.127 0.142*
(0.045) (0.077) (0.075)

Actual (2) [0,2] 0.090 -0.245 -0.335**
(0.126) (0.183) (0.151)

Actual (3) [2,5] 0.083 -0.192 -0.275*
(0.109) (0.167) (0.142)

Synthetic (4) -1 -0.009 0.072 0.081
(0.040) (0.079) (0.077)

Synthetic (5) [0,2] 0.092 -0.166 -0.258
(0.107) (0.168) (0.170)

Synthetic (6) [2,5] 0.041 -0.184 -0.225*
(0.102) (0.153) (0.134)

Actual - Synthetic (1) - (4) -1 -0.007 0.055 0.062
(0.017) (0.038) (0.038)

Actual - Synthetic (2) - (5) [0,2] -0.002 -0.079 -0.077
(0.052) (0.071) (0.067)

Actual - Synthetic (3) - (6) [2,5] 0.042 -0.008 -0.049
(0.054) (0.055) (0.066)

Panel B: Single sort on O/S on news days (t = 0)

Return Row Period Low O/S High O/S High - Low

Actual (1) 0 -0.004 0.227** 0.231**
(0.044) (0.100) (0.114)

Actual (2) [1,3] 0.284** -0.092 -0.376***
(0.112) (0.141) (0.142)

Actual (3) [2,5] 0.210** -0.225 -0.435***
(0.089) (0.153) (0.157)

Synthetic (4) 0 -0.018 0.176* 0.194*
(0.036) (0.102) (0.109)

Synthetic (5) [1,3] 0.250*** -0.076 -0.326**
(0.096) (0.139) (0.135)

Synthetic (6) [2,5] 0.151* -0.218 -0.369**
(0.086) (0.145) (0.157)

Actual - Synthetic (1) - (4) 0 0.014 0.051 0.037
(0.025) (0.054) (0.067)

Actual - Synthetic (2) - (5) [1,3] 0.034 -0.017 -0.050
(0.039) (0.053) (0.058)

Actual - Synthetic (3) - (6) [2,5] 0.059 -0.007 -0.066
(0.054) (0.038) (0.059)
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Figure 2: Stock and Options Prices and Noise Trading Shocks

This figure plots the prices of the stock, the call option, and the put option, as a function of uninformed
demand shocks given a good signal, i.e., θ = 1. Panel A plots the price of the stock as a solid line for stock
demand shocks z, while keeping the call and put demand shocks at νc = 0 and νp = 0. The dash-dotted line
represents the stock price as a function of call demand shocks νc, while holding the stock and put demand
shocks at z = 0 and νp = 0. The dotted line represents the stock price as a function of put demands shocks
νp, holding the stock and call demand shocks at z = 0 and νc = 0. Panels B and C repeat the exercise but
plot instead the prices of the call and put options, respectively. The parameter values used to generate these
plots are as follows: FH = 103, FL = 97, K = 100, ω = 0.7, and γ = 1.5.
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Figure 3: Comparative Statics on Probability of High Cash Flow

This figure shows the sensitivity of the stock price (Panel A), the call price (Panel B), and the put price
(Panel C), to changes in the probability of the high cash flow (ω), given a positive signal (θ = 1). Figure 2
shows that the curves intersect at the point in which all the noise trading shocks are equal to zero (i.e., z = 0,
νc = 0, and νp = 0). This figure plots these intersection points for different values of ω. The parameter ω
can be interpreted as the quality of the positive signal. Its baseline value is ω = 0.7, and this figure takes
it to vary in the interval ]0, 1[. The remaining parameter values are kept unchanged: FH = 103, FL = 97,
K = 100, and γ = 1.5.
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Figure 4: Comparative Statics on Risk Aversion

This figure shows the sensitivity of the stock price (Panel A), the call price (Panel B), and the put price
(Panel C), to changes in the risk aversion parameter (γ), given a positive signal (θ = 1). Figure 2 shows that
the curves intersect at the point in which all the noise trading shocks are equal to zero (i.e., z = 0, νc = 0,
and νp = 0). This figure plots these intersection points for different values of γ. Its baseline value is γ = 1.5.
The remaining parameter values are kept unchanged: FH = 103, FL = 97, K = 100, and ω = 0.7.
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Figure 5: Comparative Statics on Cash Flow Volatility

This figure shows the sensitivity of the stock price (Panel A), the call price (Panel B), and the put price
(Panel C), to changes in the volatility of the firm cash flows at time t = 2. The cash flow volatility is captured
by the distance between the high and the low cash flows, i.e., FH − FL. The variation in cash flows is kept
symmetric in relation to the strike price K = 100, which means that FH = K + a and FL = K − a. In the
baseline model, FH − FL = 103− 97 = 6, which corresponds to the case a = 3. This figure plots the results
for values of a between 0.05 and 5.05. Figure 2 shows that the curves intersect at the point in which all the
noise trading shocks are equal to zero (i.e., z = 0, νc = 0, and νp = 0). This figure plots these intersection
points for different values of a. The remaining parameter values are kept unchanged: K = 100, ω = 0.7, and
γ = 1.5.
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Figure 6: Comparative Statics on Stock Demand Function

This figure plots the informed and market maker stock demand as a function of uninformed demand shocks,
given a good signal, i.e., θ = 1. Panel A1 plots the informed demand of the stock as a solid line for uninformed
stock demand shocks z, while keeping the uninformed call and put demand shocks at νc = 0 and νp = 0.
The dash-dotted line represents the informed stock demand as a function of the uninformed call demand
shocks νc, while holding the uninformed stock and put demand shocks at z = 0 and νp = 0. The dotted line
represents the informed stock demand as a function of the uninformed put demands shocks νp, holding the
uninformed stock and call demand shocks at z = 0 and νc = 0. Panel A2 depicts the same analysis, but for
the market maker. The parameter values used to generate these plots are as follows: FH = 103, FL = 97,
K = 100, ω = 0.7, and γ = 1.5.
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Figure 7: Comparative Statics on Call Demand Function

This figure plots the informed and market maker call demand as a function of uninformed demand shocks,
given a good signal, i.e., θ = 1. Panel B1 plots the informed demand of the call as a solid line for uninformed
stock demand shocks z, while keeping the uninformed call and put demand shocks at νc = 0 and νp = 0. The
dash-dotted line represents the informed call demand as a function of the uninformed call demand shocks νc,
while holding the uninformed stock and put demand shocks at z = 0 and νp = 0. The dotted line represents
the informed call demand as a function of the uninformed put demands shocks νp, holding the uninformed
stock and call demand shocks at z = 0 and νc = 0. Panel A2 depicts the same analysis, but for the market
maker. The parameter values used to generate these plots are as follows: FH = 103, FL = 97, K = 100,
ω = 0.7, and γ = 1.5.
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Figure 8: Comparative Statics on Put Demand Function

This figure plots the informed and market maker put demand as a function of uninformed demand shocks,
given a good signal, i.e., θ = 1. Panel B1 plots the informed demand of the put as a solid line for uninformed
stock demand shocks z, while keeping the uninformed call and put demand shocks at νc = 0 and νp = 0. The
dash-dotted line represents the informed put demand as a function of the uninformed call demand shocks νc,
while holding the uninformed stock and put demand shocks at z = 0 and νp = 0. The dotted line represents
the informed put demand as a function of the uninformed put demands shocks νp, holding the uninformed
stock and call demand shocks at z = 0 and νc = 0. Panel A2 depicts the same analysis, but for the market
maker. The parameter values used to generate these plots are as follows: FH = 103, FL = 97, K = 100,
ω = 0.7, and γ = 1.5.
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