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1. Introduction 

Option prices reflect state-price valuation of underlying risky streams (Cox and Ross, 1976),1 

implying that index options may naturally contain information about various contributors to 

the market risk premium.  Empirical market-return predictors derived from index options 

include the variance-risk premium (Bollerslev, Tauchen, and Zhou, 2009; Carr and Wu, 2009), 

tail-risk premia (Bollerslev and Todorov, 2011), and equity premium bounds (Martin, 2017; 

Chabi-Yo and Loudis, 2019). Other equity-return predictors such as short-interest (Rapach, 

Rosenberg, and Zhou, 2016) relate most naturally to speculative demand, but from the logic of 

the law-of-one-price can also impact option prices.  

International equity and option markets are further connected by global risks and cross-

country risk sharing and information aggregation. Events such as the 2007-2008 financial crisis 

and Covid-19 pandemic have shown global events to be increasingly important. Integration of 

international equity markets has long been hypothesized and tested (Solnik, 1983; Harvey, 

1991; Bekaert and Harvey, 1995).  More recently, an emerging literature uses international 

option markets to better understand local and global equity risk premia (Bollerslev, Marrone, 

Xu, and Zhou, 2014; Andersen, Fusari, and Todorov, 2020).    

We contribute to these efforts by combining information from the index options of 

twenty countries and regions to construct a single global implied volatility surface. Our 

procedure reveals a powerful and encompassing in- and out-of-sample equity-premium 

predictor, global-surface convexity. Implied volatilities of index options display two prominent 

empirical features. 2  The first, known as volatility smirk, captures that low-strike implied 

volatilities typically exceed high-strike implied volatilities. We measure smirk steepness with 

 
1 See also Debreu (1959), Arrow (1964), Breeden and Litzenberger (1978), Ross (1978), and Ross (2015). 
2 See for example Bates (1991, 2000, 2022), Bakshi, Cao, and Chen (1997), Das and Sundaram (1999), Pan 

(2002), and Liu, Pan, and Wang (2005). 
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a slope factor. The second feature, known as volatility smile, captures that controlling for smirk, 

implied volatilities of options with low and high strikes typically exceed the implied volatilities 

of options with medium strikes. We measure the curvature of the volatility smile by a convexity 

factor.  In addition to slope and convexity, we also measure the level of the global volatility 

surface. The global-surface level, slope, and convexity effectively produce a low-dimensional 

representation of the global implied volatility surface.  

 Global-surface convexity is by far the most powerful option-based return predictor. It 

strongly forecasts equity premia around the world, in- and out-of-sample. When the global 

surface is more convex, it predicts higher market returns. In the US, global convexity predicts 

S&P 500 index returns one-month ahead with an R2 of 3.7%, and six-months ahead with an R2 

of 14.4%, from 1996 to 2021. Predictability does not deteriorate out-of-sample, and in fact the 

one- and six-month ahead out-of-sample R2 in the U.S. are larger, 4.1% and 20.8% 

respectively.3  Internationally, global convexity significantly predicts the semi-annual return in 

19 of 20 countries and regions, with average R2 of 8.8%. Out-of-sample R2 are all positive and 

average 11.4%. The predictability is also economically important. An investor using global 

convexity to time the market would have on average increased the Sharpe ratio by more than 

60% from a buy-and-hold strategy across the twenty indexes in our sample. 

Global convexity encompasses the predictability of other important option-based 

predictors and is highly robust to alternative specifications. For US returns, global convexity 

subsumes the predictive power of the global level and slope, the VIX index, SVIX, the variance 

risk premium, and left-tail volatility. We measure convexity using strikes of all maturities, but 

predictability changes little using only short (<=6 month) or long (>6 month) maturities. 

 
3 We measure OOS R2 according to Welsh and Goyal (2007). It can be higher than in-sample R2 because it 

compares MSE from our predictor to a historical-mean model. The higher OOS R2 also reflects the fact that the 

predictability of our predictor becomes stronger in the later sample. 
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Excluding or including the U.S. from the global surface has little impact on its predictive power. 

The measure is also robust to using calls-only or puts-only, in-the-money or out-of-the-money 

options, excluding highest and lowest strikes, and averaging across broad ranges of strikes to 

produce a robust measure of convexity. Global convexity captures important fundamental 

information from the option surface and is not sensitive to variations in measurement. 

 Why does global convexity predict market returns so strongly? We investigate the 

economic source of return predictability. First, global convexity aggregates information from 

countries around the world. The global economy is increasingly interconnected, and shocks in 

one area can spread and affect other countries. A prominent example is the Covid-19 pandemic. 

During early 2020, global convexity responds more quickly to the spread of the virus than US 

convexity and leads the US by one month. This provides an important counter-example to the 

typical finding that the US leads the world informationally (e.g., Rapach, Strauss, and Zhou, 

2013).  In the case of the Covid-19 pandemic, the first signs of deteriorating fundamentals 

appeared in option markets outside the U.S.   

Global convexity also effectively combines information from both the right and left 

tails of the risk-neutral distribution of returns. The left tail has been widely studied in prior 

literature (e.g., Andersen, Fusari, and Todorov, 2015; Bollerslev, Todorov, and Xu, 2015), and 

is appropriately associated with fears of negative jumps or market crashes. High prices in the 

left tail are commonly interpreted as demand for crash insurance through out-of-the-money 

puts and correspondingly large risk premia. The right-tail contribution to convexity, while 

smaller, is also economically important. Controlling for the left tail, high prices in the right tail 

positively predict returns, which has the natural interpretation of speculative demand for out-

of-the-money calls. Consistent with this interpretation, the right-contribution to convexity is 

strongly negatively associated with short-interest and with funding conditions measured 

through the TED spread.  
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These contributions to global convexity from the left- and right-sides of the risk-neutral 

distribution have natural interpretations as the presumptive twin driving forces of financial 

markets – fear and greed. It is already well-known that low price in the left tail, or lack of fear, 

forecasts low future returns.  New to the literature and controlling for the left tail, a low right-

tail price signaling lack of speculative interest also forecasts low returns.  Thus, fear and greed 

from the left and right tails of the risk-neutral density, while negatively correlated, are not 

opposites. The global convexity measure which combines both sources of information is 

required to optimize equity-premium predictability from the global option surface. 

 Our paper contributes to three strands of literature. The first is the literature on 

recovering the equity premium from option data. Various measures constructed based on index 

options have been proposed in this literature: for example, variance risk premium (Bollerslev, 

Tauchen, and Zhou, 2009; Carr and Wu, 2009), skew risk premium (Kozhan, Neuberger, and 

Schneider, 2013), left-tail volatility (Andersen, Fusari, and Todorov, 2015; Bollerslev, 

Todorov, and Xu, 2015), and equity premium bounds (Martin, 2017; Chabi-Yo and Loudis, 

2019; Bakshi et al, 2019; Jensen, Lando, Pedersen, 2019; Liu et al, 2022; Back, Crotty and 

Kazempour, 2022). This literature has shown that, both in theory and empirics, options data 

contain information about the short-to-medium-term equity premium. We contribute to this 

literature by discovering a new option-based predictor, namely, global convexity. This measure 

encompasses the return predictability of several previously documented indicators due to its 

strong ability to aggregate information. Convexity is also more symmetric and has smaller 

kurtosis than existing predictors, which contributes to its empirical success.  

 We contribute to the general debate on whether equity premium is predictable, 

especially out-of-sample. Since as early as Shiller (1981), a vast literature documents that the 

US equity premium is predictable, particularly at long horizons. Welch and Goyal (2007) cast 

doubt on whether the US equity premium is predictable out-of-sample (OOS). They show that 
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the OOS R2 of many predictors are negative. Campbell and Thompson (2008) show that 

imposing weak economic restrictions on predictors improves the OOS performance. We 

document a powerful short-term return predictor whose performance is robust out-of-the 

sample and in many countries around the world. 

 Lastly, we contribute to the study on the integration of the international financial market 

and international equity premium prediction. Henkel, Martin, and Nardari (2011) find that in 

the G7 countries, short-term return predictability exists only during economic contractions. 

Rapach, Strauss, and Zhou (2013) show that US stock return leads the stock return in other 

countries. Bollerslev, Marrone, and Zhou (2014) document that international variance risk 

premia predict stock returns in developed economies and Qiao et al. (2019) provide similar 

evidence for emerging markets. Miranda-Agrippino and Rey (2020) provide evidence on the 

co-movement in risky asset prices around the world, a phenomenon known as the Global 

Financial Cycle. Our study reinforces that the international options and equity market are 

closely tied. A single measure from international options markets significantly predicts equity 

returns in 19 of 20 countries and regions, with similar coefficients, providing strong evidence 

of market integration and a common global risk premium.  

 

2. Data 

Our main data source for index options is OptionMetrics, which contains daily options 

data for major indices around the world. We select 20 indices from 20 different countries or 

regions where OptionMetrics has sufficient data coverage on corresponding index options. 

Table 1 lists the stock indexes in our sample and the availability of options data for each. The 

earliest options data in our sample is for the S&P 500 index, starting from January 4, 1996. 

Other index options are gradually included in the sample after 2002. The latest options data to 
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be included is the OMXS 30 index option in Sweden, starting from May 14, 2007. Figure 1 

plots the number of countries or regions with available index options in our sample from 1996 

to 2021. Our 26-year sample period is long enough to span several episodes of market crisis 

around the world, such as the Asian debt crisis, the burst of the dot-com bubble, the subprime 

mortgage crisis, the European debt crisis, and the Covid-19 pandemic. 

For each individual index, there are hundreds of options listed on option exchanges 

every day. Options differ based on their strike and maturity. The number of available strikes 

and maturities are symmetric for calls and puts. Different indexes have different number of 

available strikes and maturities. Table 1 shows the average number of options per day, 

including both calls and puts, for each index in our dataset, after we apply standard filters.4 

Indexes such as the S&P 500 or STOXX 50 have over one thousand different options 

outstanding on a typical day, whereas indexes such as the BEL 20 or TAIEX have only around 

200 options per day.  

To facilitate comparison across markets, OptionMetrics provides an implied volatility 

surface on a standardized delta-maturity grid for all indexes. For each underlying index, the 

surface specifies the implied volatility of a hypothetical option with a particular delta and 

maturity. There is a separate surface for call options and for put options, although, if properly 

aligned, the two surfaces are close to each other due to put-call parity. To construct this surface, 

OptionMetrics applies a kernel function to compute the weighted average of all implied 

volatilities from options traded on each day. The kernel function puts a greater weight on 

options that are closer to a particular grid point. Intuitively, the implied volatility on each grid 

point is the interpolated implied volatility of options with deltas and maturities that are near 

 
4 We drop options with non-positive implied volatility or with implied volatility above 200%. We drop options 

with fewer than 7 days to maturity or with longer than three years to maturity. We also drop options with non-

positive bid or ask prices. If bid or ask prices are missing, we drop options with non-positive exchange 

settlement price.   
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the grid point. Appendix A provides details on the procedure to construct the standardized 

implied volatility surface. This standardized implied volatility surface makes it easy to analyze 

all markets without adjusting for the availability of strikes and maturities in each market. Our 

main empirical analysis is based on the standardized implied volatility surface provided by 

OptionMetrics. In the robustness section, we also construct our measures using the underlying 

individual options. 

To conduct return predictability tests, we obtain monthly returns of the 20 selected 

indexes from FactSet. For 19 out of 20 indexes, we have return series from 1996 to 2022. For 

the MIB index in Italy, the return series starts from 1998. Table A1 provides summary statistics 

on the excess returns of each index. In our empirical tests, we convert all local-currency returns 

to US-dollar returns and subtract the US risk-free rate to compute excess returns.  

2.1 Standardized implied volatility surface 

This section discusses the characteristics of the implied volatility surface of the 20 

indexes in our sample. Before we proceed, we take several steps to clean the data. First, we 

drop all grid points with a maturity of 10 days, because implied volatility data at this maturity 

are missing for most indexes. We also drop all grid points with a maturity of 730 days, because 

many indexes do not have options with a maturity longer than two years. The implied volatility 

at this maturity point is largely based on the extrapolated values, which could be biased. The 

standard set of maturities that we consider are 30, 60, 91, 122, 152, 182, 273, 365, and 547 

days.  

The OptionMetrics data for the Canadian S&P/TSX 60 index contain many missing 

values from Dec 27, 2019 to Mar 1, 2021. To fix this issue, we replace this part of the sample 

period for Canada with the implied volatility surface of MSCI Canada ETF, which does not 

have missing values. Also, available delta grid points for indexes in the Asian Pacific region 
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(i.e., Australia, Japan, Taiwan, Hong Kong, and Korea) are slightly different from the US and 

European indexes. The available delta grid points for these Asian Pacific indexes are from 0.2 

to 0.8 at 0.05 increment for call options and are from -0.2 to -0.8 at -0.05 increment for put 

options. The delta grid points for other indexes are from 0.1 to 0.9 at 0.05 increment for call 

options and are from -0.1 to -0.9 at -0.05 increment for put options. Following OptionMetrics’ 

methodology, we extend the implied volatility surface of indexes in the Asian Pacific region to 

be the same as other indexes. In the robustness check, we only keep implied volatilities with a 

delta from 0.2 to 0.8 for calls (or -0.2 to -0.8 for puts) to construct our measures. 

The next step we take is to change the labelling of delta grid points to align the call 

option surface with put option surface. Specifically, we multiply the delta of put options by -1. 

We multiply the delta of all call options by -1 and then add 1. After applying this one-to-one 

transformation, both call option surface and put option surface have the same set of delta grid 

points. Another convenience brought by this transformation is that the transformed deltas align 

with strike prices, e.g., lower values of the transformed delta corresponds to lower strike prices. 

Lastly, we winsorize all implied volatilities such that they have a minimum of 1% and a 

maximum of 200%.5 Table A2 reports the summary statistics of the cleaned implied volatility 

surfaces. Most indexes have their average implied volatilities around 20%. The index with the 

highest average implied volatility, at 26.65%, is the MSCI Emerging Market index. Implied 

volatilities have positive skewness and heavy tail, reflecting the fact that they tend to spike 

during a short period of time.   

Table 2 Panel A shows unconditional global implied volatility surface averaged across 

all indexes and across both call and put options. To construct this surface, we first take the 

average implied volatility for a given grid point across all indexes on each day and then average 

 
5 Note that all implied volatilities are quoted on an annualized basis. 
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across all sample days. We pool together both call option surfaces and put option surfaces, 

because their average values are similar to each other at a given grid point. Table 2 Panel A 

shows that the average implied volatilities monotonically decrease with the transformed delta. 

In other words, average implied volatilities monotonically decrease with the level of the strike 

price. This pattern is commonly known as the volatility smirk. On the other hand, variation in 

the average implied volatilities across maturities is small, displaying an unconditional flat term-

structure. Table 2 Panel B shows the unconditional implied volatility surface of the S&P500 

index. Its implied volatilities also decrease with the transformed delta (i.e., strike), but they 

display a slightly increasing term structure.  

2.2 Level and slope of the standardized implied volatility surface 

The implied volatility surface is a high-dimensional object. To reduce its 

dimensionality, we construct three measures to capture the shape of the implied volatility 

surface in each time period, namely, the level, slope, and convexity of the surface. Alternative 

methods to reduce the dimensionality of the volatility surface include estimating a quadratic 

function (Dumas, Fleming, Whaley, 1998) or using principal component analysis (Cont, 

Fonseca, Durrleman, 2002). These methods are closely related to each other. We choose to use 

the level, slope, and convexity measures to summarize the surface because of their ease of 

interpretation. To measure the level of the standardized implied volatility surface of each index, 

we take the simple average of all implied volatilities on the surface, including both calls and 

puts, on each day. To smooth out the daily variations, we aggregate the daily level measure 

into a monthly measure by taking the simple average of available trading days in each month. 

This gives us twenty monthly time series, one corresponding to each index. When constructing 

the monthly measure, we drop the last trading day of each month in each country to avoid any 

overlap in time between the construction of the index in the current month and the measurement 
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of index return in the next month.6 We further aggregate the information from twenty countries 

and regions into a single global level index by taking the simple average of all available 

country-level measures in each month. Before 2002, the only country in our sample with 

available options data is the US, so this global level index coincides with the US level index. 

After 2002, as we include additional countries in the sample, the global level index begins to 

diverge from the US level index.  

Figure 2 Panel A plots both the global level and the US level index on a monthly 

frequency. We observe the two series co-move strongly with each other. The correlation 

between the two is above 95% in the entire sample. This is also true in the later sample period 

when we have 20 different countries or regions to construct the global level index. This strong 

co-movement indicates that the option markets across these countries are integrated and they 

experience similar shocks over time. Table 3 Panel A shows that the global level index has 

positive skewness and high kurtosis, which means that it tends to have large jumps during 

turbulent times, for example, during the global financial crisis and the Covid-19 pandemic 

period. 

We also construct a slope index based on the standardized implied volatility surface. 

We measure the slope of the implied volatility surface with respect to the transformed deltas. 

We only focus on the slope on deltas because the variation of implied volatilities across 

maturities is relatively small. Specifically, on each day, we regress all the implied volatilities 

of a surface on the transformed deltas and estimate the coefficient on the delta.7 This gives us 

a daily slope measure for each country. We then aggregate them into a monthly measure by 

taking the simple average across available trading days, except the last trading day. Similar to 

 
6 Different index options are traded in different time zones. To avoid potential look-ahead bias for future month 

returns beginning in different time zones, we drop the last trading day of each month from the option surface 

calculations. 
7 We ignore the information on maturities or the type of the option (call or put) when estimating the slope. 

Controlling for maturity and the type of the option does not affect the estimated slope on deltas. 
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the level index, we construct a global slope index by averaging all available slope measures 

from each country. Figure 2 Panel B plots the global slope and the US slope index. Across the 

entire sample period, the slope is negative, indicating that options with lower strike prices have 

higher implied volatilities, displaying a volatility smirk. The US slope index co-moves with 

the global slope index. The US slope index is more negative than the global slope index on 

average, which suggests that the volatility smirk is steeper in the US. The slope index has a 

strong negative correlation with the level index. As shown in Table 3 Panel B, the correlation 

between the global slope index and the global level index is -82%. This is because during 

periods of market crisis, all implied volatilities increase and the implied volatilities of options 

with low strike prices increase more than the average, causing the volatility surface to have a 

higher level and a more negative slope.  

2.3 Measuring the convexity of the global implied volatility surface 

Our third measure is the convexity of implied volatility surface. A prominent feature of 

the implied-volatility curve is the presence of volatility smile in addition to volatility smirk. 

Volatility smile refers to the phenomenon that both low-strike and high-strike options have 

higher than average implied volatilities, making the implied-volatility curve a convex function. 

We propose a measure to capture the convexity of the standardized implied-volatility surface. 

Specifically, let 𝐼𝑉(Δ, 𝜏) denote the function that represents the implied volatility surface, i.e. 

𝐼𝑉(Δ, 𝜏)  is the implied volatility of options with a delta  Δ and maturity 𝜏 . For any fixed 

maturity 𝜏, we define the convexity of the implied volatility curve as  

𝐶𝑉(𝜏) = 𝐸 [
𝐼𝑉(𝛥1, 𝜏) + 𝐼𝑉(𝛥2, 𝜏)

2
− 𝐼𝑉 (

𝛥1 + 𝛥2

2
, 𝜏)] 

( 1 ) 
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In other words, we define the convexity of the implied volatility curve as the expected 

difference between the average implied volatility at two different delta points and the implied 

volatility at the point that equals to the average of the two previous deltas.   

On the standardized implied volatility surface, we have 17 fixed delta grid points from 

0.1 to 0.9 at 0.05 increments. A numerical approximation of the convexity of the implied 

volatility curve at any maturity 𝜏 is  

𝐶𝑉(𝜏) =
1

64
∑

𝐼𝑉(Δ𝑖, 𝜏) + 𝐼(Δ𝑗, 𝜏)

2
− 𝐼(Δ𝑘 , 𝜏)

(𝑖,𝑗,𝑘)

 

( 2 ) 

where Δ𝑖, Δ𝑗, 𝑎𝑛𝑑 Δ𝑘 are three different delta points with Δ𝑖 < Δ𝑗 and Δ𝑘 =
Δ𝑖+Δ𝑗

2
. There are 64 

different sets of these delta-triples based on the availability of delta points. The above equation 

can be translated in the following equation:  

𝐶𝑉 =
1

64
[4 × 𝐼𝑉(0.1) + 2.5 × 𝐼𝑉(0.15) + 2 × 𝐼𝑉(0.2) + 0.5 × 𝐼𝑉(0.25) − 1.5 × 𝐼𝑉(0.35)

− 2 × 𝐼𝑉(0.4) − 3.5 × 𝐼𝑉(0.45) − 4 × 𝐼𝑉(0.5) − 3.5 × 𝐼𝑉(0.55) − 2 × 𝐼𝑉(0.6)

− 1.5 × 𝐼𝑉(0.65) + 0.5 × 𝐼𝑉(0.75) + 2 × 𝐼𝑉(0.8) + 2.5 × 𝐼𝑉(0.85) + 4 × 𝐼𝑉(0.9)] 

( 3 ) 

The above equation shows that the numerical approximation of our proposed convexity 

measures is the weighted average implied volatilities at different delta points, where the 

weights add up to 0. The weights are more positive at the tails and are more negative in the 

center.  

 We measure the convexity of the implied volatility curve at each maturity on the 

standardized surface. Table A3 in the appendix presents summary statistics of the convexity 

measures by maturity. Table A3 shows that the convexity of the volatility curve decreases with 

maturity. Short-term convexities are also more positively skewed and display fatter tail than 

the convexity at longer maturities. To construct the convexity index, we take the average 

convexity measure across all maturities on each day. This gives us a daily measure of convexity 
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for each index. Similar to the slope and level indexes, we aggregate daily convexity measures 

into a monthly measure by taking the average value across all available days in a month, except 

the last trading day.  

We construct the global convexity index by averaging monthly convexity measures 

from all available countries in our sample. Figure 2 Panel C shows the global convexity as well 

as the US convexity from 1996 to 2021.8 Both the global and US convexity are positive 

throughout the sample period and co-move together. The correlation between the two is 82%, 

smaller than the correlation between the global and US level indexes. The figure also shows 

that the global convexity is less peaked than the global level index. In other words, the kurtosis 

of the global convexity is much smaller than the kurtosis of the global level index, which is 

shown in Table 3 Panel A.  

 Table 3 presents the summary statistics of the global level, slope, and convexity indexes 

and the US convexity index. In addition, we obtain data on other option-based return predictors, 

including the VIX index, the SVIX index proposed by Martin (2017), the left-tail volatility 

(LTV) index constructed by Bollerslev, Todorov and Xu (2015), and the US variance risk 

premium (VRP) introduced by Bollerslev, Tauchen and Zhou (2009). Details about these 

variables and their sources are in Appendix B. Notably, Table 3 Panel A shows that except the 

convexity indexes, other variables all display fat tail with kurtosis above 4 and strong degree 

of asymmetry with absolute skewness above 1. For comparison, the skewness and kurtosis of 

the S&P 500 monthly returns are -0.57 and 3.82, respectively. The closer match in skewness 

and kurtosis between the convexity index and the stock return contributes to the superior 

predictability of convexity indexes relative to other option-based predictors.  

 
8 We notice a slight trend in the global convexity from 1996 to 2021. In the robustness checks, we use de-

trended global convexity or annual change in global convexity to run predictive regressions and the 

predictability remains strong. 
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 Table 3 Panel B shows the pairwise correlation among these variables. We observe 

significant correlations among some pairs of variables. For example, the global level index has 

a correlation of 93% with the VIX index and a correlation of 95% with the SVIX index. The 

global slope index has a correlation of -82% with the global level index, -80% with the VIX 

index, -85% with the SVIX index, and -72% with the left-tail volatility (LTV). The global 

convexity index has a correlation of -68% with the global slope index and a correlation of 68% 

with LTV. Variance risk premium (VRP) is least correlated with other variables.  

 

3. Equity premium predictability from the global convexity index 

This section documents and compares the return predictability of several option-based 

measures in the US and in the international setting. 

3.1 US evidence 

We test whether the option-based measures constructed in the previous section and 

from the existing literature predict the S&P 500 index returns during our sample from 1996 to 

2021. Table 4 regresses the semi-annual cumulative excess return of the S&P 500 index on 

these variables. We use Newey-West standard errors with 6 lags of autocorrelation to calculate 

t-statistics. Table 4 Panel A shows that five of the eight option-based variables significantly 

predict the semi-annual S&P 500 returns from 1996 to 2021. The global convexity predicts the 

semi-annual S&P 500 returns with a t-statistic of 3.69 and an R2 of 14.4%, making it the best 

univariate predictor in this group. The US convexity also significantly predicts the US return 

with a t-statistic of 2.35 and a 9.1% R2, making it the second-best predictor in terms of R2. The 

next best predictor is the left-tail volatility (LTV). It predicts the S&P 500 return with a t-

statistic of 2.74 and an R2 of 7.2%. The global slope index and the SVIX index significantly 

predict the S&P 500 return with an R2 of 5.4% and 4.3%, respectively. The global level index, 
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the VIX index, and the variance risk premium do not significantly predict the semi-annual 

return of S&P 500 during this sample period.  

Table 4 Panel B runs multivariate predictive regressions with the global convexity as 

the first predictor and other additional predictors. The global convexity subsumes all predictive 

power of the other variables in multivariate regressions. The t-statistic on the global convexity 

remains high throughout all eight columns. The magnitude of the estimated coefficient on the 

global convexity is stable across all eight columns, centering around 0.3, which is similar to 

the estimated coefficient in the univariate regression. Comparing the R2 in panel B with the 

univariate regression, the gain in R2 from including other variables is small. Column 8 includes 

all eight variables in the predictive regression and the R2 slightly improves from 14.4% in the 

univariate regression to 16.5%. This table shows the superior predictive power of the global 

convexity in predicting semi-annual S&P 500 returns. It subsumes the predictive power of 

several other option-based predictors and is not affected when controlling other predictors.  

Table 4 tests the predictive relation using overlapping semi-annual returns. We verify 

the predictability of the global convexity using non-overlapping returns to avoid potential bias 

associated with overlapping returns (Stambaugh, 1999; Boudoukh, Israel, Richardson, 2022). 

We run predictive regressions on monthly non-overlapping S&P 500 returns in Table 5. Each 

column regresses the return from month t+k, with k=1,2,…,12, on the global convexity 

measured in month t. Table 5 shows that the global convexity significantly predicts monthly 

stock returns up to month t+7. Both the R2 and t-statistic are the strongest when predicting the 

return in the immediate month. Then, the predictability declines as the lag time increases. After 

month t+7, the coefficient on the global convexity becomes insignificant, although the signs of 

the coefficients remain mostly positive throughout. The magnitude of the coefficient on the 

global convexity diminishes gradually from column 1 to column 12, consistent with the idea 
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that the information content of a predictor decays over time. This decay in coefficient also 

suggests that the market risk premium reverts back to its mean.  

Both Table 4 and 5 present strong evidence on the ability of the global convexity in 

predicting the S&P 500 returns. The next section evaluates the predictability of the global 

convexity in predicting other index returns in our sample. 

3.2 International evidence 

This section evaluates the ability of the global convexity in predicting the return of 

other indexes in our sample. We present the results in Table 6. Table 6 regresses the semi-

annual excess index return on the global convexity index. It shows that the global convexity 

significantly predicts 19 out of the 20 index returns in our sample. Table 6 Column 1 reproduces 

the predictive regression on the S&P 500 returns. The average coefficient across all 20 columns 

is 0.34, which is very close to that in the US. The average t-statistic of the coefficients is 2.63 

and the average R2 is 8.8%. The top 4 indexes with the highest R2 are the S&P 500 in the US 

(14.4%), the Nikkei 225 in Japan (13.8%), the MSCI EAFE covering Europe, Australasia, and 

Middle East (13%), and the KOSPI 200 in Korea (12.8%). The bottom 4 indexes with the 

lowest R2 are the IBEX 35 in Spain (1.7%), the Hang Seng index in Hong Kong (4.6%), the 

DAX index in Germany (4.7%), and the BEL 20 index in Belgium (4.9%). Overall, this table 

shows that the global convexity index has a robust predictive power of market returns in many 

countries. One interpretation of this result is that the global convexity index reveals a 

significant amount of information on the global risk premium, which drives the market return 

around the world. 

3.3 Alternative measures of the global convexity index 

Having demonstrated the strong predictability of the baseline global convexity index, 

we change the construction of this index and report the performance of the index under 
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alternative construction methods. This exercise sheds light on the source and the robustness of 

the index’s predictive power.  

We consider several variations in how we construct the global convexity by selecting 

only a subset of the data. Firstly, we only select call options or put options to measure the 

surface convexity. This exercise examines whether call or put options provide a stronger signal 

in predicting stock returns. We also separately examine the construction of the index using in-

the-money options and out-of-the-money options. We investigate whether maturity plays a role 

in the predictability of the global convexity index. We use only part of the implied volatility 

surface with a maturity of less than 6 months or with a maturity of more than 6 months to 

construct the index. This test evaluates whether short-term options contribute more to the 

predictability than long-term options. Finally, we consider changing the set of countries in the 

construction of the index. In one specification, we only use the S&P500 options. In another 

specification, we drop all S&P500 options after 2002 (when we have available option data from 

other indexes). This test examines whether the US or the collection of other countries contribute 

more to the predictability. 

Table 7 reports the R2 of predictive regressions using different versions of global 

convexity. The results of the baseline measure are reported in column 1. The average R2 in all 

20 predictive regressions in the baseline is 8.8%. Column 2 uses only call options to construct 

the index and reports a 4.6% average R2. This shows that using only call options reduces the 

performance of the predictor. Column 3 uses only put options and produces a 10.2% average 

R2. This is the best performance among all specifications in Table 7, which suggests that put 

options contain the most relevant information for predicting market returns. Column 4 uses 

only in-the-money options and column 5 uses only out-of-the-money options to measure global 

convexity. We define in-the-money or out-of-the-money options based on the transformed 

deltas. For call options, if the transformed delta is smaller than 0.5 (i.e., having low strike 
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prices), we classify them as in-the-money; otherwise, out-of-the-money. We use the opposite 

definition to classify in-the-money or out-of-the-money put options. Columns 4 and 5 show 

that both in-the-money and out-of-the-money options contribute similarly to the predictability 

of the global convexity index with an R2 of 7.8% and 7.9%, respectively. Columns 6 and 7 use 

short-term and long-term options only. The results are similar to the baseline. Column 9 uses 

only S&P 500 options. The average R2 is 4.1%, the worst performance among all 9 

specifications. This shows that focusing on the US options alone ignores a large amount of 

return relevant information. Column 9 excludes S&P 500 options after 2002. The performance 

of column 9 is very similar to the baseline performance. This shows that even without the US 

data, the global convexity index can still significantly predict equity returns around the world. 

The main benefit of having the US data is to extend our sample period from 2002 to 1996. 

Overall, this table shows that there is a significant amount of information that is relevant to 

market risk premium from index options outside of the US and from put options.  

 

4. Dissecting the return predictability of global convexity 

Having documented the strong predictability of the global convexity index, we provide 

additional analysis on the economic source of its predictability. We first analyze the additional 

information content of the convexity index from non-US countries. We also decompose the 

global convexity into a convexity left and convexity right index to show that both tails of risk-

neutral distribution reveal important information about the global risk premium. 

4.1 International vs. US convexity 

Table 7 shows that the convexity index measured from non-US countries contributes 

more than the US convexity to the predictability of equity premium. This is surprising given 

that the US has the biggest option market and the prior literature, e.g., Rapach, Strauss, and 
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Zhou (2013), shows that the US stock return leads other countries. However, if traders that 

trade non-US index options incorporate information from around the world more efficiently or 

they are more sensitive to changes in the global risk premium, we could observe that the 

convexity measured from non-US countries reveals more information than the US convexity. 

One indication of this hypothesis, as shown in Figure 2 Panel C, is that during the early spread 

of the coronavirus, the global convexity leads the US convexity by about 1 month. This is 

consistent with the spread of the pandemic. The severe effects of the virus first appeared in 

Asian countries, then in European countries, and later in the US.   

To test the information content of the international convexity against the US convexity, 

we run lead-lag regressions in Table 8. Columns 1 to 3 show the autocorrelation coefficient of 

the US convexity, non-US convexity, and the global convexity index is around 0.9.9 Columns 

4 and 5 regress the US convexity on the lagged non-US and lagged global convexity in addition 

to the lagged US convexity. The estimated coefficients on the lagged non-US and global 

convexity are 0.17 and 0.15, respectively, and are both statistically significant at the 1 percent 

level. This indicates that the non-US convexity contains information about the next period US 

convexity, which suggests that the shocks on the risk premium around the world transmit to 

the US with some lag. Columns 6 and 7 regress the non-US and global convexity index on the 

lagged US convexity index, controlling their own lagged values. The coefficient on the US 

convexity is around 0 and insignificant, which indicates that shocks to the US risk premium is 

quickly reflected in the international market. This lead-lag relationship between the US and 

non-US convexity indexes explains why the global convexity contains much more information 

about the US risk premium than the US convexity. 

 

 
9 The non-US convexity is the average convexity of the remaining 19 countries and regions, which is available 

since 2002. 
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4.2 Left tail vs. right tail 

 To further understand the source of return predictability of the global convexity index, 

we decompose it into two orthogonal components: the convexity left and the convexity right 

index. We take two steps to accomplish this. In the first step, we decompose the global 

convexity index into the contribution from the left-half and the right-half section of the implied 

volatility surface by splitting equation (3) in the middle: 

𝐿𝐻 =
1

64
[4 × 𝐼𝑉(0.1) + 2.5 × 𝐼𝑉(0.15) + 2 × 𝐼𝑉(0.2) + 0.5 × 𝐼𝑉(0.25) − 1.5 × 𝐼𝑉(0.35)

− 2 × 𝐼𝑉(0.4) − 3.5 × 𝐼𝑉(0.45) − 2 × 𝐼𝑉(0.5)] 

( 4 ) 

𝑅𝐻 =
1

64
[−2 × 𝐼𝑉(0.5) − 3.5 × 𝐼𝑉(0.55) − 2 × 𝐼𝑉(0.6) − 1.5 × 𝐼𝑉(0.65) + 0.5 × 𝐼𝑉(0.75)

+ 2 × 𝐼𝑉(0.8) + 2.5 × 𝐼𝑉(0.85) + 4 × 𝐼𝑉(0.9)] 

( 5 ) 

Hence, the convexity index is just the sum of contribution from the left-half and right-half of 

volatility surface. The left-half of the volatility surface consists of implied volatilities with a 

corresponding transformed delta below 0.5, while the right-half of the surface is based on the 

implied volatilities with a corresponding transformed delta above 0.5. In the next step, we 

orthogonalize the two components by regressing the right-half contribution on the left-half 

contribution and extracting the residual as the convexity right index: 

𝑅𝐻𝑡 = 𝑏0 + 𝑏1𝐿𝐻𝑡 + 𝜖𝑡 

We define convexity right index as  

𝐶𝑅𝑡 = 𝑏0 + 𝜖𝑡 

and the convexity left index as 
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𝐶𝐿𝑡 = 𝐿𝐶𝑡(1 + 𝑏1) 

These two components are orthogonal to each other, and their sum equals to the global 

convexity index. The convexity left index is driven by the behavior of the left-tail of the risk-

neutral distribution, while the convexity right index is driven by the behavior of the right-tail 

of neutral distribution that is independent from the left tail. Figure 3 plots the time series these 

two indexes.  

We test the return predictability of these two variables. Table 9 reports the R2 of 

predictive regressions using the convexity left or convexity right as the predictor. It shows that 

both indexes predict stock returns around the world. The R2 of predicting the S&P 500 semi-

annual return based on the left index is 9.2% and based on the right index is 5.4%. On average, 

the convexity left has a stronger return predictability. Its average R2 in predicting the twenty 

index returns is 6.4%. The average R2 of using the convexity right to predict returns is 3.2%. 

There are some cross-sectional variations in the strength of return predictability between the 

two. In some countries, mainly in Europe, the right index possesses a stronger return 

predictability than the left index.  

 What explains the variation in the convexity left and right? Table 10 regresses the left 

and right index on different state variables. Table 10 Panel A shows that the global slope index 

and the left-tail volatility (LTV) index explain the convexity left index. The global slope index 

explains the convexity left index with an R2 of 91.6%. The steeper the implied-volatility slope, 

the higher the convexity left index. The steepening of the implied-volatility slope is a sign that 

investors have strong demand for downside protection through out-of-the-money put options, 

which tends to happen when investors’ fear towards market crash is elevated. The left-tail 

volatility index, another proxy of market fear, also explains the convexity left index with an R2 
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above 50%. Therefore, we conclude that the convexity left captures investors’ fear towards 

market crash and through this fear channel, it predicts the equity premium.   

Table 10 Panel B shows that the global slope and the left-tail volatility index have little 

explanatory power of the convexity right index, but the TED spread and aggregate short-

interest index in the US explain a sizable variation of the convexity right index. The TED 

spread measures the funding cost of financial intermediaries. Column 3 shows that the higher 

the TED spread, the lower the convexity right index, which predicts lower returns. One 

interpretation of this result is that when the funding condition of intermediaries tightens, they 

tend to sell risky assets, which generates downward pressure on equity returns. Column 4 

shows that the aggregate short-interest index, introduced by Rapach, Ringgenberg, and Zhou 

(2016), is also negatively associated with the convexity right index. As shown by Rapach, 

Ringgenberg, and Zhou (2016), when the aggregate volume of short-interest increases, the 

market tends to decline in the future, suggesting that short-sellers have superior information 

about the market. Table 10 Panel B shows that the convexity right index reveals demand-

relevant information about financial intermediaries and short sellers. It is through this informed 

demand channel that the convexity right index predicts stock returns. 

Overall, this table shows that both the left-tail and the right-tail of the implied volatility 

surface contain important information about equity premium. The left tail mainly contains 

information about the fear of market crash, while the right tail reveals the demand for equity 

from financial intermediaries and short sellers. The global convexity effectively combines the 

information from both the left tail and right tail, which is why it possesses superior return 

predictability. 
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5. Out-of sample analysis and robustness checks 

This section reports the out-of-sample (OOS) analysis and additional robustness checks 

on the predictability of the global convexity index.  

5.1 Out-of-sample analysis 

We report the OOS R2 of using the global convexity index to predict market return. 

Following Goyal and Welch (2007), we define OOS R2 as  

𝑅𝑂𝑂𝑆
2 = 1 −

𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝑁
 

where 𝑀𝑆𝐸𝐴 is the mean squared error from the global convexity predictive model and 𝑀𝑆𝐸𝑁 

is the mean squared error from the historical mean model. For each market index, we start with 

10 years of in-sample data to train both the predictive model and the historical mean model. 

Then, we apply the predictive model and the historical mean model on a rolling basis to predict 

index return. 𝑀𝑆𝐸𝐴  and 𝑀𝑆𝐸𝑁  are computed during the out-of-sample period, i.e. after the 

initial 10 years. Table 11 shows the OOS R2 of the global convexity index in predicting returns 

with different horizons in the twenty countries or regions in our sample. The OOS R2 in 

predicting the 1-, 3-, 6-, 9-, and 12-month S&P 500 returns are 4.1%, 12.6%, 20.8%, 18.1%, 

and 17.7%, respectively. The average OOS R2 in predicting the 1-, 3-, 6-, 9-, and 12-month in 

all countries are 2.2%, 6.2%, 11.4%, 8.3%, and 5.9%, respectively. The OOS R2 peaks at the 

6-month horizon, consistent with Table 5 that shows the predictability is significant up to 

month t+7. 

 Campbell and Thompson (2008) argue that an OOS R2 of 1% in a predictive regression 

translates to an economically large gain for risk-averse investors. We compute the out-of-

sample gain from the market timing strategy based on the global convexity in each country in 

Table A4. Table A4 column 1 shows the Sharpe ratio of a buy-and-hold strategy in each country 
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during the out-of-sample testing period. The buy-and-hold Sharpe ratio in the US is 0.705 and 

the average Sharpe ratio across the twenty indexes is 0.384. Column 2 estimates an optimal 

market timing strategy assuming the equity weight is a linear function of the global convexity 

index 𝑥𝑡, i.e. 

𝜔 = 𝑎 + 𝑏𝑥𝑡 

Column 2 estimates parameters 𝑎 and 𝑏 using the entire testing data, which is an in-sample 

approach. Column 3 estimates the parameters 𝑎 and 𝑏 on a rolling basis, which is an out-of-

sample approach. Both columns 2 and 3 show significant improvement in Sharpe ratio. The 

Sharpe ratio of market timing in the US is 1.085, if optimal 𝑎 and 𝑏 are known ex ante, or 1.011 

if 𝑎 and 𝑏 are estimated on a rolling basis. The average Sharpe ratio across all countries almost 

doubles from 0.384 in column 1 to 0.743 in column 2 and 0.634 in column 3. This table 

indicates the convexity index creates significant utility gain to risk-averse investors when they 

use this variable to time the market.  

 

5.2 Additional robustness checks 

We run several robustness checks by using alternative specifications to measure the 

global convexity. The predictability of these alternative measures is qualitatively similar to our 

baseline result. In our first robustness check, we drop the part of the volatility surface associated 

with delta equal to 0.1, 0.15, 0.85, and 0.9. Effectively, we construct the global convexity index 

based on a reduced standardized implied volatility surface. Column 1 of Table 12 shows the 

R2 of using this alternative global convexity index to predict stock returns. The average R2 from 

all countries is 8.4%, similar to the baseline average of 8.8%. 
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We also consider only using index options from a smaller set of indexes to define the 

global convexity index. This is motivated by the fact that in some countries, the quality of index 

options data provided by OptionMetrics is poor. This could be due to illiquidity or limited 

availability. The indexes that we choose are from the US, Switzerland, Germany, Spain, France, 

the United Kingdom, Italy, Euro Stoxx 50, Australia, and Hong Kong. We choose this set of 

indexes because Gandhi, Gormsen, and Lazarus (2023) show that the index options from these 

countries and regions have better quality. Column 2 of Table 12 shows the predictive 

performance of this alternative global convexity index. The average performance improves 

relative to the baseline result .  

We also consider a more robust way to measure the global convexity index. Specifically, 

we split the implied volatility surface into three sections based on the transformed delta: the 

left tail, the middle section, and the right tail. The cut-off point for the left tail is 0.2. We set 

the cut-off point for the right tail to be 0.8. Any grid point with a transformed delta between 

0.25 and 0.75 is defined as the middle section of the surface. On each day, for each index, we 

compute the average implied volatility in the three sections. We take the average across all 

maturities. We measure the robust convexity as the average of the left and right tail volatility 

minus the implied volatility in the middle section. This robust convexity measure puts the same 

weight on implied volatilities in each section of the volatility surface. Column 3 shows the 

return predictability of this robust convexity measure. The average R2 of this index in 

predicting stock returns is 8.8%, which is the same as our baseline result.  

Moreover, we do not use the implied volatility surface data. Instead, we directly use 

option level implied volatilities to construct the convexity index. To do so, we first classify all 

options into five equal-length bins based on their transformed delta and take the average value 

of the implied volatilities in each bin. We then apply the same procedure from equation (1) to 

compute the volatility convexity. The predictive performance of the index based on individual 
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option-level implied volatility is shown in column 4 of Table 12. The average R2 is 7.1%, which 

is slightly lower than the baseline average. This demonstrates that initially standardizing the 

surface improves the empirical measure of the convexity index. 

 Our last set of robustness checks are to use detrended global convexity in column 5 and 

annual change in global convexity in column 6 as the return predictor. This is motivated by the 

observation that the global convexity increases over time during the sample period. We 

estimated the detrended global convexity by estimating a linear trend using the entire sample 

and use the residual as the return predictor. We also measure the change in global convexity 

over a 12-month period as the return predictor. As shown in the table, the average R2 of using 

these measures to predict market returns are greater than our baseline result.  

 

6. Conclusion  

We document that the convexity measured from the global implied volatility surface robustly 

predicts the stock market index return in the US and many other countries around the world. 

Our convexity index measures the degree of curvature of the implied-volatility curve. The 

convexity index is higher if the implied volatilities of options with both high and low strike 

prices are greater than the implied volatilities of options with medium strike prices. When this 

happens, the expected stock market return is higher. Empirically, the global convexity predicts 

the semi-annual S&P 500 returns with an in-sample and OOS R2 of 14.4% and 20.8%, 

respectively. The average R2 of using this index to predict all 20 index returns in our sample is 

8.8% in-sample and 11.4% out-of-sample. The global convexity subsumes the predictability of 

several existing option-based predictors, including the VIX index, SVIX index, variance risk 

premium, and left-tail volatility. Through various alternative specifications, we find the 

predictability of global convexity to be extremely robust. 
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 The predictive power of the global convexity index comes from its ability to aggregate 

information from across the globe and combine information from both the left and right tail of 

the risk-neutral return distribution. Information contained in the left tail reveals investors’ fear 

of market crash, while information contained in the right tail is associated with the funding cost 

of financial intermediaries and the amount of aggregate short interest, which reveal the 

speculative equity demand from financial intermediaries and short sellers.  

 Lastly, the fact that the global level, slope, and convexity index co-move strongly with 

their country-level counterparts indicates that the global options market are closely connected. 

It is plausible that the same group of marginal investors operate in all these markets. The fact 

that the information extracted from the global options market predicts stock returns around 

world also indicates that the marginal investors in the options market play a significant role in 

the pricing of the equity around the world. Understanding how information or preference is 

revealed and transmitted across different markets through these marginal investors is an 

interesting future research question.  

 

 



28 
 

References 

Andersen, T.G., Fusari, N. and Todorov, V., 2015. The risk premia embedded in index 

options. Journal of Financial Economics, 117(3), 558-584. 

Andersen, T.G., Fusari, N. and Todorov, V., 2020. The pricing of tail risk and the equity 

premium: Evidence from international option markets. Journal of Business & Economic 

Statistics, 38(3), 662-678. 

Arrow, K.J., 1964. The role of securities in the optimal allocation of risk-bearing. The Review 

of Economic Studies, 31(2), 91-96. 

Back, K., Crotty, K. and Kazempour, S.M., 2022. Validity, tightness, and forecasting power 

of risk premium bounds. Journal of Financial Economics, 144(3), 732-760. 

Bakshi, G., Cao, C. and Chen, Z., 1997. Empirical performance of alternative option pricing 

models. Journal of Finance, 52(5), 2003-2048. 

Bakshi, G., Crosby, J., Gao, X. and Zhou, W., 2019. A new formula for the expected excess 

return of the market. Fox School of Business Research Paper. 

Bates, D.S., 1991. The crash of '87: Was it expected? The evidence from options 

markets. Journal of Finance, 46(3), 1009-1044. 

Bates, D.S., 2000. Post-'87 crash fears in the S&P 500 futures option market. Journal of 

Econometrics, 94(1-2), 181-238. 

Bates, D.S., 2022. Empirical option pricing models. Annual Review of Financial Economics, 

14, 369-389. 

Bekaert, G. and Harvey, C.R., 1995. Time‐varying world market integration. the Journal of 

Finance, 50(2), 403-444. 

Bollerslev, T., Marrone, J., Xu, L. and Zhou, H., 2014. Stock return predictability and 

variance risk premia: Statistical inference and international evidence. Journal of 

Financial and Quantitative Analysis, 49(3), 633-661. 

Bollerslev, T., Tauchen, G. and Zhou, H., 2009. Expected stock returns and variance risk 

premia. The Review of Financial Studies, 22(11), 4463-4492. 



29 
 

Bollerslev, T. and Todorov, V., 2011. Tails, fears, and risk premia. The Journal of 

Finance, 66(6), 2165-2211. 

Bollerslev, T., Todorov, V. and Xu, L., 2015. Tail risk premia and return 

predictability. Journal of Financial Economics, 118(1), 113-134. 

Boudoukh, J., Israel, R. and Richardson, M., 2022. Biases in long-horizon predictive 

regressions. Journal of Financial Economics, 145(3), 937-969. 

Breeden, D.T. and Litzenberger, R.H., 1978. Prices of state-contingent claims implicit in 

option prices. Journal of Business, 621-651. 

Campbell, J.Y. and Thompson, S.B., 2008. Predicting excess stock returns out of sample: 

Can anything beat the historical average?. The Review of Financial Studies, 21(4), 

1509-1531. 

Carr, P. and Wu, L., 2009. Variance risk premiums. The Review of Financial Studies, 22(3), 

1311-1341. 

Chabi-Yo, F. and Loudis, J., 2020. The conditional expected market return. Journal of 

Financial Economics, 137(3), 752-786. 

Cont, R., Fonseca, J.D. and Durrleman, V., 2002. Stochastic models of implied volatility 

surfaces. Economic Notes, 31(2), 361-377 

Cox, J.C. and Ross, S.A., 1976. The valuation of options for alternative stochastic 

processes. Journal of Financial Economics, 3(1-2), 145-166. 

Das, S.R. and Sundaram, R.K., 1999. Of smiles and smirks: A term structure perspective. 

Journal of Financial and Quantitative Analysis, 34(2), 211-239. 

Debreu, G., 1959. Theory of Value: An Axiomatic Analysis of Economic Equilibrium. New 

Haven: Yale University Press. 

Dumas, B., Fleming, J. and Whaley, R.E., 1998. Implied volatility functions: Empirical 

tests. The Journal of Finance, 53(6), 2059-2106. 

Gandhi, M., Gormsen, N.J. and Lazarus, E., 2022. Does the market understand time variation 

in the equity premium? Available at SSRN. 

Harvey, C.R., 1991. The world price of covariance risk. The Journal of Finance, 46(1), 111-

157. 



30 
 

Henkel, S.J., Martin, J.S. and Nardari, F., 2011. Time-varying short-horizon 

predictability. Journal of Financial Economics, 99(3), 560-580. 

Jensen, C.S., Lando, D. and Pedersen, L.H., 2019. Generalized recovery. Journal of 

Financial Economics, 133(1), 154-174. 

Kozhan, R., Neuberger, A. and Schneider, P., 2013. The skew risk premium in the equity 

index market. The Review of Financial Studies, 26(9), 2174-2203. 

Liu, H., Lu, Y.J., Xu, W. and Zhou, G., 2022. Market risk premium expectation: Combining 

option theory with traditional predictors. Available at SSRN. 

Liu, J., Pan, J. and Wang, T., 2005. An equilibrium model of rare event premia and its 

implication for option smirks. The Review of Financial Studies, 18(1), 131-164. 

Martin, I., 2017. What is the expected return on the market? The Quarterly Journal of 

Economics, 132(1), 367-433. 

Miranda-Agrippino, S. and Rey, H., 2020. US monetary policy and the global financial 

cycle. The Review of Economic Studies, 87(6), pp.2754-2776. 

Newey, W. and West, K., 1987. A simple, positive semi-definite, heteroscedasticity and 

autocorrelation consistent covariance matrix. Econometrica, 55(3), 703-708. 

Pan, J., 2002. The jump-risk premia implicit in options: Evidence from an integrated time-

series study. Journal of Financial Economics, 63, 3-50. 

Qiao, F., Xu, L., Zhang, X. and Zhou, H., 2019. Variance risk premiums in emerging 

markets. Available at SSRN 3199522. 

Rapach, D.E., Ringgenberg, M.C. and Zhou, G., 2016. Short interest and aggregate stock 

returns. Journal of Financial Economics, 121(1), 46-65. 

Rapach, D.E., Strauss, J.K. and Zhou, G., 2013. International stock return predictability: what 

is the role of the United States? The Journal of Finance, 68(4), 1633-1662. 

Ross, S., 2015. The recovery theorem. The Journal of Finance, 70(2), 615-648. 

Ross, S.A., 1978. A simple approach to the valuation of risky streams. Journal of 

Business, 51(3), 453-475. 



31 
 

Shiller, R., 1981. Do stock prices move too much to be justified by subsequent changes in 

dividends. American Economic Review, 11, 421-426. 

Solnik, B., 1983. International arbitrage pricing theory. The Journal of Finance, 38(2), 449-

457. 

Stambaugh, R. F., 1999. Predictive regressions. Journal of Financial Economics, 54, 375–

421. 

Welch, I. and Goyal, A., 2008. A comprehensive look at the empirical performance of equity 

premium prediction. The Review of Financial Studies, 21(4), 1455-1508. 

 

 

 



32 
 

Appendix A: construction of the standardized implied volatility surface 

This section details how OptionMetrics constructs the standardized implied volatility 

surface. OptionMetrics first computes Black-Scholes implied volatility for options with 

available data. For European-style options, the Black-Scholes model: 

𝐶 = 𝑆𝑒−𝑞𝑇𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

𝑃 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆𝑒−𝑞𝑇𝑁(−𝑑1) 

where 

𝑑1 =
1

𝜎√𝑇
(ln (

𝑆

𝐾
) + (𝑟 − 𝑞 +

1

2
𝜎2) 𝑇) 

𝑑2 = 𝑑1 − 𝜎√𝑇 

𝐶 (𝑃) is the midpoint of the best closing bid price and best closing offer price for the call (put) 

option, 𝑆 is the current underlying security price, 𝐾 is the strike price, 𝑇 is the time in years 

remaining to option maturity, 𝑟  is the continuously-compounded interest rate, 𝑞  is the 

continuously compounded dividend yield, and 𝜎 is the implied volatility.  

 Then, OptionMetrics organizes the data by the log of days to maturity and by “call-

equivalend delta” (i.e., delta for a call option, one plus delta for a put option). Then, at each 

grid point 𝑗 on the volatility surface, the standardized implied volatility �̂�𝑗 is calculated as a 

weighted sum of option implied volatilities: 

�̂�𝑗 =
∑ 𝑉𝑖𝜎𝑖Φ(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑧𝑖𝑗)𝑖

∑ 𝑉𝑖𝜎𝑖Φ(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑧𝑖𝑗)𝑖

 

where 𝑖 is indexed over all available options on each day, 𝑉𝑖 is the vega of the option, 𝜎𝑖 is the 

implied volatility, and Φ(∙) is the kernel function: 
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Φ(𝑥, 𝑦, 𝑧) =
1

√2𝜋
𝑒

−(
𝑥2

2ℎ1
+

𝑦2

2ℎ2
+

𝑧2

2ℎ3
)
 

The inputs to the kernel function, 𝑥𝑖𝑗, 𝑦𝑖𝑗, and 𝑧𝑖𝑗 measures the “distance” between an actual 

option 𝑖 and the grid point 𝑗: 

𝑥𝑖𝑗 = ln (
𝑇𝑖

𝑇𝑗
) 

𝑦𝑖𝑗 = Δ𝑖 − Δ𝑗 

𝑧𝑖𝑗 = 𝐼{𝐶𝑃𝑖=𝐶𝑃𝑗} 

where 𝑇𝑖 and 𝑇𝑗 are measured in days; Δ𝑖 and Δ𝑗 are call-equivalent detlas of option 𝑖 and grid-

point 𝑗; and 𝑧𝑖𝑗 is an indicator function, which equals to one if both the option and the surface 

have the same call or put type. The kernel bandwidth parameters are set at ℎ1 = 0.05, ℎ2 =

0.005, 𝑎𝑛𝑑 ℎ3 = 0.001. Options with fewer than 11 days to maturity are excluded from the 

sample. 

 

Appendix B: definitions of variables and variable constructions 

Global level index: we take the average implied volatility of the standardized volatility surface 

in each country on each day. We drop the last trading day of each month to avoid overlapping 

with the next month. We then aggregate the daily average to a monthly average level index for 

each country. We average the level measures from all countries in our sample to obtain the 

global level index.  

Global slope index: on each day, we regresses the implied volatilities of the standardized 

volatility surface on their transformed deltas and obtain the coefficient. We drop the last trading 

day of each month to avoid overlapping with the next month. We then aggregate the daily 
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coefficient to a monthly average coefficient as the slope for each country. We average the slope 

measures from all countries in our sample to obtain the global slope index.  

Global convexity index: we first measure the convexity of the implied volatility curve at any 

maturity 𝜏 as the following 

𝐶𝑉(𝜏) =
1

64
∑

𝐼𝑉(Δ𝑖, 𝜏) + 𝐼(Δ𝑗, 𝜏)

2
− 𝐼(Δ𝑘 , 𝜏)

(𝑖,𝑗,𝑘)

 

where Δ𝑖, Δ𝑗, 𝑎𝑛𝑑 Δ𝑘 are three different delta points with Δ𝑖 < Δ𝑗 and Δ𝑘 =
Δ𝑖+Δ𝑗

2
. There are 64 

different sets of these delta-triples based on the availability of delta points. The above equation 

can be translated in the following equation:  

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
1

64
[4 × 𝐼𝑉(0.1) + 2.5 × 𝐼𝑉(0.15) + 2 × 𝐼𝑉(0.2) + 0.5 × 𝐼𝑉(0.25) − 1.5 × 𝐼𝑉(0.35)

− 2 × 𝐼𝑉(0.4) − 3.5 × 𝐼𝑉(0.45) − 4 × 𝐼𝑉(0.5) − 3.5 × 𝐼𝑉(0.55) − 2 × 𝐼𝑉(0.6)

− 1.5 × 𝐼𝑉(0.65) + 0.5 × 𝐼𝑉(0.75) + 2 × 𝐼𝑉(0.8) + 2.5 × 𝐼𝑉(0.85) + 4 × 𝐼𝑉(0.9)] 

 

To construct the convexity index, we then take the average convexity measure across all 

maturities on each day. This gives us a daily measure of convexity for each index. We aggregate 

daily convexity measures into a monthly measure by taking the average value across all 

available days in a month, except the last trading day. We construct the global convexity index 

by averaging monthly convexity index from all available countries in our sample. 

VIX index: the implied-volatility index provided by the CBOE. We download the daily 

measure of the VIX index and aggregate it to a monthly measure by taking average.  

SVIX index: Martin (2017) introduces the SVIX index to measure the lower bound of US 

equity premium based on option prices. We download the six-month SVIX index from Ian 
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Martin’s website.10 We extend the data to the end of 2021 based on the procedure in Martin 

(2017).  

Left-tail volatility (LTV): LTV measures the return volatility generated by the left tail of the 

one-week risk-neutral return distribution introduced by Bollershlev, Todorov, and Xu (2015). 

We download the data from Viktor Todorov’s website and extend it to the end of 2021.11 

Variance risk premium (VRP): variance risk premium measures the difference between the 

squared VIX index and the realized variance of the market index. Bollershlev, Tauchen and 

Zhou (2009) document that VRP predicts US return from 1990 to 2007. We download the data 

on VRP from Hao Zhou’s website, which updates the data to 2021.12 

TED spread: measures the difference between the three-month LIBOR rate and the three-

month yield on Treasury bills. We download daily TED spread from the Federal Reserve 

database and aggregate it to a monthly measure by taking simple average. 

Short-interest index: this is the detrended aggregate short-selling interest in the US. The 

measure is constructed by Rapach, Ringgenberg, and Zhou (2016). We download the data from 

Guofu Zhou’s website.13 

 
10 https://personal.lse.ac.uk/martiniw/ 
11 https://tailindex.com/volatilityindex.html 
12 https://sites.google.com/site/haozhouspersonalhomepage/ 
13 http://apps.olin.wustl.edu/faculty/zhou/ 
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Figure 1: availability of index options 

This figure plots the number of countries or regions in our sample for which we have available 

options data. 
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Figure 2: level, slope, and convexity of the implied volatility surface 

The figure plots the global and US average of the standardized volatility surface, i.e., the level index, 

in Panel A; the slope of these surfaces in Panel B, and the convexity of these surfaces in Panel C. The 

sample period is from 1996m1 to 2021m12. 

Panel A: global and US level index 

 
Panel B: global and US slope index 
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Panel C: global and US convexity index 
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Figure 3: global convexity left and global convexity right indexes 

This figure plots global convexity left index in Panel A and global convexity right index in Panel B. 

Detailed definition of the measures are in the text and Appendix. 

Panel A: global convexity left index 

 
Panel B: global convexity right index 
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Table 1: list of index options in our sample 

This table lists the availability of index options from each country or region in our sample. This table also lists the underlying market index in each region and 

the exchanges from which option quotes are obtained. The last column shows the average number of available options in each region per day. 

Country / region Short name Market index Exchange Start Finish Num. obs./day 

Australia AUS S&P/ASX 200 Australia Futures and Options 1/2/2004 12/31/2021 959 

Belgium BEL BEL 20 Euronext Brussels 1/2/2002 12/31/2021 165 

Canada CAN S&P/TSX 60 Montreal Exchange 3/26/2007 12/31/2021 356 

Switzerland CHE SMI EUREX, Frankfurt 1/2/2002 12/30/2021 927 

Germany DEU DAX EUREX, Frankfurt 1/2/2002 12/30/2021 1234 

Europe, Australasia, and the Middle East EAFE MSCI EAFE National Best BidOffer 9/25/2002 12/31/2021 493 

Emerging market EEM MSCI EM National Best BidOffer 3/9/2006 12/31/2021 669 

Spain ESP IBEX 35 Mercado Espanol de Futuros 10/11/2006 12/30/2021 1212 

Europe EUR STOXX 50 EUREX, Frankfurt 1/2/2002 12/30/2021 1339 

Finland FIN HELSINKI 25 EUREX, Frankfurt 1/2/2002 12/30/2021 275 

France FRA CAC 40 Euronext Monep 4/14/2003 12/31/2021 565 

United Kingdom GBR FTSE 100 Euronext Liffe, London 1/2/2002 12/31/2021 1257 

Hong Kong HKG HANG SENG Hong Kong Futures Exchange 1/3/2006 12/31/2021 1070 

Italy ITA MIB Mercato dei Derivati, Milano 10/10/2006 12/30/2021 574 

Japan JPN NIKKEI 225 Osaka Day Session 5/6/2004 12/30/2021 1016 

Korea KOR KOSPI 200 Korea Futures Market 5/3/2004 12/30/2021 377 

Netherlands NLD AEX Euronext Amsterdam Options 7/1/2005 12/31/2021 338 

Sweden SWE OMXS30 Stockholmborsen Options Market 5/14/2007 12/30/2021 448 

Taiwan TWN TAIEX Taiwan Futures Exchange 1/2/2004 12/30/2021 242 

United States USA S&P 500 Index National Best BidOffer 1/4/1996 12/31/2021 1378 
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Table 2: average implied volatility surface 

This table reports the average implied volatility at each delta-maturity grid point. Panel A shows the 

global average implied volatility surface. Specifically, we first take the average implied volatility at 

each grid point across all indexes, including both call and put options, on each day and then average 

across all sample period. Panel B reports the average implied volatility surface of the S&P 500 index. 

Panel A: global average 

 maturity (days)  
delta 30 60 91 122 152 182 273 365 547 Average 

0.10 28.11 27.61 27.65 27.69 27.56 27.43 27.19 27.09 26.82 27.46 

0.15 26.15 26.01 26.10 26.19 26.14 26.07 25.92 25.88 25.75 26.02 

0.20 24.52 24.62 24.75 24.86 24.86 24.83 24.76 24.75 24.71 24.74 

0.25 23.31 23.49 23.64 23.76 23.78 23.78 23.75 23.76 23.77 23.67 

0.30 22.40 22.60 22.73 22.84 22.88 22.90 22.89 22.91 22.95 22.79 

0.35 21.68 21.86 21.98 22.07 22.11 22.13 22.15 22.17 22.23 22.04 

0.40 21.07 21.22 21.32 21.40 21.44 21.46 21.48 21.51 21.58 21.39 

0.45 20.55 20.67 20.75 20.81 20.84 20.86 20.88 20.92 20.99 20.81 

0.50 20.08 20.17 20.23 20.27 20.30 20.31 20.34 20.38 20.46 20.28 

0.55 19.67 19.72 19.77 19.79 19.80 19.82 19.86 19.90 19.98 19.81 

0.60 19.29 19.31 19.34 19.35 19.36 19.37 19.41 19.46 19.57 19.38 

0.65 18.96 18.94 18.95 18.95 18.95 18.96 19.01 19.06 19.19 19.00 

0.70 18.67 18.60 18.59 18.58 18.57 18.58 18.64 18.70 18.86 18.64 

0.75 18.45 18.31 18.28 18.25 18.24 18.25 18.31 18.39 18.55 18.34 

0.80 18.33 18.09 18.03 17.98 17.97 17.97 18.04 18.13 18.30 18.09 

0.85 18.35 17.98 17.88 17.81 17.78 17.78 17.85 17.93 18.10 17.94 

0.90 18.53 17.98 17.84 17.74 17.69 17.67 17.72 17.81 17.95 17.88 

Average 21.07 21.01 21.05 21.08 21.07 21.07 21.07 21.10 21.16  
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Panel B: S&P500 implied volatility surface 

 maturity (days)  
delta 30 60 91 122 152 182 273 365 547 Average 

0.10 26.76 27.00 27.27 27.43 27.49 27.53 27.55 27.51 27.37 27.32 

0.15 24.54 25.07 25.40 25.62 25.75 25.85 25.99 26.03 26.01 25.58 

0.20 22.75 23.42 23.77 24.03 24.21 24.34 24.56 24.64 24.71 24.05 

0.25 21.43 22.11 22.47 22.73 22.93 23.07 23.32 23.43 23.55 22.78 

0.30 20.46 21.08 21.42 21.67 21.86 22.01 22.27 22.38 22.53 21.74 

0.35 19.67 20.22 20.53 20.77 20.95 21.09 21.35 21.47 21.64 20.85 

0.40 19.00 19.48 19.77 19.98 20.15 20.28 20.52 20.64 20.83 20.07 

0.45 18.41 18.83 19.09 19.28 19.43 19.55 19.77 19.89 20.09 19.37 

0.50 17.88 18.25 18.47 18.64 18.78 18.89 19.09 19.20 19.40 18.74 

0.55 17.39 17.71 17.91 18.06 18.18 18.28 18.46 18.57 18.78 18.15 

0.60 16.94 17.21 17.39 17.51 17.63 17.71 17.88 17.98 18.20 17.61 

0.65 16.52 16.74 16.89 17.00 17.10 17.18 17.33 17.44 17.67 17.10 

0.70 16.14 16.30 16.43 16.52 16.60 16.67 16.82 16.93 17.17 16.62 

0.75 15.81 15.90 16.00 16.07 16.14 16.21 16.35 16.45 16.71 16.18 

0.80 15.59 15.57 15.64 15.69 15.75 15.80 15.93 16.02 16.29 15.81 

0.85 15.58 15.38 15.40 15.42 15.46 15.49 15.58 15.67 15.92 15.54 

0.90 15.82 15.37 15.32 15.31 15.31 15.31 15.33 15.40 15.63 15.42 

Average 18.86 19.16 19.36 19.51 19.63 19.72 19.89 19.98 20.15  
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Table 3: convexity of implied volatility surface 

This table shows the summary statistics of various option-based measures in Panel A and their pairwise correlation in Panel B. The sample period is from 

1996m1 to 2021m12. Appendix and the main text contains detailed description of each variable. 

Panel A: summary statistics 

 mean sd min p5 p25 p50 p75 p95 max skewness kurtosis 

Global vol. surf. convexity 0.49 0.14 0.22 0.30 0.39 0.47 0.59 0.75 0.95 0.76 3.33 

US vol. surf. convexity 0.54 0.15 0.20 0.29 0.43 0.53 0.62 0.83 0.99 0.45 3.20 

Global vol. surf. level 21.08 5.95 12.28 14.30 16.78 20.04 23.67 32.34 51.15 1.61 7.08 

Global vol. surf. slope -11.31 3.99 -27.07 -19.18 -13.39 -10.57 -8.34 -6.09 -5.24 -1.12 4.42 

VIX index 20.30 8.02 10.13 11.53 14.47 19.00 23.84 35.03 62.67 1.95 9.06 

SVIX index 4.29 2.66 1.50 1.75 2.46 3.64 5.22 8.50 20.63 2.46 12.15 

Left-tail volatility (LTV) 7.92 3.16 2.39 4.62 5.87 7.07 8.89 13.91 25.65 1.81 7.88 

Variance risk premium (VRP) 14.82 32.48 -403.40 -3.36 6.71 13.11 24.02 49.10 115.85 -7.75 98.15 

 

Panel B: correlation matrix 

 Global convex US convex Global level Global slope VIX SVIX LTV VRP 

Global vol. surf. convexity 100% 82% 43% -68% 43% 51% 68% 10% 

US vol. surf. convexity 82% 100% 27% -51% 26% 34% 67% 11% 

Global vol. surf. level 43% 27% 100% -82% 93% 95% 65% -3% 

Global vol. surf. slope -68% -51% -82% 100% -80% -85% -72% -4% 

VIX index 43% 26% 93% -80% 100% 96% 73% -13% 

SVIX index 51% 34% 95% -85% 96% 100% 75% -4% 

Left-tail volatility (LTV) 68% 67% 65% -72% 73% 75% 100% -13% 

Variance risk premium (VRP) 10% 11% -3% -4% -13% -4% -13% 100% 
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Table 4: predicting semi-annual US equity premium (overlapping periods) 

We regress the 6-month excess return of S&P500 index on different set of option-based predictors. Panel A reports the result of univariate return prediction. 

Panel B reports the result of multivariate return prediction. The sample period of predictors is from 1996m1 to 2021m12. Standard errors are Newy-West 

standard errors with 6 lags. The t-statistics are reported in parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent 

levels, respectively. 

Panel A: univariate return prediction 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Semi-annual S&P 500 excess return 

Global convexity 0.3002***        

 (3.69)        
US convexity  0.2232**       

  (2.35)       
Global level   0.0027      

   (1.34)      
Global slope    -0.0066***     

    (-3.09)     
VIX     0.0023    

     (1.61)    
SVIX      0.0088**   

      (2.12)   
LTV       0.0096***  

       (2.74)  
VRP        0.0003 

        (0.59) 

Constant -0.1051** -0.0774 -0.0146 -0.0316 -0.0048 0.0051 -0.0333 0.0381** 

 (-2.25) (-1.35) (-0.39) (-1.23) (-0.19) (0.30) (-1.04) (2.36) 

Observations 312 312 312 312 312 312 312 312 

R-squared 0.144 0.091 0.021 0.054 0.028 0.043 0.072 0.008 
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Panel B: multivariate return prediction 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Semi-annual S&P 500 excess return 

                  

Global convexity 0.3212*** 0.3078*** 0.3273** 0.2997*** 0.2924*** 0.2908*** 0.2959*** 0.3346*** 

 (3.92) (2.95) (2.53) (2.88) (2.66) (2.91) (3.60) (3.46) 

US convexity -0.0239       -0.0428 

 (-0.20)       (-0.33) 

Global level  -0.0004      -0.0055 

  (-0.18)      (-0.79) 

Global slope   0.0014     0.0042 

   (0.38)     (0.71) 

VIX    0.0000    -0.0006 

    (0.01)    (-0.10) 

SVIX     0.0008   0.0182 

     (0.15)   (1.30) 

LTV      0.0006  0.0010 

      (0.15)  (0.15) 

VRP       0.0002 0.0002 

       (0.53) (0.64) 

Constant -0.1026* -0.0998** -0.1023** -0.1053** -0.1049** -0.1055** -0.1059** -0.0153 

 (-1.82) (-2.30) (-2.36) (-2.51) (-2.20) (-2.25) (-2.27) (-0.20) 

Observations 312 312 312 312 312 312 312 312 

R-squared 0.145 0.145 0.146 0.144 0.145 0.145 0.147 0.165 
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Table 5: predicting monthly US equity premium (non-overlapping periods) 

We regress the 1-month excess return of S&P500 index in month t+1 up to t+12 on the global convexity index in month t. The sample period of the global 

convexity index is from 1996m1 to 2021m12. Standard errors are heteroscedasticity robust standard errors. The t-statistics are reported in parentheses. 

Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent levels, respectively. 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 1 month S&P 500 excess return 

VARIABLES t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 

                          

Global convexity 0.0587*** 0.0523*** 0.0530*** 0.0530*** 0.0425** 0.0370** 0.0335* 0.0124 -0.0037 0.0247 0.0235 0.0081 

 (3.24) (3.02) (3.05) (3.11) (2.47) (2.11) (1.85) (0.68) (-0.20) (1.38) (1.32) (0.46) 

Constant -0.0217** -0.0187** -0.0190** -0.0193** -0.0142 -0.0117 -0.0095 0.0007 0.0081 -0.0057 -0.0051 0.0023 

 (-2.37) (-2.12) (-2.10) (-2.17) (-1.57) (-1.27) (-1.00) (0.07) (0.84) (-0.60) (-0.56) (0.25) 

             

Observations 312 312 312 312 312 312 312 312 312 312 312 312 

R-squared 0.037 0.029 0.030 0.029 0.019 0.014 0.011 0.002 0.000 0.006 0.006 0.001 
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Table 6: predicting equity premium around the world 

We regress the semi-annual excess return of the leading market index from 19 different countries and regions on the global convexity index. The sample period 

of the global convexity index is from 1996m1 to 2021m12. Standard errors are Newy-West standard errors with 6 lags. The t-statistics are reported in parentheses. 

Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent levels, respectively. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

VARIABLES USA AUS BEL CAN CHE DEU EAFE EEM ESP EU 

                      

Global convexity 0.3002*** 0.3773*** 0.2535* 0.3304*** 0.2050** 0.2594** 0.2892*** 0.3109** 0.1674 0.2946** 

 (3.69) (2.83) (1.88) (2.87) (2.28) (2.01) (3.52) (2.33) (1.18) (2.48) 

Constant -0.1051** -0.1412** -0.0886 -0.1160* -0.0621 -0.0904 -0.1183** -0.1096 -0.0443 -0.1128* 

 (-2.25) (-2.03) (-1.23) (-1.79) (-1.25) (-1.27) (-2.44) (-1.61) (-0.59) (-1.73) 

           

Observations 312 312 312 312 312 312 312 312 312 312 

R-squared 0.144 0.116 0.049 0.095 0.058 0.047 0.130 0.083 0.017 0.071 

 

  (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

VARIABLES FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN 

                      

convex 0.3321** 0.3328*** 0.2835*** 0.2548* 0.3627*** 0.3869*** 0.6824*** 0.2870** 0.4439*** 0.4584*** 

 (2.29) (2.99) (2.74) (1.75) (2.73) (3.42) (3.06) (2.19) (3.02) (3.34) 

Constant -0.1034 -0.1251** -0.1133* -0.0910 -0.1648** -0.1814*** -0.2934*** -0.1025 -0.1716** -0.1825** 

 (-1.30) (-2.02) (-1.94) (-1.22) (-2.22) (-3.10) (-2.72) (-1.41) (-2.24) (-2.56) 

           

Observations 312 312 312 312 288 312 312 312 312 312 

R-squared 0.059 0.094 0.100 0.046 0.086 0.138 0.128 0.065 0.116 0.116 
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Table 7: alternative specifications to measure convexity and predictive R2 

This table reports the in-sample R2 from predicting semi-annual index returns using convexity measures constructed based on different specifications. Column 

1 uses our baseline global convexity index. Columns 2 and 3 uses call and put implied volatilities to measure convexity. Columns 4 and 5 use in-the-money 

(ITM) and out-of-the-money (OTM) implied volatilities to measure convexity. Columns 6 and 7 use implied volatilities with maturity no greater than or 

greater than 6 month to measure convexity. Column 8 uses only US implied volatilities and Column 9 excludes US implied volatilities after 2002. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Country Baseline Call Put ITM OTM <=6month >6month USA only Exclude USA 

USA 14.4% 8.9% 14.3% 10.8% 15.7% 12.6% 14.6% 9.1% 14.6% 

AUS 11.6% 3.3% 17.9% 12.2% 8.3% 12.4% 8.6% 5.0% 11.8% 

BEL 4.9% 3.5% 4.4% 5.9% 2.8% 4.6% 4.5% 1.1% 5.3% 

CAN 9.5% 3.8% 12.4% 6.8% 10.7% 8.3% 9.6% 5.0% 9.6% 

CHE 5.8% 4.0% 5.2% 5.9% 4.3% 4.5% 6.8% 2.6% 6.0% 

DEU 4.7% 2.7% 4.9% 4.2% 4.2% 3.3% 6.1% 0.7% 5.1% 

EAFE 13.0% 8.7% 12.1% 10.2% 13.4% 10.6% 14.4% 8.0% 13.2% 

EEM 8.3% 1.9% 14.0% 7.8% 6.9% 9.2% 5.8% 3.0% 8.6% 

ESP 1.7% 0.9% 1.9% 1.8% 1.3% 1.4% 1.9% 0.1% 1.9% 

EU 7.1% 4.8% 6.5% 5.9% 6.9% 5.8% 7.8% 2.1% 7.4% 

FIN 5.9% 3.1% 6.6% 4.4% 6.5% 4.6% 7.0% 2.0% 6.1% 

FRA 9.4% 7.3% 7.7% 7.5% 9.5% 7.7% 10.3% 3.7% 9.7% 

GBR 10.0% 6.1% 10.1% 8.7% 9.2% 8.6% 10.5% 4.9% 10.3% 

HKG 4.6% 1.0% 8.0% 5.0% 3.1% 3.9% 4.8% 1.3% 4.8% 

ITA 8.6% 5.9% 7.9% 8.2% 7.0% 8.1% 7.8% 4.9% 8.7% 

JPN 13.8% 8.2% 14.0% 14.2% 10.0% 12.2% 13.6% 8.5% 14.0% 

KOR 12.8% 4.8% 17.4% 10.8% 12.1% 16.5% 6.6% 6.3% 12.9% 

NLD 6.5% 4.4% 6.1% 5.2% 6.6% 5.5% 7.0% 2.3% 6.9% 

SWE 11.6% 4.8% 14.9% 10.8% 9.7% 9.5% 12.7% 4.4% 11.9% 

TWN 11.6% 3.4% 17.6% 10.6% 9.9% 11.6% 9.6% 6.2% 11.8% 

Average 8.8% 4.6% 10.2% 7.8% 7.9% 8.1% 8.5% 4.1% 9.0% 
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Table 8: auto-correlation and lead-lag relationship in the US, international, and global convexity index 

This table reports the autocorrelation and lead-lag relationship of the USA convexity index, Non-USA convexity index, and the global convexity index. Non-

USA convexity index uses non-USA options and starts from 2002m1. The sample period of USA and global convexity indexes are from 1996m1 to 2021m12. 

Standard errors are heteroscedasticity robust standard errors. The t-statistics are reported in parentheses. Superscripts ***, **, * correspond to statistical 

significance at the 1, 5, and 10 percent levels, respectively. 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES USA Non-USA Global USA USA Non-USA Global 

                

USA convexityt-1 0.8793***   0.7654*** 0.7612*** 0.0119 -0.0111 

 (31.64)   (18.03) (16.90) (0.33) (-0.31) 

Non-USA convexity t-1  0.9471***  0.1732***  0.9377***  

  (40.45)  (3.58)  (23.70)  

Global convexity t-1   0.9172***  0.1535***  0.9269*** 

   (40.14)  (2.97)  (22.67) 

Constant 0.0669*** 0.0274** 0.0423*** 0.0464*** 0.0548*** 0.0254** 0.0435*** 

 (4.51) (2.34) (3.68) (2.62) (3.47) (2.02) (3.61) 

        

Observations 311 239 311 239 311 239 311 

R-squared 0.768 0.887 0.839 0.794 0.774 0.887 0.839 
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Table 9: R2 from predicting with global convexity left and global residual convexity right 

We regress semi-annual index returns on the global convexity left index, on the residual global 

convexity right index and on both indexes and report the R2 in this table. Detailed definitions of these 

variables are in the text and appendix. The sample period is from 1996m1 to 2021m12.  

Country Convexity left Convexity right Left + Right 

USA 9.2% 5.4% 14.6% 

AUS 9.5% 2.2% 11.7% 

BEL 1.1% 6.7% 7.7% 

CAN 8.5% 1.3% 9.8% 

CHE 1.2% 7.9% 9.1% 

DEU 3.0% 1.8% 4.8% 

EAFE 7.3% 6.3% 13.6% 

EEM 8.1% 0.7% 8.9% 

ESP 0.8% 1.1% 1.9% 

EU 4.8% 2.3% 7.1% 

FIN 4.5% 1.5% 5.9% 

FRA 6.3% 3.2% 9.5% 

GBR 4.8% 6.3% 11.1% 

HKG 6.7% 0.0% 6.7% 

ITA 4.6% 4.1% 9.0% 

JPN 10.3% 3.4% 13.8% 

KOR 16.1% 0.1% 16.2% 

NLD 3.0% 4.4% 7.4% 

SWE 10.8% 1.3% 12.1% 

TWN 8.2% 3.3% 11.6% 

Average 6.4% 3.2% 9.6% 
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Table 10: explaining convexity left and right 

This table regresses global convexity left and global convexity right index on global slope, SVIX, 

TED spread, and aggregate short-interest. Detailed definitions of these variables are in the text and 

appendix. The sample period is from 1996m1 to 2021m12. Standard errors are Newy-West standard 

errors with 6 lags.  The t-statistics are reported in parentheses. Superscripts ***, **, * correspond to 

statistical significance at the 1, 5, and 10 percent levels, respectively. 

Panel A: global convexity left 

  (1) (2) (3) (4) (5) 

VARIABLES Global convexity left 

            

Global slope -0.0295***    -0.0295*** 

 (-26.44)    (-29.94) 

Left-tail volatility  0.0289***   0.0019** 

  (8.23)   (2.06) 

TED spread   0.0592  -0.0426*** 

   (1.54)  (-4.91) 

Short-interest    -0.0285** -0.0119*** 

    (-2.40) (-4.17) 

Constant 0.0735*** 0.1785*** 0.3804*** 0.4110*** 0.0797*** 

 (6.72) (6.62) (17.86) (26.13) (13.40) 

      

Observations 312 312 312 312 312 

R-squared 0.916 0.550 0.032 0.079 0.961 

 

Panel B: Global convexity right 

  (1) (2) (3) (4) (5) 

VARIABLES Global convexity right 

            

Global slope 0.0050**    0.0085*** 

 (2.32)    (4.04) 

Left-tail volatility  0.0020   0.0098*** 

  (0.56)   (4.96) 

TED spread   -0.1121***  -0.0761*** 

   (-5.99)  (-4.47) 

Short-interest    -0.0285*** -0.0159*** 

    (-4.23) (-2.73) 

Constant 0.1426*** 0.0696*** 0.1363*** 0.0897*** 0.1413*** 

 (6.75) (2.62) (10.75) (11.24) (11.26) 

      

Observations 312 312 312 312 312 

R-squared 0.074 0.008 0.322 0.218 0.501 
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Table 11: out-of-sample predictive R2 

This table reports the OOS R2 of predicting stock returns at different horizons. The predictor 

is the global convexity index. The OOS R2 is computed as 

𝑅𝑂𝑂𝑆
2 = 1 −

𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝑁
 

where 𝑀𝑆𝐸𝐴 is the mean squared error of the predictive model based on the global convexity 

index and 𝑀𝑆𝐸𝑁 is the mean squared error of the historical mean model. To compute these 

mean squared errors, we use first ten years of observations to train both models and then 

update them on a rolling-basis. 

 (1) (2) (3) (4) (5) 

Country 1 month 3 month 6 month 9 month 12 month 

USA 4.1% 12.6% 20.8% 18.1% 17.7% 

AUS 3.0% 7.6% 13.1% 11.6% 10.8% 

BEL 0.4% 2.9% 7.0% 3.4% -1.0% 

CAN 2.4% 7.6% 14.4% 13.0% 14.0% 

CHE 1.0% 4.3% 8.8% -0.1% -2.6% 

DEU 1.8% 4.4% 7.4% 1.2% -2.9% 

EAFE 3.1% 8.9% 18.3% 18.3% 18.7% 

EEM 3.1% 6.9% 9.7% 6.6% 3.2% 

ESP 0.4% 1.0% 1.6% -4.4% -8.4% 

EU 1.9% 4.8% 9.3% 6.1% 4.3% 

FIN 1.4% 4.1% 8.6% 6.0% 4.6% 

FRA 1.9% 5.7% 12.2% 10.6% 9.8% 

GBR 2.1% 6.8% 13.2% 10.3% 10.6% 

HKG 0.2% 0.7% 1.5% -0.7% -4.1% 

ITA 1.8% 5.1% 10.2% 11.1% 12.0% 

JPN 3.2% 6.7% 15.5% 14.2% 9.6% 

KOR 1.8% 6.1% 11.3% 7.0% -0.1% 

NLD 2.0% 5.4% 9.5% 3.8% -0.7% 

SWE 3.8% 9.9% 15.8% 14.0% 12.2% 

TWN 4.1% 12.6% 20.0% 16.3% 11.5% 

Average 2.2% 6.2% 11.4% 8.3% 5.9% 
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Table 12: robustness checks 

This table reports the R2 of predicting semi-annual excess returns with the global convexity index as the predictor. We use different ways to construct the global 

convexity index. Columns 1 drops the two outmost delta points to measure the global convexity. Column 2 uses only options from AUS, CHE, DEU, ESP, EU, 

FRA, GBR, HKG, ITA, and USA. Column 3 estimates the convexity index in a robust fashion, which equals the average difference between the implied 

volatility in the tail region and the implied volatility in the middle region of the volatility curve. Column 4 uses option-level implied volatility instead of the 

standardized implied volatility surface to construct the global convexity index. Column 5 uses detrended convexity index. Column 6 uses annual change in 

global convexity as the predictor. Details of the construction method are in the text. 

  (1) (2) (3) (4) (5) (6) 

Country Drop extreme tail Small set of countries Robust convexity Option level Detrended convexity Annual change in convexity 

USA 12.5% 11.0% 14.3% 13.2% 13.0% 11.5% 

AUS 11.1% 17.7% 11.7% 11.9% 12.6% 13.9% 

BEL 3.3% 7.7% 4.9% 6.9% 6.1% 9.6% 

CAN 11.1% 14.5% 9.7% 5.9% 10.9% 6.3% 

CHE 3.9% 6.5% 5.7% 6.1% 5.6% 6.5% 

DEU 4.8% 5.6% 4.7% 3.0% 5.9% 8.4% 

EAFE 11.6% 14.1% 12.8% 10.6% 12.4% 6.3% 

EEM 9.3% 12.7% 8.4% 6.9% 9.2% 10.4% 

ESP 1.6% 3.1% 1.8% 1.4% 3.3% 7.1% 

EU 6.9% 7.8% 7.1% 4.3% 8.7% 10.6% 

FIN 6.5% 7.7% 6.0% 2.6% 7.5% 10.0% 

FRA 9.0% 10.5% 9.4% 5.6% 11.2% 11.3% 

GBR 8.7% 11.9% 10.0% 8.1% 11.8% 11.6% 

HKG 5.3% 8.0% 4.7% 2.8% 5.7% 9.8% 

ITA 7.2% 11.1% 8.6% 7.4% 7.9% 7.3% 

JPN 12.6% 16.9% 13.5% 12.9% 10.1% 12.1% 

KOR 13.6% 15.6% 12.9% 8.4% 13.9% 13.4% 

NLD 5.8% 6.3% 6.5% 5.9% 7.2% 11.8% 

SWE 12.4% 14.7% 11.6% 7.6% 13.3% 13.3% 

TWN 11.6% 12.2% 11.6% 10.0% 9.8% 15.9% 

Average 8.4% 10.8% 8.8% 7.1% 9.3% 10.4% 



54 
 

Table A1: summary statistics of index returns 

This table lists the data coverage and summary statistics of monthly index returns in our sample. Returns are reported in percentage points. 

Country / region Market index start finish mean sd skewness kurtosis 

AUS S&P/ASX 200 1996m1 2022m12 0.71 6.12 -0.64 5.12 

BEL BEL 20 1996m1 2022m12 0.54 5.96 -0.56 5.58 

CAN S&P/TSX 60 1996m1 2022m12 0.70 5.80 -0.70 5.58 

CHE SMI 1996m1 2022m12 0.60 4.72 -0.40 3.76 

DEU DAX 1996m1 2022m12 0.60 6.77 -0.36 4.21 

EAFE MSCI EAFE 1996m1 2022m12 0.37 4.14 -0.75 4.30 

EEM MSCI EM 1996m1 2022m12 0.64 5.27 -0.84 5.92 

ESP IBEX 35 1996m1 2022m12 0.61 6.94 -0.13 4.50 

EUR STOXX 50 1996m1 2022m12 0.52 6.26 -0.31 3.79 

FIN HELSINKI 25 1996m1 2022m12 0.91 6.95 0.06 4.90 

FRA CAC 40 1996m1 2022m12 0.63 6.15 -0.29 3.85 

GBR FTSE 100 1996m1 2022m12 0.38 4.72 -0.36 4.40 

HKG HANG SENG 1996m1 2022m12 0.56 6.94 0.09 5.48 

ITA MIB 1998m1 2022m12 0.35 7.21 -0.10 3.94 

JPN NIKKEI 225 1996m1 2022m12 0.10 5.42 -0.20 3.39 

KOR KOSPI 200 1996m1 2022m12 0.54 10.18 0.97 9.77 

NLD AEX 1996m1 2022m12 0.61 6.16 -0.63 4.92 

SWE OMXS30 1996m1 2022m12 0.69 6.73 -0.18 4.20 

TWN TAIEX 1996m1 2022m12 0.60 7.34 0.10 4.01 

USA S&P 500 Index 1996m1 2022m12 0.66 4.50 -0.57 3.82 
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Table A2: summary statistics of implied volatilities on the implied volatility surface 

This table reports the summary statistics of implied volatilities from standardized implied volatility surfaces for each index. 

Country / region mean p50 sd min max skewness kurtosis 

AUS 17.67 15.82 7.19 2.87 198.19 2.06 12.46 

BEL 19.97 17.98 8.38 3.17 200.00 2.40 19.47 

CAN 19.84 17.53 10.33 1.45 200.00 4.65 57.66 

CHE 17.71 16.03 6.67 3.39 103.62 2.04 10.00 

DEU 21.74 19.95 7.91 3.78 131.34 1.70 7.77 

EAFE 19.64 17.67 8.21 3.12 135.16 1.76 8.35 

EEM 26.65 23.97 10.63 8.52 180.29 2.34 12.45 

ESP 23.31 21.91 7.62 3.25 103.55 1.29 6.12 

EUR 22.03 20.28 8.18 5.20 115.25 1.55 7.07 

FIN 22.14 20.06 8.62 1.08 97.20 1.22 5.44 

FRA 20.91 19.40 7.38 3.04 117.92 1.64 8.00 

GBR 18.57 16.81 7.39 5.05 108.23 1.72 7.84 

HKG 22.87 19.95 9.17 7.99 148.64 2.51 12.16 

ITA 24.25 22.81 7.59 5.09 110.83 1.42 6.91 

JPN 22.51 20.69 7.99 1.11 200.00 2.71 16.49 

KOR 19.82 17.87 8.45 4.74 137.58 2.38 12.62 

NLD 20.81 18.71 9.48 1.02 200.00 1.50 7.69 

SWE 21.04 19.20 7.54 4.57 177.11 1.76 8.78 

TWN 19.95 17.70 8.49 1.20 108.98 1.34 5.49 

USA 19.58 18.45 7.23 3.70 99.34 1.43 7.20 
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Table A3: convexity of implied volatility by maturity 

This table shows the summary statistics of the convexity of implied volatility curve for each maturity in Panel A and their pairwise correlation in Panel B. The 

sample period is from 1996m1 to 2021m12. 

Panel A: convexity by maturity 

Maturity (days) mean sd min p5 p25 p50 p75 p95 max skewness kurtosis 

30 0.65 0.20 0.20 0.40 0.52 0.62 0.74 1.05 1.36 1.10 4.52 

60 0.54 0.17 0.15 0.31 0.42 0.51 0.60 0.87 1.23 1.14 4.72 

91 0.51 0.16 0.21 0.30 0.40 0.49 0.60 0.86 1.07 0.82 3.56 

122 0.50 0.16 0.21 0.31 0.39 0.47 0.61 0.84 0.98 0.79 3.19 

152 0.48 0.15 0.20 0.28 0.37 0.45 0.59 0.78 0.95 0.77 3.08 

182 0.46 0.15 0.19 0.26 0.35 0.43 0.56 0.75 0.92 0.70 2.96 

273 0.44 0.14 0.18 0.24 0.33 0.41 0.55 0.69 0.81 0.49 2.52 

365 0.43 0.14 0.16 0.23 0.33 0.42 0.54 0.67 0.77 0.27 2.16 

547 0.41 0.14 0.10 0.20 0.32 0.39 0.50 0.65 0.79 0.27 2.54 

 

Panel B: correlation matrix 

Maturity (days) 30 60 91 122 152 182 273 365 547 

30 100% 82% 78% 77% 75% 73% 66% 59% 51% 

60 82% 100% 93% 84% 84% 83% 76% 68% 60% 

91 78% 93% 100% 94% 90% 89% 84% 76% 68% 

122 77% 84% 94% 100% 97% 93% 88% 83% 75% 

152 75% 84% 90% 97% 100% 98% 91% 86% 79% 

182 73% 83% 89% 93% 98% 100% 94% 88% 81% 

273 66% 76% 84% 88% 91% 94% 100% 96% 86% 

365 59% 68% 76% 83% 86% 88% 96% 100% 93% 

547 51% 60% 68% 75% 79% 81% 86% 93% 100% 
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Table A4: the economic gain of predicting the market return 

This table reports the Sharpe ratio of three different investment strategies in each country from 

2006m1 to 2021m12. The first strategy is to buy and hold each country’s market index. The 

second strategy is to invest in the market index with a weight equal to  

𝜔𝑡 = 𝑎 + 𝑏𝑥𝑡 

where 𝑥𝑡 is the average global convexity over the past six months. The coefficients 𝑎 and 𝑏 are 

optimized based on the in-sample data from 2006m1 to 2021m12. The third strategy is similar 

to the second except that the coefficients 𝑎 and 𝑏 in each month are estimated based on the data 

from 1996m1 until the month of trading on a rolling basis. 

  (1) (2) (3) 

Country Buy-and-hold Sharpe ratio In-sample optimal Sharpe ratio OOS optimal Sharpe ratio 

USA 0.705 1.085 1.011 

AUS 0.378 0.823 0.712 

BEL 0.271 0.614 0.432 

CAN 0.392 0.780 0.671 

CHE 0.571 0.860 0.695 

DEU 0.358 0.621 0.498 

EAFE 0.373 0.853 0.778 

EEM 0.495 0.861 0.793 

ESP 0.203 0.381 0.203 

EU 0.276 0.600 0.477 

FIN 0.492 0.727 0.647 

FRA 0.329 0.644 0.544 

GBR 0.256 0.739 0.585 

HKG 0.355 0.515 0.396 

ITA 0.160 0.580 0.446 

JPN 0.369 0.759 0.682 

KOR 0.268 0.783 0.742 

NLD 0.387 0.800 0.671 

SWE 0.443 0.855 0.795 

TWN 0.591 0.973 0.901 

Average 0.384 0.743 0.634 

 

 

 

 


