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Abstract

Banking is increasingly a complex activity. We investigate the output and welfare

consequences of banking structures in an economy where lenders use information to screen

investment quality and to recover value from failed investments. Complex banking (lenders’

joint production of information) eases information production but also facilitates the de-

tection and liquidation of fragile investments. We find that complex banking enhances the

resilience to small investment shocks but can amplify the output and welfare responses to

large negative shocks. Investment opacity preserves the stabilizing properties of complex

banking following small shocks, but increases the chances that complex banking harms wel-

fare after large shocks. The predictions are broadly consistent with evidence from matched

bank-firm US data.
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1 Introduction

Banking is increasingly a complex activity. In the early 1980s, the typical bank loan involved

the interaction between a single banking institution and a client firm. Since then, at least two

major developments have radically transformed the complexity of banking activities. First,

loans have frequently turned into multilateral financing arrangements in which groups of banks

cooperate in granting funds to a firm borrower; that is, an expansion of the syndicated loan

market. In a syndicated loan, multiple lenders cooperate in the collection of information on the

prospects of a would-be borrower. Second, the organizational structure of many banks have
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transformed from being an elementary institution acting independently to becoming affiliates

of a complex banking conglomerate.1 These trends are shown in Appendix Figures A.1 and

A.2 which plot, respectively the aggregate US syndicated loans outstanding from 2009 to 2021

and the degree of concentration of US banking institutions over the 1994-2019 period.

While the microeconomic implications of banking complexity have received growing atten-

tion, relatively little is understood of the macroeconomic consequences. In this paper, we study

the aggregate implications of banking complexity focusing on a core dimension of banking; the

production and sharing of credit market information. The premise of our analysis is that the

information produced by banks has typically a twofold nature. On the one hand, it helps banks

build knowledge about borrowers’ activities and assets. This enables banks to better extract

value from borrowers’ assets, such as better repossessing and liquidating their collateral assets

in the event of default. On the other hand, the information produced by banks also helps them

better understand the prospects of clients, possibly allowing banks to withdraw financing in

a timely manner when borrowers’ prospects deteriorate. These two dimensions of information

are (partially) non-separable: understanding the characteristics and evolution of the assets of

a borrowing firm also helps detect a deterioration of the firm’s projects.

With this premise in mind, we consider two modes of organization of banking. Under “ele-

mentary banking”, information production on a firm’s assets is performed by a single banking

institution. When a second bank ( henceforth, “the late agent”) is invited to participate in

the financing, this participant is merely a liquidity provider with no active role in acquiring

information on the firm’s assets. Under “complex banking”, information production on a firm’s

assets is instead a joint effort of multiple institutions. In particular, the loan originator, while

retaining an advantage in understanding the borrower’s prospects, can involve a second par-

ticipant bank in assisting to monitor the borrower’s collateral assets. This comes at a risk,

however: as a by-product of its monitoring activity the participant bank can obtain informa-

tion about the prospects of the borrowing firm and, if this information is unfavorable, it can

withdraw its liquidity and support to the monitoring endeavor. In our framework we generalize

these two modes of organization of banking as a continuum, parameterized by the degree of

banking complexity.

We examine the resilience to aggregate shocks of banking regimes characterized by different
1This has occurred either through direct ownership in the form of subsidiaries or through cross ownership.
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degree of complexity. We further investigate how investment informational opacity and bank

liquidity status shape the link between banking complexity and macroeconomic resilience. We

show that by enabling the cooperation of multiple banks in the monitoring process, greater

banking complexity results in better resilience to shocks as long as aggregate economic condi-

tions remain relatively good (e.g., small recessionary shocks leading to low investment default

probabilities). In this scenario, banks need to produce a relatively small amount of information

on firms’ collateral assets. The risk that participant banks learn unfavorable information as

a by-product of their cooperation to monitoring is thus limited. As a result, the benefits of

banks’ monitoring coordination dominates any risk that participating banks learn unfavorable

information. However, when economic conditions are poorer (the economy is hit by large re-

cessionary shocks), the probability that projects default is higher and banks tend to produce

more information on collateral assets. In this scenario with large information production, there

is a large risk that participant acquire unfavorable information about borrowers’ investment

prospects. This risk rises with the degree of banking complexity.

We find that, following large recessionary shocks, loan originating banks can react to the risk

of information disclosure in two ways. If projects are sufficiently transparent, they will react by

significantly intensifying the production of information on borrowers’ assets (overmonitoring).

The resulting boost to collateral asset values will deter information acquisition on project

quality by participant banks as higher collateral values will offer them protection. If instead

projects are opaque then any attempt by loan originators to produce more information will

release significant information on project quality to participant banks. Hence, loan originators

will prefer undermonitoring, resulting in a stronger contraction of collateral values and credit

. In this latter scenario, therefore, greater banking complexity will lead to greater fragility

to aggregate shocks. We first characterize in closed form the effects of shocks under different

banking complexity regime and then perform numerical simulations to quantify the magnitude

of the effects.

In the second part of the model, we embed our setup in a dynamic framework featuring a

stylized process of banks’ information accumulation. We show that the model can generate rich

dynamics following persistent shocks. In particular, we find that complex banking regimes can

reduce the negative output response in the immediate aftermath of a shocks, but slow down

the subsequent output recovery. That is, complex banking can generate a dynamic trade-off

3



between the depth and the length of a recession.

In the last part of the paper, we test the predictions of the model using matched bank-firm

data from the United States. Leveraging information from the Thomson Reuters DealScan

database on syndicated loans extended in the US credit market in the period 1987-2013, we

construct proxies for the complexity of the bank lending pools that extended financing to

firms. We then match the DealScan data with the Bureau Van Dick Compustat database to

measure firms’ response to different types of aggregate shocks occurred during the 1987-2013

period. Consistent with the predictions of the theoretical model, the estimates reveal that more

complex bank lending pools (characterized by banks’ joint information production) enhance

the resilience of firms to relatively small negative shocks but tend instead to amplify the drop

in firms’ assets and investment growth in the aftermath of large shocks. In additional tests, we

also uncover evidence that the amplifying effect of banking complexity is especially pronounced

when firms’ investments can be harder to understand for third parties (informationally opaque),

again consistent with the model’s predictions.2

Related literature The paper relates to various strands of literature on the influence of

banks on real economic activity. A first broad literature studies the role of banks in producing

and transmitting information. A recent strand of studies highlight that banks can conceal

information on the fragility of projects, thereby raising the liquidity of fragile investments. In

Gorton and Ordonez (2014) banks insure investors against premature liquidity shocks by raising

funds from patient (late) agents. Raising funds at intermediate stages may however require

increasing the informational opaqueness of investments, and banks have a superior advantage

in this technology relative to dispersed capital markets. Gorton and Ordonez (2020) examine

the implications of this role of banks for business cycle transmission. This recent strand of

studies introduces a new perspective relative to the more traditional view of banks as superior

producers of information. In Diamond and Rajan (2001) and Diamond and Rajan (2002)

for example, banks’ information raises the salvage value of investments in case of investment

failure. In our analysis, we take a step towards bridging these two views of banks’ information
2We construct two proxies for the complexity of bank lending pools. The first measures the number of times

the banks in a syndicated have cooperated with each other in the past, a reflection of their historical tendency
to monitor borrowers jointly. The second proxy instead captures the diffusion of loan shares across the lenders
participating in a syndicated bank lending pool. The more loan shares are diffuse, in fact, the more we expect
banks to engage in joint monitoring of the borrowing firm.
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and study the implications for output and welfare. In doing so, we differentiate across banking

structures characterized by different effectiveness in producing and hiding information. In

particular, we show that banking complexity stimulates joint production of information but

increases the risk the information percolates across banking institutions.

The second related literature investigates the role of credit market information in attenuat-

ing or amplifying exogenous shocks (see, e.g., Bernanke and Gertler, 1989; Lang and Nakamura,

1990; Ordonez, 2013; Fajgelbaum et al., 2017; Ambrocio, 2020; Straub and Ulbricht, 2017; As-

riyan et al., 2022). A growing body of studies show that banks can exhibit a countercyclical

propensity to produce information (Asea and Blomberg, 1998; Ruckes, 2004; Lisowsky et al.,

2017; Becker et al., 2020; Cao et al., 2020; Gustafson et al., 2021). This countercylicality of

bank monitoring has been shown to influence the cyclical behavior of credit (Becker et al.,

2020; Cao et al., 2020), unemployment (Asea and Blomberg, 1998), and bank price compe-

tition (Ruckes, 2004). We share the view of these studies regarding the cyclicality of bank

information production and incorporate this into a model of banking structures to investigate

their consequences for macroeconomic stability.

Finally, the paper relates more broadly to the literature on the implications of banking com-

plexity and investment opacity (investment complexity). In Gai et al., 2011; Caballero and

Simsek, 2013; Elliott et al., 2014; Acemoglu et al., 2015; Cabrales et al., 2017) banking com-

plexity relates to the density of connections across independent banks while our focus is on the

complexity of banks’ information production process. Despite a different focus and approach,

we share with the above studies the emphasis on the consequences of banking complexity for

financial fragility (Gai et al., 2011) and resilience (Elliott et al., 2014; Acemoglu et al., 2015).

We also study the interaction between banking complexity, investment complexity and bank

liquidity. Our notion of investment complexity relates to the empirical literature examining

the design of loan agreements (Ganglmair and Wardlaw, 2017; Ivashina and Vallee, 2020) and

securitization of loans (Keys et al., 2010). Ganglmair and Wardlaw (2017) suggests that for

firms closer to default the detail and customization of loan agreements grows. Lastly, the role

of liquidity in banking and its macroeconomic impacts have been examined by: Dutta and

Kapur (1998), Holmström and Tirole (1998), Farhi et al. (2009), Gertler and Kiyotaki (2015),

Gennaioli et al. (2014), Farhi and Tirole (2021). Within our framework, bank liquidity plays a

key role in altering the information production decisions of banks and the relative performance
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of banking structures of different complexity.

The remainder of the paper is organized as follows. In Section 2, we present the static

model and study its equilibrium. Section 3 examines the impact of banking structures on

macroeconomic stability and welfare implications. In Section 4, we extend the analysis to a

dynamic setting, performing numerical simulations for the effects of shocks. Section 5 presents

empirical evidence on the theoretical predictions using matched bank-firm data from the US

credit market. Section 6 concludes. Additional details on derivations and further empirical

results are in the Appendix.

2 The Model

2.1 Environment

Agents, Goods, and Technology In congruence with Dang et al. (2017), consider a three

period economy populated by a firm, an early agent, a bank, and a late agent. The firm enters

the economy in period 0 with no endowment but with a project investment opportunity. The

project requires an amount ω of an endowment good and takes two periods to be implemented.

If the project succeeds, an event with probability λ, it produces x units of goods, where λx > ω.

If the project fails, it generates a salvage value, measured in units of the endowment good.

The early agent enters the economy in period 0 with an amount e of the endowment good. She

obtains utility c1+τ min {c, c1} from consumption in period 1 and utility c2 from consumption

in period 2. This utility function captures an insurance need of the early agent in period 1.

The late agent enters the economy in period 1 with an amount e of the endowment good. He

obtains utility c2 from consumption in period 2. Since the firm has no endowment it needs to

raise funds to implement the project. It does so by issuing a claim contingent on the future

outcome of the project.

Information and Monitoring We assume that, if the claim issued to fund the project

is purchased by the early agent without the intermediation of the bank, the late agent can

costlessly acquire information about the future outcome (success or failure) of the project.

Information about a project that will fail in period 2 is damaging in case its salvage value is

low, since it will prompt the late agent to refuse the claim issued by the firm, thus preventing
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the early agent to use the claim to consume in period 1.3 However, if the bank purchases the

claim and issues debt to the early agent, the late agent must incur a cost in order to observe the

future outcome of the project. The presence of the bank is thus beneficial because it produces

an opaque debt, making it costly for the late agent to acquire information about the future

outcome of the project.

We posit that the salvage value of the project is affected by the monitoring efforts exerted

by the bank and by the late agent (Diamond and Rajan (2001)). Precisely, if the bank exerts a

monitoring effort µB, incurring disutility 1
2µ

2
B, and the late agent exerts a monitoring effort µL,

incurring linear disutility µL, the salvage value of the project is given by s(µB, µL) = sµα
Lµ

1−α
B ,

where α ≤ 1
2 and s is a strictly positive parameter. We also assume that the cost incurred by

the late agent in order to observe the future outcome of the project is given by γ
µL+1 , and is

thus decreasing in the monitoring effort of the late agent. That is, by monitoring collateral,

the late agent can better understand the nature of the project.

The parameters α and γ are key in our analysis. We interpret the former as capturing the

complexity of the banking structure, and the latter as capturing investment complexity and,

hence, opaqueness.4

Contractual Structure and Timing The sequence of events unfolds as follows. At the

beginning of period 0, the bank offers a take it or leave it contract (sgB, sbB) to the firm. This

contract establishes that the bank will fund the project in period 0 and, in period 2, will

obtain a payment of sgB in case the project succeeds and a payment of sbB in case the project

fails. After the contract between the bank and the early agent is signed, the bank chooses its

monitoring effort µB and offers a take it or leave it contract to the early agent in exchange for

her endowment. This contract establishes that the bank will fully insure the early agent, by

giving her c units of goods in period 1, and will make contingent payments (rgE , rbE) in period 2.

At the beginning of period 1, the late agent chooses his monitoring effort µL. After that, Nash

bargaining determines the contract between the bank and the late agent, where the bargaining

power of the bank is θ, with θ > 1
2 . This contract sets the payment (rgL, r

b
L) that the bank

3Dang et al. (2017) assumes that the salvage value is zero, thus rendering the claim valueless in case the late
agent acquires information and observes that the project will fail.

4Gorton and Ordonez (2014) and Dang et al. (2017) have emphasized the role of asset complexity in creating
opaque debt. Here, we add to their analysis how banking complexity impacts the salvage value and thus the
opaqueness of a complex asset.
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will give to the late agent in period 2, in exchange for his endowment in period 1. Finally, in

period 2, the outcome of the project is realized and the contracted terms are implemented.

Throughout our analysis, we assume

A1 : max {ω, c} < e < ω + c,

This assumption ensures that the endowment of the early agent is not sufficient to fund the

project and, at the same time, insure the early agent in period 1. However, the combined

endowments of the early and the late agent are sufficient to cover both needs.

2.2 Contracts

Contracts between Bank, Firm, and Early Agent In the contract between the bank

and the firm, take it or leave it offer by the bank implies that the contract satisfies

(sgB, s
b
B) = (x, s(µB, µL)).

The bank funds the project and extracts its entire revenue, which will be realized in period 2.

In turn, in the contract between the bank and the early agent, the key feature is that the

early agent is insured in period 1, offered a non-contingent consumption c. This implies that,

in period 2, if the project fails, the bank has assets

Ab = 2e− (ω + c) + s(µB, µL),

while if the project succeeds, the bank has assets

Ag = 2e− (ω + c) + x,

where we take into account that the bank collected 2e goods, used ω to fund the project in

period 0, and c to redeem the claim of the early agent in period 1. The early agent is willing

to deposit with the bank in period 0 if and only if

(1 + τ)c+ λrgE + (1− λ)rbE ≥ e+ τc, (1)
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since she can always refuse the contract and consume the endowment. Take it or leave it offer

by the bank implies that (1) binds. Moreover, it is weakly optimal to set

rb∗E = 0,

which implies

rg∗E =
e− c

λ
.

This repayment scheme ensures that the early agent does not get paid in period 2 if the

project fails. As it will become clear, this allows to increase the compensation of the late agent

in period 2 in case the project fails, thus reducing his incentive to acquire information about

the outcome of the project. The assets of the bank after payment to the early agent are given

by

Ab = 2e− (ω + c) + s(µB, µL)

if the project fails, and

Ag = 2e− (ω + c) + x− e− c

λ

if the project succeeds.

Contract between Bank and Late Agent In what follows we take the monitoring efforts

of the bank and the late agent as given and determine their contract. Moreover, we assume that

the bank holds the belief that the late agent will not acquire information about the outcome

of the project. In the next section, we make sure that this belief is consistent with the actual

choices of the bank and the late agent.

If a contract is signed between the bank and the late agent, the bank obtains λ
(
Ag − rgL

)
+

(1−λ)
(
Ab − rbL

)
. Failure to sign a contract instead implies that the bank will only have e−ω

units of goods in period 1. Since e − ω < c by assumption A1, the bank will be liquidated

and receive zero because it will not have enough resources to fulfill its contract with the early

agent. In turn, the payoff of the late agent in case he signs the contract is λrgL + (1 − λ)rbL,

and e otherwise. Bargaining between the bank and the late agent then solves

max
rgL≥0,rbL≥0

{[
2e− (ω + c) + λ

(
x− e− c

λ

)
+ (1− λ)s(µB, µL)− rL

]θ
[rL − e]1−θ

}
,
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where rL ≡ λrgL + (1 − λ)rbL is the expected payoff of the late agent. We need to make sure

that the bank has enough resources for each outcome realization of the project, i.e., we need

Ag ≡ 2e− (ω + c) + x− e− c

λ
≥ rgL, (2)

and

Ab ≡ 2e− (ω + c) + s(µB, µL) ≥ rbL. (3)

Observe that, given rL, it is weakly optimal to set (3) at equality. This increases the region

where (2) holds, with no impact on the maximand, which only depends on rL. Moreover, as

we will show in the next section, the incentives of the late agent to acquire information strictly

decrease with rbL. We have

rb∗L = 2e− (ω + c) + s(µB, µL).

Note that assumption A1 implies rb∗L ≥ 0. In the Appendix we use rb∗L to rewrite the bargaining

problem between the bank and the late agent, and we show that the solution is interior. This

implies that the payoffs of the late agent (πL) and the bank (πB) are equal to their outside

option plus a share of the surplus commensurate with their bargaining power. Precisely,

πL = e+ (1− θ) [λx− ω + (1− λ)s(µB, µL)] ,

and

πB = θ [λx− ω + (1− λ)s(µB, µL)] .

Summarizing, in this section we showed that, if the bank holds the belief that the late agent

will not acquire information about the outcome of the project, there exists a set of incentive-

feasible contracts that ensure the implementation of the project in period 0 and the insurance

of the early agent in period 1.

2.3 Monitoring and Information

Monitoring Choices of Bank and Late Agent We now take the contracts derived in the

previous section as given and solve for the monitoring efforts of the bank and the late agent.
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We start with the late agent. He solves

max
µL≥0

{e− µL + (1− θ) [λx− ω + (1− λ)s(µB, µL)]} .

Using s(µB, µL) = sµα
Lµ

1−α
B , the solution is

µL = [(1− θ)(1− λ)sα]
1

1−α µB. (4)

In what follows, we are interested in instances where an increase in banking complexity, as

captured by α, improves the salvage value of the project, i.e., ∂s(µB ,µL)
∂α > 0. This requires

µL > µB, i.e.,

A2 : s >
1

(1− θ)(1− λ)α
,

which we henceforth assume.

We now consider the monitoring effort of the bank. Its expected payoff is ΠB (µB) =

−1
2µ

2
B + πB. Using (4) and the fact that θ (λx− ω) does not interact with µB, we can rewrite

ΠB (µB) as

Π̂B (µB) = −1

2
µ2
B + θ(1− λ)s [(1− θ)(1− λ)sα]

α
1−α µB. (5)

Note that Π̂B (µB) is a concave, symmetric function, with an unconstrained maximum at

µ∗
B = θ(1− λ)s [(1− θ)(1− λ)sα]

α
1−α . (6)

Moreover, ΠB (0) = ΠB (2µ∗
B) = 0.

In what follows, we want to ensure that a failed project is never more appealing than a

successful one. A sufficient condition is

A3 : x >
e− c

λ
+ 2θ(1− λ)s2 [(1− θ)(1− λ)sα]

2α
1−α ,

which we henceforth assume.

Information on Project Outcome In the previous section, we claimed that the bank holds

the belief that the late agent will not obtain information about the outcome of the project.

We now examine the conditions under which this claim is warranted. There are two possible
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scenarios.

First, we can have Ag > Ab ≥ e. In this case, the late agent always has an incentive to

deposit with the bank. Thus, he has no incentive to acquire information about the outcome of

the project as it will not impact his behavior. We obtain that Ag > Ab ≥ e if and only if

2e− (ω + c) + sµα
Lµ

1−α
B ≥ e,

which, using (4), can be rewritten as

z ≡ ω + c− e ≤ F (µB) ≡ s [(1− θ)(1− λ)sα]
α

1−α µB. (7)

If Ag > Ab ≥ e holds, the bank maximizes (5) subject to (7).

Second, we can have Ag > e > Ab. In this case, the late agent does not deposit with the

bank if he learns of a bad outcome. As a result, in order to ensure that the late agent does

not have an incentive to acquire information we need

λrg∗L + (1− λ)rb∗L ≥ − γ

µL + 1
+ λrg∗L + (1− λ)e. (8)

Observe that the incentives of the late agent to acquire information strictly decrease with rb∗L .

Substituting for the values of rg∗L , rb∗L and µL, we can rewrite (8) as

z ≤ Gγ(µB) ≡ s [(1− θ)(1− λ)sα]
α

1−α µB +
1

1 + [(1− θ)(1− λ)sα]
1

1−α µB

γ

1− λ
. (9)

If Ag > e > Ab holds, the bank maximizes (5) subject to (9).

It is easy to see that Gγ(µB) > F (µB) for all µB. As a result, a necessary and sufficient

condition for the bank to choose µ∗
B is that z ≤ Gγ(µ

∗
B). In fact, if z ≤ F (µ∗

B), Ag > Ab ≥ e

and the bank chooses µ∗
B because the late agent does not care about acquiring information

about the project. If z ∈ (F (µ∗
B), Gγ(µ

∗
B)], we have Ag > e > Ab and the bank chooses µ∗

B

because the late agent does not want to incur the cost and acquire information about the

project.

It remains to consider the region of parameters where z > Gγ(µ
∗
B) and the late agent

acquires information about the outcome of the project if the bank chooses µ∗
B. In this case,
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the information constraint binds and the bank either chooses zero monitoring effort or it chooses

z = Gγ(µ̂B). In fact since G′′
γ(µB) > 0, z = Gγ(µ̂B) determines the bank’s monitoring effort

that is closest to the unconstrained optimal µ∗
B. Now, the fact that Π̂B (µB) is concave and

symmetric around µ∗
B implies that the constrained optimal solution must satisfy z = Gγ(µ̂B).

However, we also need to make sure that µ̂B is closest to µ∗
B than zero, otherwise the bank

is better off choosing to exert no monitoring effort. The choice z = Gγ(µ̂B) is non-trivial

because G′′
γ(µB) > 0 implies that z = Gγ(µ̂B) may have two positive solutions, µ+

B > µ∗
B

(overmonitoring) and µ−
B < µ∗

B (undermonitoring). In the Appendix, we fully characterize the

bank’s choice as a function of z and γ. This allows an easy comparison with µ∗
B, since µ∗

B does

not depend on these parameters. Proposition 1 summarizes our results.

Proposition 1 For all z ∈ (0, e), there exists a set of incentive-feasible contracts that ensure

the implementation of the project by the firm and the insurance of the early agent. Given these

contracts, the late agent chooses µL = [(1− θ)(1− λ)sα]
1

1−α µB, while the monitoring effort

of the bank is characterized as follows. There exists γ < γ such that: (i) for all γ ≤ γ, the

bank chooses µ∗
B if z ≤ Gγ(µ

∗
B), it chooses µ+

B(z) if z ∈ (Gγ(µ
∗
B), Gγ(2µ

∗
B)], and it chooses

not to monitor if z > Gγ(2µ
∗
B); (ii) for all γ ∈

(
γ, γ

]
, the bank chooses µ∗

B if z ≤ Gγ(µ
∗
B), it

chooses µ+
B(z) if z ∈

(
Gγ(µ

∗
B),

γ

1−λ

]
, it chooses µ−

B(z) if z ∈
(

γ

1−λ ,
γ

1−λ

]
, and it chooses not to

monitor if z > γ
1−λ ; (iii) for all γ > γ, the bank chooses µ∗

B if z ≤ Gγ(µ
∗
B), it chooses µ−

B(z)

if z ∈
(
Gγ(µ

∗
B),

γ
1−λ

]
, and it chooses not to monitor if z > γ

1−λ .

Proof. See the Appendix.

The intuition behind Proposition 1 runs as follows. If z is small and it is relatively cheap

to fund the project and insure the early agent, the bank has enough funds to participate in

contracts with no need to worry about the incentives of the late agent to acquire information

about the outcome of the project. These are instances where the debt produced by the bank

is quite insensitive to information. However, when z is larger and funds are tighter, in order to

keep producing information-insensitive debt, the bank needs to distort its monitoring effort.5 In

particular, two scenarios can arise. The bank may choose to overmonitor in order to boost the

salvage value of the project and reduce the temptation of the late agent to acquire information
5When z is very large and the bank exerts no monitoring effort, our environment essentially collapses into

the one considered by Dang et al. (2017), with a zero salvage value and a fixed cost of acquiring information.
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on the failure probability of the project. Alternatively, the bank may choose to undermonitor

in order to increase the late agent’s cost of acquiring information about the project (recall the

complementarity between the bank’s and the late agent’s monitoring efforts).

As illustrated also in Figure 1, undermonitoring occurs if the investment complexity γ

is relatively large, making the late agent’s cost of information acquisition very sensitive to

changes in bank monitoring. In contrast, overmonitoring occurs if the investment complexity

is low: in such a case the bank will have the incentive to boost the salvage value of the project

without risking a large drop in the late agent’s cost of information acquisition. Interestingly, if

γ assumes intermediate values, there is a discontinuity of the bank’s monitoring at z =
γ

1−λ . If

z <
γ

1−λ , µB converges to µ+
B when z converges to γ

1−λ , while if z >
γ

1−λ , µB converges to µ−
B

when z converges to γ

1−λ . Thus, if z ≈ γ

1−λ , a small increase in z can cause a discrete change

from overmonitoring to under monitoring, inducing a substantial drop in the salvage value of

the project.

3 Banking Regimes, Shocks, and Output

In what follows, we study the response of output to economic conditions. In particular, we are

interested in how (a change in) the probability of project success (λ) affects output (y), and

how these effects depend on the degree of banking complexity (α) and investment complexity

(γ). In this section we study this question in our static setting and in the next section we

consider a dynamic setting.

The expected output of the firm is given by

y (α, λ) = λx+ (1− λ)s(µB, µL), (10)

that is, it equals the weighted sum of the project output in case of success and of the salvage

value in case of failure, weighted by the probabilities of project success and failure, respectively.

All else equal, more intense monitoring of the bank and the late agent raises output by boosting

salvage values. Using (10), the effect of economic conditions (λ) on output is given by

∂y

∂λ
= x− s(µB, µL)

(
1

1− α
+ ϵµB ,1−λ

)
, (11)
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where ϵµB ,1−λ = ∂µB
∂1−λ

1−λ
µB

. The monitoring activity of the bank and the late agent can mitigate

or amplify the output impact of worse economic conditions (lower λ). In particular, a lower

λ directly stimulates the monitoring effort of the late agent, as the late agent will expect a

higher probability of project failure (observe the term 1
1−α in parenthesis). However, a priori,

the impact of a lower λ on the monitoring effort of the bank, and hence, by complementarity,

the induced monitoring response of the late agent, is ambiguous, that is, ϵµB ,1−λ can be positive

or negative. In particular, the sign of ϵµB ,1−λ depends on whether (9) binds and the economy

is in the constrained information regime, or whether (9) does not bind and the economy is in

the unconstrained information regime.

In what follows, we first consider extensive margin effects, studying how the probability

that the economy is in the unconstrained region or ends up in the constrained region depends

on economic conditions (λ), banking complexity (α), and investment complexity (γ). We then

study intensive margin effects, that is, the behavior of monitoring and output when a bank

remains in the unconstrained or constrained regions. Finally, we draw conclusions for the

resilience of output and welfare.

3.1 Extensive Margin Effects

We study how economic conditions, banking complexity and investment complexity affect

the likelihood that the economy enters the constrained information region characterized by

bank undermonitoring. Do worse economic conditions (lower λ) push the economy into the

constrained information region? And do banking complexity and investment complexity exac-

erbate or moderate this tendency?

We can prove the following proposition:

Proposition 2 For a sufficiently high investment complexity, specifically when

γ > γλ ≡ 1
1

θ(1−λ)s∆
1+α
1−α

+ 2
1−α

1

1+θ(1−λ)s∆
1+α
1−α

,

where

∆ ≡ (1− θ)(1− λ)sα > 1,

a worsening of economic conditions (decline in λ) can push the economy into the information

15



constrained region and lead to bank undermonitoring, depressing output. This is more likely

to occur (i.e., for a smaller drop in λ) when banking complexity is high and when liquidity is

tight.

Proof. See the Appendix.

To understand the intuition, recall from Proposition 1 that the region of parameters where

the bank chooses the unconstrained monitoring level µ∗
B satisfies z ≤ Gγ(µ

∗
B). The frontier of

this region as a function of λ, α and γ is then given by f(λ, α, γ) = Gγ(µ
∗
B), i.e.,

f(λ, α, γ) = θ(1− λ)s2 [(1− θ)(1− λ)sα]
2α
1−α +

1

1 + θ(1− λ)s [(1− θ)(1− λ)sα]
1+α
1−α

γ

1− λ
.

As also shown in Figure 1, for example, higher investment complexity expands the uncon-

strained region information, by making it more costly for the participant bank to acquire

information on the project. However, when investment complexity is sufficiently high, any

boost to monitoring incentives induced by a reduction in the probability of project success

(countercylical monitoring) will have a large positive impact on the participant’s bank incen-

tive to acquire information on the nature of the project. In response, the main bank can be

forced to depress its monitoring effort (undermonitor) in order to maintain the project opaque

and attract the participant bank into the financing of the project. This, in turn, will depress

output by shrinking the salvage value of the project. Observe that in principle the main bank

could also attempt to raise sharply the salvage value of the project (overmonitor) in order to

induce the participant bank to provide funding without incurring in the information acqui-

sition effort. However, when investment complexity is sufficiently high, this overmonitoring

strategy is suboptimal relative to the choice of undermonitoring.

Banking complexity exacerbates the fragility of the economy, by making it easier that worse

economic conditions push the economy into the constrained information region and induce

undermonitoring. The same complementarity in banks’ monitoring that favors high salvage

values of projects turns out to increase financial fragility in response to negative shocks. By

boosting banks’ monitoring, in fact, banking complexity reduce the cost associated with the

participant’s bank information acquisition on the project nature, and the economy can more

easily enter the constrained information region.6
6We can also show that worse economic conditions ... the region of undermonitoring relative to the over-
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Finally, the role of liquidity can be key in determining the financial fragility of the economy.

When liquidity is tight, and the project is more demanding in terms of financing, it will become

harder to satisfy the information revelation constraint, exposing the economy to a higher risk

of entering the constrained information, undermonitoring region when λ is lower.

Figure 1 helps better understand the results in Proposition 2, plotting the relevant regions

in the (γ, z) space. The frontier between the information unconstrained and constrained

regions is upward slopping, indicating that higher investment complexity and lower liquidity

tightness relax the information constraint. When economic conditions worsen, the frontier

rotates, implying a larger unconstrained region for relatively low values of γ, and a smaller

unconstrained region for larger γ values. A similar rotation effect of the frontier occurs when

banking complexity is larger.

3.2 Intensive Margin Effects

Having characterized how economic conditions, as well banking and investment complexity,

affect the likelihood of hitting the constrained information region, we next turn to charac-

terize the behavior of the economy within the two regions. We start with the unconstrained

information region and then consider the constrained region.

Unconstrained Information Region If the bank chooses the unconstrained monitoring

level µ∗
B, we have ϵµ∗

B ,1−λ = 1
1−α > 0 and worse economic conditions (lower λ) increase the

monitoring effort of the bank and the late agent. We can then prove the following:

Proposition 3 In the unconstrained information region, bank monitoring is always a sta-

bilizer, increasing countercyclically in response to lower economic conditions. In this region,

an increase of banking complexity always makes monitoring a better stabilizer, mitigating the

output decline in response to worse economic conditions. Investment complexity, instead, has

no effect on the stabilizing properties of bank monitoring.

Proof. Using ϵµ∗
B ,1−λ, we obtain

∂y∗

∂λ
= x− 2θ(1− λ)s2

1− α
[(1− θ)(1− λ)sα]

2α
1−α ,

monitoring region, and that this effect is ... by higher banking complexity.
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and
∂2y∗

∂λ∂α
= −2θ(1− λ)s2 [(1− θ)(1− λ)sα]

2α
1−α

1− α

3 + 2 ln [(1− θ)(1− λ)sα]
1

1−α

1− α
.

Assumption A2 implies ∂2y∗

∂λ∂α < 0 and higher banking complexity always mitigates the negative

response of output to worse economic conditions. Finally, investment complexity has no effect

on ∂y∗

∂λ because γ has no impact on monitoring and output in the unconstrained region where

the bank chooses µ∗
B.

In the unconstrained information region, the monitoring of the bank and the late agent

are more intense when economic conditions are worse: as the probability of project failure is

higher, there is a higher incentive for banks to monitor in order to raise the salvage value of

projects. In turn, the higher salvage value of projects mitigates the impact on output of worse

economic conditions (ϵµB ,1−λ > 0). This attenuation effect of “countercyclical” monitoring is

larger under a more complex banking regime while it is not affected by investment complexity.

Banking complexity, in fact, boosts the complementarity of banks’ monitoring and enhances

the monitoring response when project failure becomes more likely.

Constrained Information Region In the constrained information region, the bank can

undermonitor or overmonitor, as proved in Proposition 1. In this region, the response of the

bank and the late agent’s monitoring can act as an attenuator or as an amplifier of worse

economic conditions, depending also on banking complexity and investment complexity.

We can use µ̂L = µL (µ̂B) to rewrite z = Gγ(µ̂B) as

z(1− λ) =
µ̂L

α(1− θ)
+

γ

µ̂L + 1
.

We obtain
∂ŷ

∂λ
= x−

µ̂Lϵµ̂L,1−λ

(1− θ)(1− λ)α
,

where

ϵµ̂L,1−λ =
z

z − 2µ̂L+1

(µ̂L+1)2
γ

1−λ

.

Since the sign of ϵµ̂L,1−λ is ambiguous, monitoring can now be higher when economic conditions

are worse (countercyclical monitoring), thus acting as a stabilizer (ϵµ̂L,1−λ > 0) like in the

18



unconstrained regime; alternatively, it can act as an amplifier (ϵµ̂L,1−λ < 0). In what follows

we explore these possibilities in the scenario where the bank overmonitors and in the scenario

where the bank undermonitors. We can prove the following results:

Proposition 4 In the constrained information region, bank monitoring will be a stabilizer like

in the unconstrained region when banks overmonitor, increasing countercyclically in response

to worse economic conditions. When banks undermonitor, bank monitoring can instead become

destabilizing, dropping, and magnifying the output loss, in response to worse economic condi-

tions. In the undermonitoring region, higher banking complexity and investment complexity

can mitigate any destabilizing effect of bank monitoring).

Overmonitoring We first show that ϵµ̂L,1−λ > 0 when µ̂L = µ+
L , that is, monitoring is

countercyclical and acts as an output stabilizer if the bank overmonitors. To see this, first note

that ϵµ+
L ,1−λ > 0 requires z >

2µ+
L+1

(µ+
L+1)

2
γ

1−λ . Since z > Gγ(µ
∗
B) in the region of parameters where

the bank cannot chose µ∗
B, and since µ+

L > µ∗
L, it suffices to show that Gγ(µ

∗
B) >

2µ∗
L+1

(µ∗
L+1)

2
γ

1−λ .

We can rewrite this inequality as γ < γ. Proposition 1 shows that this inequality is necessary

for µ̂L = µ+
L , thus proving our claim that ϵµ+

L ,1−λ > 0, and that monitoring is countercyclical

when the bank overmonitors.

Banking complexity and investment complexity have quite a nuanced effect on the stabi-

lizing function of bank monitoring in the overmonitoring region. After some algebra, we can

write ∂2y
+

∂λ∂α as

∂2y
+

∂λ∂α
=

µ+2
L(

µ+
L + 1

)2 µ+
L − 1

µ+
L + 1

z + 1
µ+2
L −1

γ
1−λ[

z − 2µ+
L+1

(µ+
L+1)

2
γ

1−λ

]2 γϵµ+
L ,1−λ

(1− θ) [(1− λ)α]2
.

Assumption A2, together with θ > 1
2 implies that µ∗

L > 1. Since ϵµ+
L ,1−λ > 0, we obtain

∂2y+

∂λ∂α > 0 and higher banking complexity amplifies the output drop induced by worse economic

conditions, diluting the stabilizing function of bank monitoring.

As for investment complexity, we obtain

∂2y
+

∂λ∂γ
=

z

α(1− λ)(1− θ)
(
µ+
L + 1

)2
 µ+

L

z − 2µ+
L+1

(µ+
L+1)

2
γ

1−λ


2
(µ+

L+1)
2

α(1−θ) + γ

(µ+
L+1)

2

α(1−θ) − γ

. (12)
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Since z− 2µ+
L+1

(µ+
L+1)

2
γ

1−λ > 0, ∂2y
+

∂λ∂γ > 0 if and only if γ < (µ̂L+1)2

(1−θ)α . A sufficient condition is γ < γ,

which is a necessary condition for the bank to overmonitor. As a result, ∂2y+

∂λ∂γ > 0 and an

increase in investment complexity again amplifies the output response.

Undermonitoring Consider now the case in which the bank undermonitors, choosing

µ−
L in the information constrained region. Although we do not offer a full characterization, we

are able to examine the impact of (changes in) λ, α, and γ in the region where z > Gγ(µ
∗
B)

is arbitrarily close to Gγ(µ
∗
B). In fact, if z > Gγ(µ

∗
B) is arbitrarily close to Gγ(µ

∗
B), then

µ−
L < µ∗

B is arbitrarily close to µ∗
B, due to the continuity of Gγ(µB). As a result, we obtain

that z − 2µ−
L+1

(µ−
L+1)

2
γ

1−λ can be approximated by Gγ(µ
∗
B) −

2µ∗
L+1

(µ∗
L+1)

2
γ

1−λ , which can be rewritten

as γ <
(µ∗

L+1)
2

(1−θ)α .

Proposition 1 shows that γ > γ is necessary for µ̂L = µ−
L . Since γ <

(µ∗
L+1)

2

(1−θ)α , we obtain that,

if γ ∈
(
γ,

(µ∗
L+1)

2

(1−θ)α

)
, then ϵµ−

L ,1−λ > 0 and monitoring is countercyclical; while if γ >
(µ∗

L+1)
2

(1−θ)α ,

then ϵµ−
L ,1−λ < 0 and monitoring is procyclical. Since the sign of ∂2y−

∂λ∂α is equal to the sign

of ϵµ−
L ,1−λ, we also obtain that, if γ ∈

(
γ,

(µ∗
L+1)

2

(1−θ)α

)
, then ∂2y

−

∂λ∂α > 0 and higher banking

complexity amplifies the output response, diluting the stabilizing property of monitoring. The

opposite happens when γ >
(µ∗

L+1)
2

(1−θ)α .

As for investment complexity,

∂2y−

∂λ∂γ
=

z

α(1− λ)(1− θ)
(
µ−
L + 1

)2
 µ−

L

z − 2µ−
L+1

(µ−
L+1)

2
γ

1−λ


2
(µ−

L+1)
2

α(1−θ) + γ

(µ−
L+1)

2

α(1−θ) − γ

. (13)

As in the case of banking complexity, if γ ∈
(
γ,

(µ∗
L+1)

2

(1−θ)α

)
, then ∂2y−

∂λ∂γ > 0 and higher invest-

ment complexity amplifies the output response. The opposite happens when γ >
(µ∗

L+1)
2

(1−θ)α .

Proposition 4 summarizes our results for the constrained information region.

3.3 Output Resilience to Small and Large Shocks

The above results yield implications for the output resilience to worse economic conditions and

for the influence of banking complexity and investment complexity on such resilience. Consider
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a scenario in which an economy in the unconstrained information region is hit by a worsening

in economic conditions (a drop in λ).

Small shocks: When the shock is sufficiently small, i.e. the λ drop is small, the economy

will remain in the unconstrained information region. Intuitively, bank monitoring will remain

moderate and there will be no need for banks to be constrained by the need to prevent in-

formation gathering by the late agent. In this small-shock region, bank monitoring will be

countercyclical, stabilizing the economy. Higher banking complexity, in turn, will improve the

stabilizing effects of bank monitoring, making the economy more resilient to the small shock.

Large shocks: When the shock is sufficiently large, i.e. the λ drop is severe, the coun-

tercyclical behavior of bank monitoring, and the resulting increase in late agents’ incentive to

acquire information on projects, will start to generate a need for banks to hide information.

That is, the economy will enter the information-constrained region. As shown above, this hap-

pens first for complex banking, just because it tends to stimulate a strongly countercyclical

behavior of bank monitoring. It also happens first for less complex investments, which are

easier to assess for late agents.

Once the economy enters the information-constrained region, the bank may choose to over-

monitor, and bank monitoring can continue to remain countercyclical, acting as a stabilizer.

However, in some scenarios the bank may opt for undermonitoring, and monitoring become

instead procyclical, turning into an amplifier. As complex banking enters first into the con-

strained region, it is more exposed to this dire scenario.

In conclusion, the analysis predicts that complex banking systems are a better stabilizer

for small shocks (“better resilience”), but can become worse stabilizers, and possibly even

amplifiers, for large shocks (“weaker resilience”). We now summarize these patterns with the

help of a numerical simulation.

3.4 Numerical Simulations

Consider equation (9), reported here for convenience:

z ≤ Gγ(µB) ≡ s [(1− θ)(1− λ)sα]
α

1−α µB +
1

1 + [(1− θ)(1− λ)sα]
1

1−α µB

γ

1− λ
. (14)

21



For all parameters fixed and varying λ, Gγ(µB) is a parabolic function. Thus, for a sufficiently

low value of λ equation (14) is binding (Gγ(µ
∗
B) = z). We arrive at the possible two root

solutions µ+
B and µ−

B. As the bank is profit-maximizing, we establish a threshold condition for

the choice of undermonitoring over overmonitoring from (5) as

Π̂B(µ
−
B) > Π̂B(µ

+
B),

and vice-versa if the inequality is reversed.

In our numerical simulations, we fix all parameters while varying λ and consider two dif-

ferent banking regimes (α1, α2), with α2 > α1 and a higher α reflecting higher banking com-

plexity.7 Table 2 summarizes the chosen parameter values.

Figures (3a)-(3c) plot the level of output, bank monitoring and the right-hand side of the

information constraint for the two different levels of banking complexity. Figure (3a) aligns

with the extensive margin result of Proposition (2): the complex α2-banking regime is con-

strained at an earlier threshold (i.e., for a higher value of λ). When the economy hits the

constrained information region, the bank chooses to undermonitor, and thereafter, for even

lower λ values, monitoring declines.8 Accordingly, salvage values and output decline, too. In

line with Proposition 4, in the undermonitoring region, the decline of output is slower under

the complex banking regime.

3.5 Welfare

Welfare is given by output net of monitoring costs,

W = −1

2
µ2
B − µL︸ ︷︷ ︸

Monitoring costs

+ λx+ (1− λ)s(µB, µL)︸ ︷︷ ︸
output

.

Using (4), welfare can be rewritten as

W = −1

2
µ2
B +

1− (1− θ)α

(1− θ)α
[(1− θ)(1− λ)sα]

1
1−α µB + λx.

7We suppress additional notations and characterize our functional objects by banking complexity (α1, α2).
8Additional figures found in Appendix A provide additional graphs for α1 and α2, respectively.
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The bank’s monitoring level that maximizes welfare is

µW
B =

1− (1− θ)α

(1− θ)α
[(1− θ)(1− λ)sα]

1
1−α .

Consider first the extensive margin, and the case in which the economy is in the unconstrained

information region. We obtain that µW
B > µ∗

B if and only if θ+(1−θ)α < 1, which is always true.

Thus, in the unconstrained region the bank always monitors less than the welfare maximizing

level, because it does not fully internalize the surplus generated by its effort. Consider next

the case in which the economy is in the constrained information region (see the Appendix for

a full characterization). Since µ−
B(z) < µ∗

B < µW
B , it is always the case that the bank monitors

less than the welfare maximizing level in the region where the information constraint binds and

the bank undermonitors. A distinct scenario occurs instead if in the constrained information

region the bank overmonitors, choosing µ+
B(z). In this scenario µ∗

B < µW
B and µ∗

B < µ+
B(z), so

the economy could get closer to the optimal monitoring once it moves into the information

constrained region (in a knife-edge case, achieving the optimal monitoring).

Turning to the intensive margin, we can assess the impact of economic conditions on welfare,

exploiting the results obtained for output. Again consider first the unconstrained information

region. In this region, as shown above, output drops as long as

∂y

∂λ
= x− s(µB, µL)

(
1

1− α
+ ϵµB ,1−λ

)
> 0.

In turn, welfare is given by output net of the monitoring costs of bank and late agent. As

proved above, in the unconstrained information region the monitoring of bank and late agent

is always countercyclical, so monitoring costs always rise when λ is lower. Together with the

output drop this implies that welfare necessarily shrinks in this region (∂W∂λ > 0). One can also

study how the gap relative to the welfare-maximizing monitoring changes. We have,

µW
B − µ∗

B = µ∗
B

(1− θ)(1− α)

θ
.

Since in the unconstrained information region µ∗
B rises as λ drops, necessarily µW

B −µ∗
B rises too

and the gap between equilibrium monitoring and the welfare-maximizing monitoring widens.

Welfare effects become more articulated when the economy enters the constrained infor-
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mation region. It is immediate that if in this region the bank undermonitors, then welfare will

shrink and the gap between equilibrium monitoring and the welfare-maximizing monitoring will

widen. In fact, when there is undermonitoring, banks’ monitoring is depressed further below

the optimal level. Moreover, optimal monitoring varies countercyclically whereas, if the bank

undermonitors, monitoring drops as λ drops (i.e., moves procyclically), widening the welfare

gap. Consider next the case in which the bank overmonitors in the constrained information

region. As proved above, in this case there will be an improvement in welfare and possibly a

narrowing of the gap between equilibrium monitoring and the welfare-maximizing monitoring.

once the economy enters the constrained region. In fact, the equilibrium monitoring will

move closer to the optimal monitoring level.

4 Dynamic Setting

Layout and Equilibrium In what follows, we extend the economy into an infinite horizon.

The environment is largely as in our baseline static set up, but we collapse our three period

setting into a one-period economy with two sub-periods. To streamline the exposition, we also

merge the bank and the firm into one entity, that is, the bank gathers funds from agents and

implements a project. The project has the same properties as in the three-period economy. At

the very beginning of a period, a new bank, a new early agent, and a new late agent enter the

economy. The early agent receives her endowment in the first sub-period, while the late agent

receives her endowment in the second sub-period. Their preferences replicate those specified

in the three-period economy. At the end of a period, the bank, the early agent and the late

agent die and, at the beginning of the following period, they are replaced by a new bank, a

new early agent and a new late agent.

A distinct feature of the infinite-horizon framework consists of the dynamics of information

accumulation. We assume that the salvage value of the project depends not only on the current

monitoring efforts of the bank and the late agent but also on the monitoring effort of previous

banks. This is meant to capture a notion of accumulation of knowledge or experience over time

which is reusable by the following generations. Precisely, in a manner similar to Aliaga-Díaz
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and Olivero (2010) the salvage value of the project in period t is now given by

s(µBt, µLt) = stµ
α
Ltµ

1−α
Bt ,

where, for all t > 1,

st = ρsµκ
Bt−1 + (1− ρ)st−1,

and s0 is given. In the above, |ρ| < 1 is a persistence parameter, s > 0 is a scale parameter

and κ < 1 − α is the information generation parameter of past monitoring efforts. We also

posit that the probability of project success is given by

λt = λ+ εt,

where λ is the long-run average probability9 and εt denotes a shock in period t that follows an

AR(1) process given as

εt = νεt−1 + υt.

Where |ν| < 1 and υt is IID and distributed over N(0, σ2) and ε1 is given. In every period,

the contracts in the dynamic economy are the same as in the three-period economy. In turn,

the monitoring effort of the late agent is given by

µLt = [(1− θ)(1− λt)stα]
1

1−α µBt.

The bank’s monitoring choice is also similar. Using the same argument leading to the Propo-

sition 1, the bank’s problem can be summarized as

max
µBt

{
−1

2
µ2
Bt + θ(1− λt)st [(1− θ)(1− λt)stα]

α
1−α µBt

}
,

subject to

z ≤ Gγ,t(µBt) ≡ st [(1− θ)(1− λt)stα]
α

1−α µBt +
1

1− λt

γ

[(1− θ)(1− λt)stα]
1

1−α µBt + 1
.

9We note the observation for ρ = 1 and κ = 0 the infinite horizon economy simply boils down to a sequence
of baseline finite horizon economies.
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If z ≤ Gγ,t(µBt) and the information constraint does not bind in period t, the bank’s monitoring

choice is

µ∗
Bt = θ(1− λt)st [(1− θ)(1− λt)stα]

α
1−α .

If, instead, z > Gγ,t(µ
∗
Bt), the information constraint binds at µ∗

Bt. In this case, if the bank

chooses a positive level of monitoring, we have

z = Gγ,t(µBt) ≡ st [(1− θ)(1− λt)stα]
α

1−α µBt +
1

1− λt

γ

[(1− θ)(1− λt)stα]
1

1−α µBt + 1
.

Note that, as in the baseline setting, G′′
γ,t(µBt) > 0. We then have all the element to adapt

Proposition 1 to the dynamic setting. Proposition 6 summarizes our result.

Proposition 5 For all z ∈ (0, e), there exists a set of incentive-feasible contracts that ensure

the implementation of the project and the insurance of the early agent. Given these contracts,

the late agent chooses µLt = [(1− θ)(1− λt)stα]
1

1−α µBt, while the monitoring effort of the

bank is characterized as follows. In every period t, there exists γt ≡
1+2µ∗

Lt
α(1−θ) < γt =

(1+µ∗
Lt)

2

(1−θ)α

such that: (i) for all γ ≤ γt, the bank chooses µ∗
Bt if z ≤ Gγ,t(µ

∗
Bt), it chooses µ+

Bt(z)

if z ∈ (Gγ,t(µ
∗
B), Gγ,t(2µ

∗
B)], and it chooses not to monitor if z > Gγ,t(2µ

∗
Bt); (ii) for all

γ ∈
(
γt, γt

]
, the bank chooses µ∗

Bt if z ≤ Gγ,t(µ
∗
Bt), it chooses µ+

Bt(z) if z ∈
(
Gγ,t(µ

∗
Bt),

γt
1−λt

]
,

it chooses µ−
Bt(z) if z ∈

(
γt

1−λt
, γ
1−λt

]
, and it chooses not to monitor if z > γ

1−λt
; (iii) for all

γ > γt, the bank chooses µ−
Bt(z) if z ∈

(
Gγ,t(µ

∗
Bt),

γ
1−λt

]
, and it chooses not to monitor if

z > γ
1−λt

.

As in the baseline three-period economy, we are interested in examining how shocks to

economic conditions (the probability of project success λ) impact on the monitoring effort

of the bank and the late agent and on output, and how banking complexity and investment

complexity shape these effects. The key difference from the baseline setting is that now the

decisions of the current bank and the current late agent depend on past monitoring decisions,

since those affect the salvage value of projects.

In the steady-state equilibrium, λt = λ and st = sss. As a result, the bank’s monitoring is
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also constant, given by µss
B . Now, we can rewrite st as

st = (1− ρ)ts0 + ρs
t−1∑
j=0

(1− ρ)jµκ
Bt−1−j ,

which implies

ssst = (1− ρ)ts0 + s (µss
B )κ

[
1− (1− ρ)t

]
.

In order for ssst to be constant, we need s0 = s (µss
B )κ, which we henceforth assume. If the

information constraint does not bind in steady state, we have

µss
B = [θ(1− λ)s]

1−α
1−α−κ [(1− θ)(1− λ)sα]

α
1−α−κ ,

and

µss
L = [θ(1− λ)s]

1−α+κ
1−α−κ [(1− θ)(1− λ)sα]

1+α−κ
1−α−κ .

To ensure that, as in Assumption A2, an increase in banking complexity improves the

salvage value of a project, we need µss
L > µss

B , i.e.,

[
θ

(1− θ)α

] κ
1−α−κ

s >
1

(1− θ)(1− λ)α
,

which is implied by A2. Note that, if κ = 0, µss
B and µss

L are equal to the unconstrained levels

in the three-period economy. Moreover, µss
B and µss

L are strictly increasing in κ and converge

to infinity when κ converges to 1 − α. This implies that there exists κ ∈ (0, 1− α) such that

z ≤ Gγ(µ
ss
B ) for all z, i.e., if κ is large enough, the information constraint never binds in steady

state. In order to ensure that this is the case, henceforth we posit that κ ≥ κ.

Response to Shocks We can now examine the effects of shocks to the probability of project

success. We consider a scenario where the economy is initially in the steady-state equilibrium

and a negative shock hits the probability of project success in period t. Similar to the numerical

simulations in the static setting we consider two banking regimes; Table 4 summarizes the

chosen parameter values. Further, we consider an initial recessionary shock followed by a

one-time shock:
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ε1 = 0.0245,

ν2 = 0.0235.

Figure 5 plots the impulse response functions (percentage deviations from steady state) for

bank monitoring, salvage value, and output, as well as a supplementary graph for the G(µ∗
Bt)

function which serves to understand when the economy is in the constrained information region.

The α1-banking regime is represented in red while the α2-banking regime is represented in

black.

The shock process {ε1t} describes a relatively persistent recessionary shock. The low bank-

ing complexity economy (red line) never enters the constrained information region. Monitoring

rises countercyclically in the first two periods, and this attenuates the output drop. As the

shock fades in subsequent periods, monitoring reverts to the steady state level. The high bank-

ing complexity economy (black line) exhibits a stronger countercyclical response of monitoring.

This dampens the negative output impact of the shock more than in the low banking complex-

ity economy. However, the substantial increase in monitoring pushes the economy into the

constrained information region in the third period. The bank then chooses to undermonitor,

and this explains the severe drop in monitoring. Due to undermonitoring, the output recov-

ery is slower than in the low banking complexity economy. That is, high banking complexity

implies a milder recession in the immediate aftermath of the shock but also a slower recovery.

5 Empirical Evidence

We test empirically the implications of the theoretical model on the influence of banking

structures for the response to shocks. Based on the predictions of the model our goal is two-

fold. We aim at investigating whether the effects of (negative) aggregate shocks on firm-level

indicators of asset and investment growth depend on the complexity of the bank-lending pools

from which firms obtain financing. We are also interested whether any influence of banking

complexity on firms’ response to shocks differs according to the magnitude of the shocks.

Consistent with the model, we interpret banking complexity as instances in which banks’
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monitoring activity takes the form of a joint monitoring effort of multiple banking institutions,

rather than being performed by a unique lending bank.

To carry out the empirical analysis, we resort to matched bank-firm data from the United

States. We draw and match information from four main sources. The first source consists of the

Thomson-Reuter’s LPC DealScan database which provides detailed information on syndicated

loans extended by banks to firms. As we detail below, syndicated lending is an ideal setting

to construct measures of the complexity of bank lending pools. The second data source is

the Standard and Poor’s Compustat data set, which offers rich information on indicators of

firm asset and investment growth. Third, we obtain information on banks from the FDIC

Call Report files. Finally, we rely on various official sources for the measurement of aggregate

shocks that hit the economy. The period of interest of our empirical tests is dictated by data

availability and spans from 1989Q1 to 2015Q4.

In what follows, we detail the data sources, the measurement of the key variables used in

the empirical analysis, and the empirical methodology. We then present the empirical findings.

5.1 Setting, Measurement, and Methodology

Institutional setting The syndicated lending market is an ideal empirical laboratory for

our purposes. Syndicated lending represents a sizeable portion of the total bank credit to non-

financial firms (Sufi, 2007). Moreover, the structure of syndicated loans offers a suitable way to

construct proxies for banks’ joint effort in monitoring borrowing firms (banking complexity).

The arrangement of a syndicated loan generally follows these steps. A firm enters a contractual

agreement with a bank which acts as the loan lead arranger. The contract between firm and

lead arranger specifies the loan size, the covenants of the loan, and whether collateral backs the

loan. The lead arranger can then invite other banks to cofinance the loan. These participant

lenders can offer suggestions on the syndication process and perform some monitoring activities.

The DealScan database offers detailed information on the banks involved in the loan syndicates,

their roles, and the share of the loans they retain.

We match the DealScan data with the Standard and Poor’s Compustat database to con-

struct proxies for borrowing firms’ growth. The matching is performed exploiting the Chava

and Roberts’ link (Chava and Roberts, 2008). We clean the matched data to exclude instances

in which banks’ monitoring is unlikely to play a role in firm-level decisions and performance.
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We first remove loans that are sold in the secondary market after origination (term loans B)

because banks do not retain these loans after the syndication (Ivashina and Sun, 2011). We

also focus on lead arrangers that consist of banking institutions, excluding loans that are ex-

tended by non-banks. We further apply a number of other more technical adjustments, whose

details are relegated to the Data Appendix.

Finally, we further match the DealScan data with information from the FDIC call reports,

to recover information about the lending banks in the syndicates. After matching the DealScan,

Compustat and Call Reports databases, and cleaning the data in the way detailed above, our

data set covers about 23,500 loans extended to nearly 5,500 non-financial firms that operate

in 64 industries (two-digit SIC) during the 1989Q1-2015Q4 period.

Measuring banking complexity We construct proxies for the complexity of the bank

lending pools from which firms obtain financing. In line with the theoretical model, we are

interested in capturing instances in which banks engage in joint information acquisition and

monitoring of borrowing firms. The DealScan database is ideal for this purpose given the rich

information on the structure of syndicates. We construct two proxies for the complexity of

bank lending pools. The first proxy captures the number of previous interactions among the

banks involved in the lending syndicate of a firm. We expect the joint monitoring effort of

banks to be stronger the more frequently the banks have interacted and collaborated with

each other in the past. Indeed, such a measure of prior relationships among banks captures

the history of banks in cooperating with each other in the financing of a firm. To generate

this proxy, we reconstruct the syndicated loan market on a bank-bank basis and calculate the

total number of interactions (co-sharing a loan) on a five-years rolling window without taking

into account the roles that the lending banks took in previous loans. This measure assigns a

greater overlap of previous interactions when in the syndicate there are banks with a higher

number of prior bilateral interactions (loan co-sharing). This measure of bank lending pool

complexity is constructed on a bank-level basis.

As a second proxy of joint effort of banks in monitoring a firm, we consider an inverse

measure of the concentration of the syndicated loan. The banking literature maintains that

the more the loan shares of a syndicate are concentrated in the hands of the lead arranger,

the more the monitoring of the borrowing firm will be performed solely by the lead arranger
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(Sufi, 2007; Becker and Ivashina, 2018). A more diffuse loan syndicate structure signals instead

that the task of monitoring the borrower is shared among the different lenders participating in

the loan (Sufi, 2007). As an inverse measure of the syndicate concentration, we consider the

variable 1−HHI, where HHI is the Herfindahl-Hirshmann index of banks’ loan shares in the

syndicate. This measure of bank lending pool complexity is constructed on a loan-level basis.

Firm-level and loan-level variables We consider different measures of the growth of a

firm, our key dependent variable. The first measure consists of the total asset growth of the

firm during the first year, two years and three years following the origination of the syndicated

loan. The second measure consists of the growth rate of the firm’s investments (change of fixed

assets) during the first year, two years and three years following the loan origination.

We control for a wide range of time-varying loan and firm characteristics, including the loan

maturity, the firm profitability (return on assets), leverage, S&P credit rating, loan spread,

and (an indicator for) whether the loan constitutes a refinancing of a prior loan. We also

saturate the empirical model with a detailed set of fixed effects. We include loan purpose and

loan type fixed effects to capture loan characteristics that could influence the decisions and

performance of the firm following the loan extension. We insert bank fixed effects, to capture

bank characteristics (such as the bank size or type) that could drive corporate decisions.

Further, we include firm fixed effects to absorb firm time-invariant characteristics. Finally,

we include time fixed effects to capture a variety of other aggregate phenomena that occurred

during the sample period.10 In alternate tests, we replace bank and time fixed effects with

bank*time fixed effects.

Aggregate shocks We consider the response of firms to different types of aggregate shocks.

We are primarily interested in distinguishing between relatively small aggregate shocks and

large aggregate shocks. To achieve a clean distinction, we consider small oil shocks as a proxy

for smaller shocks, and the Great Financial Crisis as a proxy for a large aggregate shock.

Following Kilian and Vigfusson (2017), we construct a proxy for oil shocks as a dummy that

equals one whenever the loan is extended in a quarter in which the price of oil exceeds the
10When inserting time fixed effects, we can be unable to estimate the direct effect of aggregate shocks on firm

growth (if the time fixed effects absorb the effects of the shock). In our analysis, however, we are primarily
interested in the interaction between banking complexity and aggregate shocks.
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expected oil price. In robustness checks, we also weigh oil price shocks by the exposure of the

firm’s sector to oil or refined products (with results virtually unchanged). The Great Financial

Crisis, in turn, is captured by a dummy equal to one if the loan is extended in a quarter during

which the Great Financial Crisis occurred.

The empirical model We test the influence of banking complexity on firms’ response to

aggregate shocks using the following empirical model:

Firmflt =α+ βComplexbft + γShockt + δ(Complexbft × Shockt) + ηXft (15)

+ ζYlt + µb + µl + µl′ + µf + µt + ϵflt.

In equation (15), Firmflt stands for the percentage growth of the total asset value or fixed asset

value of firm f that is granted a loan l in year t; Complexbft is the proxy for the complexity

of the bank lending pool of the firm; Shockt is a measure of aggregate shocks; Xft denotes the

vector of firm controls; and Ylt is the vector of loan controls. We saturate the empirical model

with bank fixed effects (µb), loan type and loan purpose fixed effects (µl and µl′), firm fixed

effect (µf ), and time fixed effects (µt). In additional tests, we include bank*time fixed effects

(µbt). ϵflt denotes the error term. Throughout the analysis, for all the regressions, we report

standard errors clustered at the bank level.

Summary statistics Appendix Table C.1 reports sample summary statistics. The firms

are typically medium-sized or large. On average, the growth rate of firms’ total assets over

the sample period equals -6%, with a sizeable heterogeneity across firms. The mean growth

rate of firms’ fixed assets (our measure of firm investment) is -5.9%. The average number

of banks that lend to a firm in a syndicate is 13. Our proxies for the degree of banking

complexity exhibit substantial variation across the sample, with the coefficient of variation of

the measure of prior bank-to-bank interactions equalling 20%, and the coefficient of variation

of the Herfindahl-Hirshmann of loan shares equal to 60%. As for the incidence of aggregate

shocks in the sample, about 8% of the loans are extended during the Great Financial Crisis,

while 11.8% are originated during a negative oil shock episode.

The empirical literature treats the share of the syndicated loan retained by banks as a

proxy for monitoring incentives (Sufi, 2007; Ivashina, 2009). Appendix Figure A.3 plots the
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evolution over time of the average share held by banks together with episodes of oil shocks

occurred during the sample period. We observe, for example, that during periods of oil shocks

(our proxy for small shocks) banks’ monitoring increases.

5.2 Estimation Results

Baseline estimates Tables 5 and 6 display the baseline estimation results. In line with

expectations, the estimates consistently point to a negative impact of aggregate contractionary

shocks on the growth rate of firms’ total assets and fixed assets. This is true both when we

consider the proxy for small shocks (oil price fluctuations) and the Great Financial Crisis.

Our main interest is in the influence of banking complexity on the resilience of firms to such

shocks. The coefficient estimates on the interaction term (δ) suggest that the complexity of

bank lending pools attenuates the negative effect of oil shocks on both firms’ asset growth

and investment (see columns I, III, V, VII). When we consider, however, the influence of

banking complexity on firms’ responses to a large negative shock, the GFC, a sharply different

picture emerges: as columns II, IV, VI, VIII reveal, more complex lending pools appear to

amplify the negative response of firms’ asset growth and investment. These results are robust

to the inclusion of different sets of fixed effects, with the statistical and economic magnitude

of the coefficients remaining largely unchanged across specifications. They are also robust to

considering as dependent variable the average growth of total assets or firms’ investment in

the two and three years after the loan origination, suggesting that the estimated effects are

persistent.11

Overall, the empirical results are thus consistent with the key predictions of the theoretical

model: banking complexity appears to enhance firms’ resilience to relatively small negative

shocks whereas it can reduce firms’ resilience to large shocks.

IV estimates Despite the broad range of loan and firm characteristics and fixed effects

included in the specifications, the endogeneity of the lending pools complexity to syndicated

lending practices may bias the previous estimates. For instance, the same factors that cause

individual banks to acquire information via past transactions in certain types of loans could
11The coefficient estimates on the controls are broadly in line with expectations. For example, a higher firm

leverage is associated with a lower growth rate of firms.
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affect syndicated lending practices and alter the loan structure. This issue might bias the effort

to directly estimate the effect of bank complexity.

To overcome this identification challenge, we follow Favara and Giannetti (2017) and Gar-

maise and Moskowitz (2006) and exploit mergers between banks. Specifically, we focus on

mergers between non-failed banks with assets above $1bn that are active in the syndicated

loan market. For this purpose, we collected data on M&A from the FRB and identified the

banks in DealScan. Then we constructed an instrument for bank complexity using only the

historical experience variables of the target (acquired) bank, which is mainly outside of the

acquiring bank’s control. We restrict attention to mergers occurring within a year preceding

the origination of the syndicated loan. We also include bank*time, firm, loan purpose and loan

type fixed effects, thus effectively exploiting variation within banks while controlling for the

firm-loan level demand and the bank’s balance sheet.

We exploit variations in our complexity variables that are due to a recent merger. Thus,

we identify a treatment effect using only information from the target bank. Our instruments

are likely to satisfy the relevance criterion because a merger constitutes a relevant shock to

the acquirer’s loan portfolio. When a bank acquires another bank, its portfolio of loans subse-

quently incorporates the loans that the acquired bank previously extended, thus exogenously

broadening the acquiring bank’s complexity. In addition, it seems unlikely that the target’s

complexity affects the acquirer’s lending decision due to the timeline of the mergers.

Table 7 shows the results from the two-stages least square estimation with different levels of

fixed effects, as reported in the lower part of the table. The first-stage coefficient estimates are

in panel A. In columns I-II of the first stage (panel A), we regress the bank complexity proxied

by the past interactions on the acquirer’s bank complexity and a variety of loan and firm

controls. Similarly in columns III-IV, where we use the 1-HHI.12 The first-stage results reveal

a strong, positive relationship between the instrument and bank complexity: the estimates

in column I suggest that a one standard deviation increase in the target’s sector experience

results in a 10% increase in bank complexity for the acquiring bank. The F-test for excluded

instruments support the instrument validity. The second-stage results (panel B) confirm the

conclusions drawn from the granular fixed effects estimations. Conditional on the included

controls, the endogeneity concerns discussed earlier are not material enough to undermine the
12The sample set of columns I and II is the same, and similar for columns III-IV.
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interpretation.

The role of investment complexity and profitability A distinct prediction of the the-

oretical model is that banking complexity especially reduces firms’ resilience to large negative

shocks when firms’ investments are less complex and easier to understand for third financ-

ing parties. In fact, when firms’ investments are easier to understand, a bank will have more

incentive and need to hide information from its co-financiers. Based on this prediction, we aug-

ment the empirical model accounting for the informational complexity (opaqueness) of firms’

investments and for the ease with which investments can be understood by third parties. In

particular, we consider the proximity between the loan portfolio of the lead arranger and that

of the participant banks. When this proximity is stronger, firms’ investments will be easier to

understand for participant banks.

Tables 8 and 9 re-estimate the baseline regressions after subsampling firms based on (our

proxy for) investment complexity. In line with the theoretical predictions, the estimates reveal

that the negative coefficient on the interaction between banking complexity and large shocks

is larger when investments are informationally less complex. Appendix C Table C.2 also

re-estimates the baseline results after restricting the sample to firms with relatively lower

profitability (asset growth falls below the sample median). Panel A uses the past bank-to-

bank interactions while Panel B uses the 1-HHI as proxies for banking complexity. We observe

that the positive impact of banking complexity is generally attenuated for lower profitability

firms.

Firm-level aggregation In the loan-level analysis, we observe whether bank complexity

enhances firms’ resilience to small negative aggregate shocks while reducing their resilience to

large shocks. However, the analysis cannot uncover potential substitution effects. For instance,

whether firms can compensate for the loss of credit during large shocks from other banks or

whether there are multiple lenders within a syndicate with different levels of complexity that

can offset the estimated effects. To test for the substitution and real effects, we aggregate

the loan-level data at the firm level and re-estimate the baseline results for up to three years

ex-post of shocks. Appendix C Tables C.3 and C.4 indicates real effects in the second year and

after.
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6 Conclusion

This paper studies the output and welfare consequences of banks and banking structures

in an economy where banks both produce and conceal information on investments. In our

setting, more complex banking enables to exploit the benefits of joint information production,

raising investments’ salvage values, but also increases the risk that information on fragile

investments gets disclosed. When economic conditions are relatively good and banks tend

to produce limited information, complex banking tends to explicate its output and welfare

benefits, enhancing output and welfare resilience to small shocks. When, however, poorer

economic conditions call for larger information production, a tension arises within complex

banking structures between production and concealing of information. We have found that,

as a result of this tension, overall complex banking structures tend to lead to lower resilience

to large negative shocks (in contrast with their stabilizing influence following small shocks).

However, the degree of their resilience to large shocks crucially depends on the complexity of

investments. When investment complexity is large, complex banking structures better retain

the ability to mitigate the output and welfare impact of large shocks.
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Figure 1: Relationship between liquidity and investment complexity

Zero Monitoring

Unconstrained

Constrained

Constrained

40



Figure 2: Extensive Margins
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Figure 3: Intensive Margins
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Figure 4: Intensive Margins
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Figure 5: Responses to Recessionary Shock in Dynamic Economies
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Table 1: Extensive Margin: Parameters and Values

Parameter Description Value
α1 Low banking complexity 0.15
α2 High banking complexity 0.20
θ Nash bargaining 0.51
s Asset price shifter 21
λh High probability 0.75
λl Low probability 0.70

Table 2: Intensive Margin: Parameters and Values

Parameter Description Value
α1 Banking complexity 0.15
α2 Banking complexity 0.20
θ Nash bargaining 0.51
γ Investment complexity 400
z Liquidity constraint 480
ω Project investment 70

44



Table 3: Intensive Margin: Average Values across λ

Banking Complexity Parameter Description Value
α1 µL Outside investor monitoring 0.8479
α1 µB Bank monitoring 1.2216
α1 s(µB, µL) Salvage value 24.2859
α1 y Output 91.861
α1 y/ω Gross Expected Return 1.3123
α2 µL Outside investor monitoring 0.8213
α2 µB Bank monitoring 0.8450
α2 s(µB, µL) Salvage value 17.6442
α2 y Output 88.704
α2 y/ω Gross Expected Return 1.2672

Table 4: Dynamic: Parameters and Values

Parameter Description Value
α1 Banking complexity 0.35
α2 Banking complexity 0.40
θ Nash bargaining 0.51
κ Information generation 0.20
ρ Persistence 0.20
s Asset price shifter 235
ν AR 1 Parameter 0.04
γ Investment complexity 350
λ Long-run probability 0.98
z Liquidity constraint 3980
x Project profitability 2806
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Table 5: Banking Complexity and Firms’ Resilience to Aggregate Shocks

Dependent variable: Firm Asset Growth
Group: Past bank-to-bank interactions 1-HHI

I II III IV V VI VII VIII
Banking complexity 0.020* 0.028** 0.020* 0.029** 0.103*** 0.113*** 0.093*** 0.097***

(1.768) (2.559) (1.664) (2.517) (5.348) (5.133) (5.038) (4.745)
Oil shock 0.005*** 0.005*** -0.061*** -0.063***

(5.147) (5.239) (-3.910) (-3.938)
Banking complexity * Oil shock 0.025** 0.025* 0.069*** 0.072***

(2.192) (1.883) (4.339) (4.366)
Banking complexity * GFC -0.057** -0.065** -0.121*** -0.107***

(-2.245) (-2.292) (-4.284) (-3.702)

Loan controls Y Y Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y Y Y
Observations 129,620 136,324 128,563 135,141 129,620 136,324 128,563 135,141
Adjusted R-squared 0.353 0.347 0.367 0.361 0.354 0.348 0.367 0.362
Purpose FE Y Y Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y
Bank FE Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Bank*Time FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank Bank Bank Bank Bank

This table reports coefficient estimates and robust (clustered by bank) standard errors for the effects of shocks on firms’ asset
growth and the influence of bank lending pool complexity on these effects. In all the regressions the dependent variable is the
percentage growth of firms’ total assets. In columns I‐IV, banking complexity is captured by the number of past interactions
between banks in the syndicate in the previous five years. In columns V‐VIII, banking complexity is captured by the number
1‐HHI, where HHI is the Herfindhal index of concentration of the syndicated loan. In columns I, III, V, VII aggregate shocks
are captured by oil price increases above the expected oil price. In columns II, IV, VI, VIII aggregate shocks are captured by
the Great Financial Crisis (GFC). Loan controls include the loan maturity, the loan spread, and a dummy for whether the loan
is a refinancing of a prior loan. Firm controls include the firm’s credit rating, leverage and ROA. All the regressions include
loan purpose and loan type fixed effects, and firm fixed effects. Columns I‐II and V‐VI also include bank and time fixed effects,
while columns III‐IV and VII‐VIII include bank*time fixed effects. ***, ** and * denote statistical significance at the 1%, 5%
and 10% level, respectively.
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Table 6: Banking Complexity and Firms’ Resilience to Aggregate Shocks (cont.)

Dependent variable: Firm Fixed Asset Growth
Group: Past bank-to-bank interactions 1-HHI

I II III IV V VI VII VIII
Banking complexity 0.041*** 0.044*** 0.043*** 0.046*** 0.105*** 0.118*** 0.094*** 0.102***

(4.326) (4.111) (4.488) (4.252) (4.912) (5.075) (4.572) (4.583)
Oil shock 0.005*** 0.005*** -0.058*** -0.061***

(3.229) (3.095) (-3.016) (-2.955)
Banking complexity * Oil shock 0.027** 0.033** 0.065*** 0.069***

(2.154) (2.156) (3.338) (3.255)
Banking complexity * GFC -0.088*** -0.083** -0.198*** -0.181***

(-3.629) (-2.095) (-5.254) (-4.717)

Loan controls Y Y Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y Y Y
Observations 128,637 135,223 127,578 134,038 128,637 135,223 127,578 134,038
Adjusted R-squared 0.352 0.346 0.366 0.361 0.353 0.346 0.366 0.361
Purpose FE Y Y Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y
Bank FE Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Bank*Time FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank Bank Bank Bank Bank

This table reports coefficient estimates and robust (clustered by bank) standard errors for the effects of shocks on firms’ fixed
asset growth and the influence of bank lending pool complexity on these effects. In all the regressions the dependent variable is
the percentage growth of firms’ fixed assets. In columns I‐IV, banking complexity is captured by the number of past interactions
between banks in the syndicate in the previous five years. In columns V‐VIII, banking complexity is captured by the variable
1‐HHI, where HHI is the Herfindhal index of concentration of the syndicated loan. In columns I, III, V, VII aggregate shocks
are captured by oil price increases above the expected oil price. In columns II, IV, VI, VIII aggregate shocks are captured by
the Great Financial Crisis (GFC). Loan controls include the loan maturity, the loan spread, and a dummy for whether the loan
is a refinancing of a prior loan. Firm controls include the firm’s credit rating, leverage and ROA. All the regressions include
loan purpose and loan type fixed effects, and firm fixed effects. Columns I‐II and V‐VI also include bank and time fixed effects,
while columns III‐IV and VII‐VIII include bank*time fixed effects. ***, ** and * denote statistical significance at the 1%, 5%
and 10% level, respectively.
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Table 7: Banking Complexity and Firms’ Resilience to Shocks: Instrumental variables estima-
tion

I II III IV
Panel A: First-stage results

Dependent variable: Banking complexity
Group: Past interactions 1-HHI
Acquired banking complexity 0.217*** 0.217*** 0.001*** 0.001***

(3.038) (3.038) (3.424) (3.424)
Panel B: Second-stage results

Dependent variable: Firm Asset Growth
Banking complexity 0.063* 0.075*** 2.139 1.397

(1.684) (3.645) (0.835) (0.710)
Oil shock 0.005*** -0.457***

(5.252) (-4.630)
Banking complexity * Oil shock 0.056* 0.482***

(1.769) (4.695)
Banking complexity * GFC -0.619*** -0.747**

(-3.404) (-2.475)

Loan controls Y Y Y Y
Firm controls Y Y Y Y
Observations 128,563 132,826 128,563 135,141
Adjusted R-squared 0.367 0.430 0.367 0.361
F-stat 3.021 3.021 14.9 14.9
Purpose FE Y Y Y Y
Loan type FE Y Y Y Y
Time FE Y Y Y Y
Firm FE Y Y Y Y
Bank*Time FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank

This table reports coefficient estimates and and t-statistics (in brackets) from a
2SLS estimation. The first-stage regressions are given in Panel A. The instru-
ment is the bank complexity of the target bank (acquired) one year before the
loan origination. Panel B reports the second-stage regressions for each category.
In the second stage regressions, the dependent variable is the percentage growth
of firms’ total assets. In columns I and II, the banking complexity is captured
by the number of interactions of the banks in the syndicate lending pool in the
past five years. In columns III and IV, the banking complexity is captured by
the variable 1‐HHI, where HHI is the Herfindhal index of concentration of the
syndicated loan. In columns I and III aggregate shocks are captured by oil price
increases above the expected oil price. In columns II and IV aggregate shocks
are captured by the Great Financial Crisis (GFC). Loan controls include the loan
maturity, the loan spread, and a dummy for whether the loan is a refinancing of
a prior loan. Firm controls include the firm’s credit rating, leverage and ROA.
All the regressions include loan purpose and loan type fixed effects, and different
fixed affects as noted in the lower part of the table to control for different levels
of unobserved heterogeneity. ***, ** and * denote statistical significance at the
1%, 5% and 10% level, respectively.
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Table 8: Banking Complexity, Investment Complexity, and Firms’ Resilience to Shocks

Dependent variable: Firm Asset Growth Firm Fixed Asset Growth
Investment complexity: High complex Low complex High complex Low complex High complex Low complex High complex Low complex

I II III IV V VI VII VIII
Past interactions 0.056 0.040** 0.052 0.050** 0.071*** -0.021 0.080*** -0.029

(0.925) (2.374) (0.995) (2.548) (4.835) (-0.419) (4.719) (-0.612)
Past interactions * GFC -0.144 -0.047** -0.201 -0.065** -0.149*** -0.042 -0.175*** 0.105

(-1.109) (-2.320) (-1.108) (-2.247) (-4.918) (-0.227) (-4.894) (0.486)

Loan controls Y Y Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y Y Y
Observations 57,470 75,651 57,324 74,685 56,935 75,131 56,787 74,173
Adjusted R-squared 0.468 0.380 0.488 0.388 0.369 0.447 0.370 0.471
Purpose FE Y Y Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y
Bank FE Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Bank*Time FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank Bank Bank Bank Bank

This table reports coefficient estimates and robust (clustered by bank) standard errors for the effects of shocks on firms’ fixed asset growth and the in-
fluence of bank lending pool complexity and investment complexity on these effects. In columns I‐IV the dependent variable is the percentage growth
of firms’ total assets; in columns V‐VIII the dependent variable is the percentage growth of firms’ fixed assets. In all regressions, banking complexity is
captured by the number of interactions of the banks in the syndicate lending pool in the past five years. In all columns aggregate shocks are captured by
the Great Financial Crisis (GFC). Investment complexity is measured by the degree of proximity of the loan portfolio of the lead arranger and the partic-
ipant bank. Loan controls include the loan maturity, the loan spread, and a dummy for whether the loan is a refinancing of a prior loan. Firm controls
include the firm’s credit rating, leverage and ROA. All the regressions include loan purpose and loan type fixed effects, and firm fixed effects. Columns
I‐II and V‐VI also include bank and time fixed effects, while columns III‐IV and VII‐VIII include bank*time fixed effects. ***, ** and * denote statistical
significance at the 1%, 5% and 10% level, respectively.
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Table 9: Banking Complexity, Investment Complexity, and Firms’ Resilience to Shocks (cont.)

Dependent variable: Firm Asset Growth Firm Fixed Asset Growth
Investment complexity: High complex Low complex High complex Low complex High complex Low complex High complex Low complex

I II III IV V VI VII VIII
1-HHI 0.156*** 0.041* 0.138*** 0.041* 0.134*** 0.069*** 0.116*** 0.065***

(4.460) (1.700) (4.100) (1.686) (3.698) (3.222) (3.180) (3.114)
1-HHI * GFC -0.169*** -0.081** -0.146** -0.080** -0.216** -0.164*** -0.188** -0.161***

(-2.798) (-2.333) (-2.482) (-2.191) (-2.396) (-4.896) (-1.978) (-4.839)

Loan controls Y Y Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y Y Y
Observations 58,505 76,933 58,362 75,966 57,951 76,385 57,806 75,424
Adjusted R-squared 0.396 0.324 0.416 0.330 0.392 0.312 0.410 0.319
Purpose FE Y Y Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y
Bank FE Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Bank*Time FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank Bank Bank Bank Bank

This table reports coefficient estimates and robust (clustered by bank) standard errors for the effects of shocks on firms’ fixed asset growth and the in-
fluence of bank lending pool complexity and investment complexity on these effects. In columns I‐IV the dependent variable is the percentage growth
of firms’ total assets; in columns V‐VIII the dependent variable is the percentage growth of firms’ fixed assets. In all regressions, banking complexity is
captured by the variable 1‐HHI, where HHI is the Herfindhal index of concentration of the syndicated loan. In all columns aggregate shocks are captured
by the Great Financial Crisis (GFC). Investment complexity is measured by the degree of proximity of the loan portfolio of the lead arranger and the
participant bank. Loan controls include the loan maturity, the loan spread, and a dummy for whether the loan is a refinancing of a prior loan. Firm
controls include the firm’s credit rating, leverage and ROA. All the regressions include loan purpose and loan type fixed effects, and firm fixed effects.
Columns I‐II and V‐VI also include bank and time fixed effects, while columns III‐IV and VII‐VIII include bank*time fixed effects. ***, ** and * denote
statistical significance at the 1%, 5% and 10% level, respectively.
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Figure A.1
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Figure A.2
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Figure A.3: Monitoring and oil shocks
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Appendix B

Data Appendix In the main text we described the main cleaning of our matched data.

In what follows we detail a number of other more technical adjustments. First of all, we

focus on the package level instead of the facility level. Focus on a facility-loan level would

generate a selection bias in the numbers of repeated interactions because we would sum the

same bank members over multiple loan facilities within a loan package. Further, we exclude

loan packages to financial firms and utilities (public services). Finally, in the same line of

Graham et al. (2015), we exclude loans that are likely to be amendments to existing loans.

DealScan misreports these loans as new loans though they do not involve new money.
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Appendix C

Table C.1: Experience and the likelihood of being chosen as a lead arranger

I II III IV V VI
N Mean sd p25 p50 p75

Firm asset growth 129,620 -0.064 0.203 -0.092 -0.027 0.014
Firm fixed asset growth 128,640 -0.059 0.236 -0.087 -0.024 0.015
1-HHI 129,620 0.962 0.059 0.959 0.984 0.993
Past interactions 129,620 0.012 0.060 0.000 0.000 0.000
Oil shock 129,620 0.115 0.320 0.000 0.000 0.000
GFC 129,620 0.078 0.268 0.000 0.000 0.000
Maturity (month) 129,620 47.516 22.882 35.000 60.000 60.000
AISD (bps) 129,620 158.178 112.650 65.000 150.000 225.000
Refinance 129,620 0.358 0.158 0.000 0.000 1.000
Firm’s leverage 129,620 0.320 0.226 0.180 0.292 0.420
ROA 129,620 0.033 0.596 0.009 0.035 0.064

The table provides descriptive statistics for the main variables used in analysis.
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Table C.2: Banking Complexity and Firms’ Resilience to Shocks: Firm profitability

I II III IV
Dependent variable: Firm Asset Growth Firm Fixed Asset Growth
Profitability group: Below Below Below Below

Panel A: Past bank-to-bank interactions
Past interactions 0.018 0.022 0.045*** 0.053***

(1.252) (1.473) (3.250) (3.199)
Oil shock 0.011*** 0.009***

(6.056) (5.185)
Past interactions * Oil shock 0.042* 0.055*

(1.743) (1.755)
Past interactions * GFC 0.050 -0.089*

(1.088) (-1.935)
Observations 63,889 67,562 63,371 66,938
Adjusted R-squared 0.472 0.477 0.449 0.445

Panel B: 1-HHI
1-HHI 0.052** 0.055** 0.086*** 0.089***

(2.213) (2.061) (3.368) (3.195)
Oil shock -0.071*** -0.074**

(-3.343) (-2.421)
1-HHI * Oil shock 0.086*** 0.088***

(3.913) (2.794)
1-HHI * GFC -0.022 -0.158***

(-0.616) (-3.785)
Observations 63,889 67,562 63,371 66,938
Adjusted R-squared 0.472 0.477 0.449 0.445
Purpose FE Y Y Y Y
Loan type FE Y Y Y Y
Time FE Y Y Y Y
Bank FE Y Y Y Y
Firm FE Y Y Y Y
Clustered standard errors Bank Bank Bank Bank

This table reports coefficient estimates and robust (clustered by bank) standard
errors for the effects of shocks on firms’ fixed asset growth and the influence of
bank lending pool complexity. Firm profitability group is a dummy equals one if
the firm’s return on assets is below the sample median. In Panel A, banking com-
plexity is captured by the number of interactions of the banks in the syndicate
lending pool in the past five years. In Panel B, the banking complexity is captured
by the variable 1‐HHI, where HHI is the Herfindhal index of concentration of the
syndicated loan. In columns I and III aggregate shocks are captured by oil price
increases above the expected oil price. In columns II and IV aggregate shocks are
captured by the Great Financial Crisis (GFC). Loan controls include the loan ma-
turity, the loan spread, and a dummy for whether the loan is a refinancing of a
prior loan. Firm controls include the firm’s credit rating, leverage and ROA. All
the regressions include loan purpose and loan type fixed effects, and different lev-
els of fixed effects as noted in the lower part of the table. ***, ** and * denote
statistical significance at the 1%, 5% and 10% level, respectively.54



Table C.3: Banking Complexity and Firms’ Resilience to Aggregate Shocks: Firm level evi-
dence

Dependent variable: Firm Asset Growth
Post: 1 year Post: 2 years Post: 3 years
I II III IV V VI

Panel A: Past bank-to-bank interactions
Past interactions 0.075** 0.117*** 0.155*** 0.238*** 0.198** 0.318***

(2.071) (3.138) (2.738) (3.900) (2.252) (3.189)
Oil shock 0.000 -0.005 -0.005

(0.193) (-1.592) (-1.053)
Past interactions * Oil shock 0.019 0.102* 0.116

(0.585) (1.830) (1.483)
Past interactions * GFC -0.256 -0.600*** -0.754***

(-1.603) (-3.209) (-3.126)

Observations 23,142 24,280 22,782 23,904 21,288 22,367
Adjusted R-squared 0.175 0.172 0.240 0.235 0.284 0.284

Panel B: 1-HHI
1-HHI 0.078*** 0.092*** 0.185*** 0.207*** 0.375*** 0.433***

(3.028) (3.499) (4.879) (5.302) (6.567) (7.182)
Oil shock -0.005 -0.004 -0.020

(-0.243) (-0.129) (-0.438)
1-HHI * Oil shock 0.007 0.000 0.019

(0.286) (0.014) (0.390)
1-HHI * GFC -0.095* -0.171** -0.217*

(-1.836) (-2.406) (-1.885)

Observations 23,142 24,280 22,782 23,904 21,288 22,367
Adjusted R-squared 0.175 0.172 0.241 0.237 0.287 0.287
Time FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Clustered standard errors Firm Firm Firm Firm Firm Firm

This table reports coefficient estimates and robust (clustered by firm) standard errors for the effects
of shocks on firms’ asset growth and the influence of bank lending pool complexity on these effects.
We aggregate a sample of U.S. syndicated loans for firms covered in Dealscan at the firm-year level.
In all the regressions the dependent variable is the percentage growth of firms’ total assets. In Panel
A, banking complexity is captured by the number of past interactions between banks in the syndi-
cate in the previous five years. In Panel B, banking complexity is captured by the number 1‐HHI,
where HHI is the Herfindhal index of concentration of the syndicated loan. In columns I, III, V ag-
gregate shocks are captured by oil price increases above the expected oil price. In columns II, IV, VI
aggregate shocks are captured by the Great Financial Crisis (GFC). Loan controls include the loan
maturity, the loan spread, and a dummy for whether the loan is a refinancing of a prior loan. Firm
controls include the firm’s credit rating, leverage and ROA. All the regressions include loan purpose
and loan type fixed effects, and different levels of fixed effects as noted in the lower part of the table.
***, ** and * denote statistical significance at the 1%, 5% and 10% level, respectively.
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Table C.4: Banking Complexity and Firms’ Resilience to Aggregate Shocks: Firm level evi-
dence (cont.)

Dependent variable: Firm Fixed Asset Growth
Post: 1 year Post: 2 years Post: 3 years
I II III IV V VI

Panel A: Past bank-to-bank interactions
Past interactions 0.092** 0.119*** 0.196*** 0.259*** 0.214** 0.313***

(2.051) (2.614) (3.130) (4.063) (2.238) (3.061)
Oil shock -0.001 -0.006 -0.010*

(-0.477) (-1.586) (-1.902)
Past interactions * Oil shock 0.052 0.098* 0.121

(1.423) (1.806) (1.522)
Past interactions * GFC -0.320** -0.686*** -0.967***

(-2.273) (-3.777) (-3.556)

Observations 23,021 24,154 22,670 23,785 21,174 22,238
Adjusted R-squared 0.156 0.157 0.217 0.213 0.284 0.282

Panel B: 1-HHI
1-HHI 0.042 0.050* 0.129*** 0.157*** 0.381*** 0.461***

(1.450) (1.712) (2.875) (3.443) (5.609) (6.630)
Oil shock 0.008 -0.015 -0.035

(0.327) (-0.385) (-0.642)
1-HHI * Oil shock -0.009 0.011 0.030

(-0.358) (0.270) (0.513)
1-HHI * GFC -0.126* -0.301*** -0.567***

(-1.709) (-3.021) (-3.647)

Observations 23,021 24,154 22,670 23,785 21,174 22,238
Adjusted R-squared 0.156 0.157 0.217 0.213 0.286 0.284
Time FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Clustered standard errors Firm Firm Firm Firm Firm Firm

This table reports coefficient estimates and robust (clustered by firm) standard errors for the effects
of shocks on firms’ asset growth and the influence of bank lending pool complexity on these effects.
We aggregate a sample of U.S. syndicated loans for firms covered in Dealscan at the firm-year level.
In all the regressions the dependent variable is the percentage growth of firms’ fixed assets. In Panel
A, banking complexity is captured by the number of past interactions between banks in the syndi-
cate in the previous five years. In Panel B, banking complexity is captured by the number 1‐HHI,
where HHI is the Herfindhal index of concentration of the syndicated loan. In columns I, III, V ag-
gregate shocks are captured by oil price increases above the expected oil price. In columns II, IV,
VI aggregate shocks are captured by the Great Financial Crisis (GFC). Loan controls include the
loan maturity, the loan spread, and a dummy for whether the loan is a refinancing of a prior loan.
Firm controls include the firm’s credit rating, leverage and ROA. All the regressions include loan
purpose and loan type fixed effects, and different levels of fixed effects as noted in the lower part of
the table. ***, ** and * denote statistical significance at the 1%, 5% and 10% level, respectively.
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Appendix D

Contracts We can use rb∗L to rewrite the bargaining problem between the bank and the late

agent as

max
0≤rgL≤2e−(ω+c)+x− e−c

λ

{
λθ

[
2e− (ω + c) + x− e− c

λ
− rgL

]θ [
λrgL + (1− λ)rb∗L − e

]1−θ
}
.

(16)

In what follows, we show that it is optimal to choose an interior solution to rgL. If we let

ν0 denote the Lagrange multiplier associated with the lower bound of rgL, and ν1 denote the

Lagrange multiplier associated with the upper bound of rgL, the first-order condition of (16) is

(1− θ)λ

λrgL + (1− λ) [2e− (ω + c) + s(µB, µL)]− e
− θ

2e− (ω + c) + x− e−c
λ − rgL

= ν1 − ν0.

To rule out rgL = 0, we need

e+ s(µB, µL) ≤ ω + c+
λ

1− λ

{
e+

1− θ

θ

[
2e− (ω + c) + x− e− c

λ

]}
.

In turn, to rule out rgL = 2e− (ω + c) + x− e−c
λ , we need

(1− θ)λ

λrgL + (1− λ) [2e− (ω + c) + s(µB, µL)]− e
≤ θ

2e− (ω + c) + x− e−c
λ − rgL

.

Since the left-hand side evaluated at rgL = 2e − (ω + c) + x − e−c
λ is equal to infinite, this

inequality is always satisfied. As a result, rgL is an interior solution, given by

rg∗L = 2e− (ω + c) + x− e− c

λ
− θ

[
λx− ω

λ
+

1− λ

λ
s(µB, µL)

]
.

Proof of Proposition 1 In the main text, we showed that µB = µ∗
B for all z ≤ Gγ(µ

∗
B).

In what follows, we characterize the bank’s monitoring choice when z > Gγ(µ
∗
B). First, we

examine the region of parameters where Gγ(µ
∗
B) ≥ Gγ(0), which can be rewritten as

γ ≤ γ′ ≡ 1 + θ(1− λ)s [(1− θ)(1− λ)sα]
1+α
1−α

α(1− θ)
=

1 + µ∗
L

α(1− θ)
.
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In this case, for all z > Gγ(µ
∗
B), we have z > Gγ(0). Since G′′

γ(µB) > 0, we must have µ−
B < 0.

The bank can then either choose µ+
B or it can choose zero monitoring. The latter choice is

dominated if and only if µ+
B ≤ 2µ∗

B. This is so because ΠB (µB) ≥ 0 if and only if µB ≤ 2µ∗
B.

Since Gγ(µ
∗
B) ≥ Gγ(0) and G′′

γ(µB) > 0, Gγ(µB) is strictly increasing in µB, for all µB ≥ µ∗
B,

which implies that µ+
B(z) = G−1

γ (z) is well defined and increases continuously in z > Gγ(µ
∗
B).

As a result, ΠB

(
µ+
B(z)

)
≥ 0 for all z ∈ (Gγ(µ

∗
B), Gγ(2µ

∗
B)], and the bank chooses µ+

B; while

ΠB

(
µ+
B

)
< 0 for all z > Gγ(2µ

∗
B), and the bank chooses zero monitoring.

Second, we examine the region of parameters where Gγ(µ
∗
B) < Gγ(0), i.e.,

γ > γ′ ≡ 1 + θ(1− λ)s [(1− θ)(1− λ)sα]
1+α
1−α

α(1− θ)
=

1 + µ∗
L

α(1− θ)
.

We start by examining the scenario where Gγ(µ
∗
B) < Gγ(0) < z. In this case, G′′

γ(µB) > 0

implies that µ−
B < 0. As in the previous scenario, the bank then either chooses µ+

B or it chooses

zero monitoring. The latter choice is optimal if ΠB

(
µ+
B

)
< 0, which occurs for all z > Gγ(0)

if and only if Gγ(0) ≥ Gγ(2µ
∗
B), which can be rewritten as

γ ≥ γ ≡ 1 + 2θ(1− λ)s [(1− θ)(1− λ)sα]
1+α
1−α

α(1− θ)
=

1 + 2µ∗
L

α(1− θ)
.

Thus, if γ ≥ γ and z > Gγ(0), the bank chooses zero monitoring. If, instead γ ∈
(
γ′, γ

)
and

z > Gγ(0), the bank chooses µ+
B for all z ∈ [Gγ(0), Gγ(2µ

∗
B)], and it chooses zero monitoring

for all z > Gγ(2µ
∗
B).

Finally, we examine the region where Gγ(µ
∗
B) < z < Gγ(0). Since Gγ(µ

∗
B) < Gγ(0),

G′′
γ(µB) > 0 implies that, for all z ∈ (Gγ(µ

∗
B), Gγ(0)), µ−

B(z) = G−1
γ (z) is well defined and

decreases continuously in z > Gγ(µ
∗
B). Since µ−

B(z) is now a feasible choice, the bank prefers

µ+
B(z) if and only if ΠB

(
µ+
B(z)

)
≥ ΠB

(
µ−
B(z)

)
, which can be rewritten as

µ+
B(z) + µ−

B(z) ≤ 2θ(1− λ)s [(1− θ)(1− λ)sα]
α

1−α . (17)

To find µ+
B(z) + µ−

B(z), we solve z = Gγ(µ̂B), which gives

µ̂B(z) =

[
z − 1

(1−θ)(1−λ)α

]
v

1
1−α 1−λ

γ ±
{(

z − s
v

)2
v

2
1−α − 41−λ

γ sv
1+α
1−α

[
1− z 1−λ

γ

]}
21−λ

γ sv
1+α
1−α

,
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where

v = [(1− θ)(1− λ)sα] .

This implies

µ+
B(z) + µ−

B(z) =
z − 1

(1−θ)(1−λ)α

s [(1− θ)(1− λ)sα]
α

1−α

.

We can then rewrite (17) as

z ≤ 1 + 2θ(1− λ)s [(1− θ)(1− λ)sα]
1+α
1−α

(1− θ)(1− λ)α
=

γ

1− λ
.

Since z < Gγ(0), we obtain that, if γ < γ, then Gγ(0) <
γ

1−λ and we have z ≤ γ

1−λ for

all z ∈ (Gγ(µ
∗
B), Gγ(0)). This implies that if γ < γ, the bank chooses µ+

B(z) for all z ∈

(Gγ(µ
∗
B), Gγ(0)). In turn, since z > Gγ(µ

∗
B), if

γ

1−λ < Gγ(µ
∗
B), the bank chooses µ−

B(z) for all

z ∈ (Gγ(µ
∗
B), Gγ(0)). We can rewrite γ

1−λ < Gγ(µ
∗
B) as

γ > γ = γ +
µ∗2
L

(1− θ)α
.

Lastly, if γ ∈
(
γ, γ

)
and z ∈ (Gγ(µ

∗
B), Gγ(0)), the bank chooses µ+

B(z) if z ≤ γ

1−λ and it chooses

µ−
B(z) otherwise.

Details on Welfare Characterization We are interested in describing how welfare changes

when we move from the region where the information constraint does not bind to the ones where

it binds. In order to do so, we characterize the welfare evolves as a function of z and γ. As

before, this allows to examine how the changes in monitoring described in proposition 1 impact

welfare in a scenario where all parameters that directly affect the welfare are kept constant.

In particular, if γ > γ and the bank chooses µ−
B(z) in the interval

(
Gγ(µ

∗
B),

γ
1−λ

]
, we

obtain that welfare is constant for all z ≤ Gγ(µ
∗
B), it is strictly decreasing in the interval(

Gγ(µ
∗
B),

γ
1−λ

]
, and it converges to λx for all z ≥ γ

1−λ .

A distinct scenario takes place if the bank chooses µ+
B(z). Let us first consider the region

where γ ≤ γ. In this region, since µW
B < 2µ∗

B, there exists µ+
B(z) = G−1

γ (z) such that µ+
B(z) =

µW
B . As a function of γ the value of z that implements the welfare optimal monitoring satisfies

z = Gγ

(
µW
B

)
. The results in Proposition 1 then implies that, for all γ ≤ γ, welfare evolves
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as follows. It is constant for all z ≤ Gγ(µ
∗
B), it becomes strictly increasing in the interval(

Gγ(µ
∗
B), Gγ

(
µW
B

)]
, achieving the welfare maximizing level at z = Gγ

(
µW
B

)
; it is then strictly

decreasing in the interval
(
Gγ

(
µW
B

)
, Gγ(2µ

∗
B)
]
, converging to the constant level λx in the

interval z > Gγ(2µ
∗
B).

Let us now consider the region where γ ∈
(
γ, γ

)
. In this case, the largest value that µ+

B(z)

achieves is given by µ+
B(

γ

1−λ). We obtain that µ+
B(

γ

1−λ) > µW
B if and only if γ

1−λ > G
(
µW
B

)
,

which can be rewritten as

γ ≤ γ+ ≡

[
1 + θ−(1−θ)(1−α)

θ µ∗
L

] [
1 + 1−(1−θ)α

θ µ∗
L

]
(1− θ)α

.

Since γ+ < γ, we obtain that γ

1−λ > G
(
µW
B

)
and µ+

B(
γ

1−λ) > µW
B . This implies that the welfare

maximizing level of monitoring is also achieved when γ ∈
(
γ, γ

)
and z ∈

(
Gγ(µ

∗
B),

γ

1−λ

]
. Now,

a distinct feature of this region is that, unlike in the case where γ /∈
(
γ, γ

)
, there is a transition

from over monitoring to under monitoring. This transition introduces a discontinuity of the

bank’s monitoring at z =
γ

1−λ , which translates into a discrete welfare reduction. Precisely,

welfare evolves as follows. It is constant for all z ≤ Gγ(µ
∗
B), it is strictly increasing in the

interval
(
Gγ(µ

∗
B), G

(
µW
B

)]
, and it is strictly decreasing in the interval

(
G
(
µW
B

)
,

γ

1−λ

]
. At

z =
γ

1−λ , there is a discrete reduction as the bank moves from over monitoring into under

monitoring. Welfare then decreases in the interval
(

γ

1−λ ,
γ

1−λ

]
and it converges to λx for all

z > γ
1−λ .

Consider next the impact of γ. For example, in the region of parameters where the in-

formation constraint binds and the bank chooses µ+
B, we can rewrite rewrite z = Gγ(µ

+
B)

as

z(1− λ) =
µ+
L

α(1− θ)
+

γ

µ+
L + 1

.

We obtain

ϵµ+
L ,γ = −

1
µ+
L+1

γ
1−λ

z − 2µ̂L+1

(µ+
L+1)

2
γ

1−λ

,

where we use (4) to recover µ+
B. In the Appendix we show that z >

2µ+
L+1

(µ+
L+1)

2
γ

1−λ . Since z >

Gγ(µ
∗
B) in the region of parameters where the bank cannot chose µ∗

B, if Gγ(µ
∗
B) >

2µ+
L+1

(µ+
L+1)

2
γ

1−λ ,

then ϵµ̂L,γ > 0. Since µ+
L > µ∗

L, a sufficient condition for the latter inequality to hold is
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Gγ(µ
∗
B) >

2µ∗
L+1

(µ∗
L+1)

2
γ

1−λ , which can be rewritten as γ < γ, and is always true in the region

where the bank chooses µ+
L .

This implies that ϵµ+
L ,γ < 0, i.e., an increase in γ reduces the monitoring of the bank.

In the region of parameters where z ∈
(
Gγ (µ

∗
B) , Gγ

(
µW
B

))
, this reduction in monitoring

necessarily causes a reduction in the welfare. Thus, an exogenous increase in the cost of

acquiring information about the project may actually hurt welfare, even though it potentially

contributes to the opacity of the project.

Appendix C Extensive Margin Effects

The combination of assumption A2 and α < 1
2 requires

1

(1− θ)(1− λ)s
< α <

1

2
.

A necessary restriction on parameters ensuring that this region is non-empty is

0 < λ < 1− 2

(1− θ)s
, 1

2
< θ < 1− 2

s
, and s > 4,

where we also used θ > 1
2 .

We start by examining the impact of (λ, α, γ) on the size of the unconstrained region. The

frontier of the unconstrained region is given by

f(λ, α, γ) =
1

1− λ

[
θ(1− λ)s∆

1+α
1−α

(1− θ)α
+

γ

1 + θ(1− λ)s∆
1+α
1−α

]
,

where

∆ ≡ (1− θ)(1− λ)sα > 1,

given assumption A2.

We have

fγ(λ, α, γ) =
1

(1− λ)
[
1 + θ(1− λ)s∆

1+α
1−α

] > 0,

and the unconstrained region expands with γ.
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To determine the impact of λ, let us examine

µ∗
L = θ(1− λ)s∆

1+α
1−α .

We have
∂µ∗

L

∂λ
= −θs∆

1+α
1−α + θ(1− λ)s

∂∆
1+α
1−α

∂λ
,

where
∂∆

1+α
1−α

∂λ
= −1 + α

1− α
∆

1+α
1−α

1

1− λ
.

As a result
∂µ∗

L

∂λ
= −2θs∆

1+α
1−α

1− α
,

or
∂µ∗

L

∂ (1− λ)

1− λ

µ∗
L

=
2

1− α
.

We obtain

fλ(λ, α, γ) =
1

(1− λ)2

[(
1 +

1

1− α

2µ∗
L

1 + µ∗
L

)
γ

1 + µ∗
L

− 1 + α

1− α

µ∗
L

(1− θ)α

]
,

and fλ(λ, α, γ) if and only if

γ > γλ ≡ 1
1

θ(1−λ)s∆
1+α
1−α

+ 2
1−α

1

1+θ(1−λ)s∆
1+α
1−α

.

If investment complexity is relatively large, the unconstrained region expands with λ, otherwise

it contracts with λ.

To determine the impact of α, we first determine

∂∆
1+α
1−α

∂α
=

1 + α+ ln∆
2α
1−α

1− α

∆
1+α
1−α

α
,

which implies
∂µ∗

L

∂α
= θ(1− λ)s

1 + α+ ln∆
2α
1−α

1− α

∆
1+α
1−α

α
,
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or
∂µ∗

L

∂α

α

µ∗
L

=
1 + α+ ln∆

2α
1−α

1− α
.

We obtain

fα(λ, α, γ) =
1

1− λ

µ∗
L

α(1− α)

[
2 + 2 ln∆

1
1−α

1− θ
− 1 + α+ ln∆

2α
1−α(

1 + µ∗
L

)2 γ

]
,

and fα(λ, α, γ) > 0 if and only if

γ < γα ≡ 1 + ln∆
1

1−α

1 + α+ ln∆
2α
1−α

2
[
1 + θ(1− λ)s∆

1+α
1−α

]2
1− θ

.

If investment complexity is relatively low, the unconstrained region expands with α, otherwise

it contracts with α.

We now examine how changes in γ and α impact fλ(λ, α, γ). We have

fλγ(λ, α, γ) =
1

(1− λ)2

(
1 +

1

1− α

2θ(1− λ)s∆
1+α
1−α

1 + µ∗
L

)
1

1 + µ∗
L

,

and an increase in investment complexity amplifies the effect of λ on the size of the uncon-

strained region. If fλ(λ, α, γ) > 0, this means that the contraction of the unconstrained region

caused by a decrease in λ is larger when investment complexity increases. If fλ(λ, α, γ) < 0,

this means that the expansion of the unconstrained region caused by a decrease in λ is smaller

when investment complexity increases.

We also have

fαλ(λ, α, γ) = − 1

α(1− α)2
µ∗
L

(1− λ)2

2
(
2 + α+ ln∆

1+α
1−α

)
(1− θ)

+ Γ
γ(

1 + µ∗
L

)3
 ,

where

Γ ≡
(
3− α2

)
µ∗
L −

(
1 + 4α+ α2

)
+ ln∆

2α[4µ∗L−(1+µ∗
L)(1+α)]

1−α .

A sufficient condition that ensures fαλ(λ, α, γ) < 0 is Γ > 0, i.e.,

(
3− α2

)
µ∗
L + ln∆

2α[4µ∗L−(1+µ∗
L)(1+α)]

1−α > 1 + 4α+ α2.
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Since the left-hand-side is strictly increasing in ∆, a sufficient condition to ensure the above

inequality is to evaluate it at ∆ = 1, which gives

θ(1− λ)s >
1 + 4α+ α2

3− α2
.

Since the right-hand side above is strictly increasing in α, it is easy to check that the restrictions

on parameters imposed at the beginning ensure this is always satisfied. Hence, we always have

fαλ(λ, α, γ) < 0, and an increase in banking complexity attenuates the effect of λ on the

size of the unconstrained region. If fλ(λ, α, γ) > 0, this means that the contraction of the

unconstrained region caused by a decrease in λ is smaller when banking complexity increases.

If fλ(λ, α, γ) < 0, this means that the expansion of the unconstrained region caused by a

decrease in λ is larger when banking complexity increases.
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