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1 Introduction

Forecasting the direction of stock returns is an important elementary task in asset management. For example,
predictions about the direction of future stock returns can inform short and medium-term asset allocation
decisions or can be used as a direct input into signal-driven market timing strategies. Accurate forecasts
allow investment managers to better allocate scarce resources and improve economic welfare. Recently,
machine learning approaches to modeling the time series of stock return movements have become increasingly
popular (see, e.g., Fischer and Krauss, 2018; Iworiso and Vrontos, 2020; Mascio et al., 2021). These machine
learning models often outperform traditional econometric models or trend-following methods in terms of
their predictive accuracy (Kelly et al., 2022). However, prior literature has predominantly applied off-
the-shelf binary machine learning algorithms to the prediction task. These standard algorithms minimize
objective functions that do not necessarily recognize the dynamic and asymmetric nature of financial markets.
For example, traditional binary machine learning algorithms that minimize the log-loss objective function
assume that the cost of making a false-positive or a false-negative classification error is constant and equal.
In practice, this assumption is unlikely to hold, since time-varying market volatility and dynamic market
regimes mean that investor preferences about prediction errors are likely to change over the business cycle.

In this paper, we propose to train binary machine learning models that predict the future return di-
rection using cost-sensitive learning and bi-objective optimization. Specifically, we test two objective func-
tions namely, the average expected cost function which originates from the field of cost-sensitive example-
dependent learning, and a novel bi-objective loss function that augments conventional log-loss optimization
with the average expected cost objective. The key feature of the average expected cost is that it asymmetri-
cally penalizes individual false-positive and false-negative misclassification errors. Our bi-objective function
reflects the idea that a practical financial forecasting model for the equity market return direction should
target both classification accuracy and the dynamics of misclassification costs when making decisions. We
expect that using an equally-weighted combination of the log-loss and average expected cost will produce
models that generalize better to unseen data1.

As measures of the misclassification costs we use at-the-money put and call option prices. These are
natural measures of forward looking costs because they facilitate hedging and embed the market’s expec-
tations about future returns, investor preferences, and volatility. Moreover, informed trader’s are attracted
to option markets because of the implicit leverage and trading cost advantages that are embedded in these
contracts (Kacperczyk and Pagnotta, 2019; An et al., 2014; Lin and Lu, 2015). For example, an investor
who expects positive returns on an equity market index over the next month could buy a call option. In the
event that the investor is wrong, that is the investor makes a false-positive prediction error, and the option
expires out-of-the money the investor’s misclassification costis the option price. By incorporating average
expected options based miss-classification costs into the learning process we impose a degree of economic
structure related to prevailing costs of a binary decision implied by the market.

We consider two types of machine learning models to predict the time series of stock return movements,
namely the elastic-net regularized logistic regression and gradient boosting using the LightGBM framework
(Ke et al., 2017). To prevent over-fitting noisy financial returns we use a robust cross-validation procedure
that eliminates information leakage between the training and testing sets. Both our machine learning models
include L1 and L2-regularization. Moreover, we implement stochastic gradient boosting and also use the
DART framework of (Vinayak and Gilad-Bachrach, 2015) to reduce the likelihood that base learners added
in the subsequent boosting iterations overfit.

Our decision to study logistic regression models is motivated by the observation that they remain a
popular choice both within the industry and in academic literature (see, e.g., Mascio et al., 2021). Elastic-
net logistic regressions are fast, interpretable, and often used as benchmarks. More recently, a growing

1Similar arguments have been put forward in the forecast combination literature (see, e.g., Timmermann, 2006; Wang et al.,
2022)
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literature demonstrates the utility of non-linear ensemble machine learning algorithms for solving financial
machine learning tasks (Rasekhschaffe and Jones, 2019; Christensen et al., 2021; Krauss et al., 2017). Within
this class of models, algorithms that use ensembles of decision trees, such as gradient boosting have emerged
as popular choices, because these non-parametric models can naturally identify non-linear relationships
and model complex higher order interactions among predictor variables. We are particularly interested in
studying how the inclusion of average expected costs in a bi-objective optimization framework improves
gradient boosting models. From a practical perspective, our approach is attractive because we only require
at-the-money put and call option prices which can be easily obtained, in contrast to the entire spectrum of
option prices across different strikes2.

We evaluate the out-of-sample one-month ahead and 10-day ahead return direction forecasts for the
S&P500, NASDAQ100 and Dow Jones Industrial Average stock market indices using a wide range of classi-
fication performance metrics and return statistics. To ensure the robustness of our results we also examine
return direction forecasts for a sample of 24 individual U.S. equities. We find that our cost-sensitive models
correctly predict a larger fraction of positive future returns,compared to using only the log-loss objective.

For the sample of individual equities we find that both precision and recall are higher for our bi-objective
cost-sensitive models, demonstrating that they correctly predict more days where the future returns are
positive with a higher accuracy as compared to the benchmark models. Incorporating cost-sensitive learning
with option price based misclassification costs disproportionately improves predictions about positive future
returns. Importantly, our results are robust to benchmark models that incorporate information about option
prices and implied volatility information directly in the set of predictors, without cost sensitivity. At the
same time, the bi-objective models tend to outperform their counterparts that use only average expected cost
as the objective. Therefore, we find that designing multi-objective functions for financial machine learning
models improves predictive performance.

To assess the economic value of our cost-sensitive machine learning models we backtest a long/short
investment strategy that trades an equally-weighted portfolio of the S&P500, NASDAQ100 and Dow Jones
Industrial Average indices based upon the return sign predictions. We find that our bi-objective models earn
a higher Sharpe ratio than the benchmark models net of transaction costs. Hence, cost-sensitive learning
from option prices is a novel way of generating superior risk adjusted returns. Moreover, strategies that use
our cost-sensitive models have a lower downside risk. Specifically, relative to their respective benchmarks,
strategies associated with our models tend to have a smaller maximum drawdown and a shorter maximum
drawdown period, and higher Sortino ratios underpinned by higher annualized returns and lower downside
deviations. These results remain robust to a long-only strategy and an alternative portfolio construction
method where weights are based upon the predicted probabilities, rather than set equal to one another.

Our study is related to the literature that designs machine learning models for empirical asset pricing
tasks, for example, to predict equity market returns (Basak et al., 2019; Fischer and Krauss, 2018; Iworiso
and Vrontos, 2020; Mascio et al., 2021). In particular, Kelly et al. (2022) both theoretically and empirically
demonstrate that machine learning models can outperform traditional approaches to predict equity market
returns. We are interested in the subset of this literature that predicts return directions, which is a binary
classification task (see, e.g., Fischer and Krauss, 2018; Iworiso and Vrontos, 2020; Mascio et al., 2021). Our
contribution is to demonstrate that augmenting the loss function to better suit the dynamics of the actual
forecasting task at hand improves classification performance. Consequently, our study is also related to a
recent literature which advocates for augmenting off-the-shelf machine learning algorithms with information
about economic structure and objectives (see, e.g. Chen et al., 2023; Brogaard and Zareei, 2022; Jensen
et al., 2022).

Using a rolling window estimation scheme and a training dataset of approximately 6-years of daily data
We find that gradient boosting does not significantly outperform elastic-net logistic regression in terms of

2There is no guarantee that out-of-the-money or in-the-money option prices are available at a daily frequency with an expiry
matching a desired investment horizon.
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performance metrics. However, in a long/short investment strategy that uses the return sign forecasts,
gradient boosting models earn higher Sharpe ratios. Consequently, we also add to a growing literature
studying the behaviour of non-linear and ensemble machine learning models for financial prediction tasks
(see, e.g., Gu et al., 2020; Rasekhschaffe and Jones, 2019; Christensen et al., 2021).

There is a sizeable literature studying the informational interaction between stock and option markets
(see, e.g., Pan and Poteshman, 2006; Johnson and So, 2012; An et al., 2014). This literature identifies several
channels by which option markets can provide information about future stock returns. We contribute by
designing a novel application of the information in option prices, namely by incorporating it within cost-
sensitive bi-objective prediction problem. More recently, Cremers et al. (2019) find that several option price
based measures of stock mispricing can identify undervalued stocks and these errors can be exploited via
a long-only portfolio. Our result that the average expected cost and bi-objective models outperform the
benchmarks for positive future returns appears to be broadly consistent with this work.

The remainder of this paper is structured as follows. Section 2 describes the building blocks of our bi-
objective function and discusses the practicalities of using it to train logistic regression and gradient-boosting
trees. Section 3 describes the data, predictors, and design of our forecasting experiments. We discuss the
classification performance in Section 4 and results from a long-short investment strategy in Section 5. Section
6 concludes.

2 A Cost-sensitive Learning Framework for Stock Return Direc-
tion Forecasting

2.1 Cost Sensitivity and Options Prices

In a binary classification problem we have data D = {(yt,xt)}Tt=1 where yt ∈ {0, 1} is the ground truth
binary outcome and xt ∈ Rp is a p-dimensional vector of predictor variables on day t. Without loss of
generality, we assume that the predictor data has been standardized to zero mean and unit variance. In our
application yt = I(

∑h
i=1 rt+i > 0), where rt = (log(Pt+1)− log(Pt)), Pt is the daily price/level of the equity

market index at time t, I(·) is the indicator function and h is the forecast horizon. That is, we are interested
in whether or not the cumulative log return3 over the next h-days is positive. We study h = 10 and h = 30
days.

We consider logistic regression (LR) and gradient boosting machines (GBM), two supervised binary
classification algorithms which estimate the probability that an observation belongs to the positive class.
Both algorithms compute a real-valued pre-activation score, denoted by f(xt;θ), that is converted into a
probability using the sigmoid function

p(y = 1|xt;θ) =
1

1 + e−f(xt;θ)
, (1)

where θ contains the model parameters. The class label is then determined by comparing this probability
to a fixed threshold4 of 0.5.

We study improvements over the traditional binary classifiers that can be achieved by using objective
functions from the field of example-dependent cost-sensitive machine learning. To understand why this ap-

3Augmented Dickey-Fuller tests reject the null hypothesis that this cumulative return series has a unit root at the 1% level
of significance for the equity market indices that we study.

4Cost sensitivity can also be imposed by changing the threshold used to assign class labels so that it reflects the relative
difference in costs. However, we consider that incorporating costs directly into the objective function of a machine learning
model is a more flexible way of obtaining a cost sensitive classifier. Moreover, our method permits the design of bi-objective
functions that can be used to train a machine learning model. It is not clear how such a bi-objective learning approach could
be incorporated into the decision threshold.
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proach could improve classification, note that in binary classification, the traditional log-loss (cross-entropy)
measures the difference between the predicted probability and the true class label, that is

L1(y,x;θ) =

T∑
t=1

ℓ1(yt, f(xt;θ)) =

T∑
t=1

−[yt log(p(yt = 1|xt;θ)) + (1− yt) log(1− p(yt = 1|xt;θ))], (2)

where (y,x) contains all (yt,xt). The log-loss objective function penalizes both false-positive and false-
negative classification errors equally. However, in many real-world settings, these costs are asymmetric and
time-varying. A classic financial example is credit card fraud or transfers fraud detection (Höppner et al.,
2022; Hand et al., 2008).

With this idea in mind, we consider objective functions that are designed to penalize observations based
on their observation-specific misclassification cost of each of the two types of prediction errors. This learning
framework is example-dependent and cost-sensitive in the sense that the algorithm explicitly incorporates
the asymmetry of the observation-specific costs. This strand of literature advocates for using the average
expected cost (AEC) function, rather than expected loss, as the objective to be minimized when training
a machine learning model (Elkan, 2001; Bahnsen et al., 2015; Höppner et al., 2022). The AEC function is
defined as

L2(y,x;θ) =
1

T

T∑
t=1

ℓ2(yt, f(xt;θ)) =
1

T

T∑
t=1

yt(1− pt(yt = 1|xt;θ))c
(fn)
t + (1− yt)pt(yt = 1|xt;θ)c

(fp)
t , (3)

where c
(fn)
t is the cost of making a false-negative error and c

(fp)
t is the cost of making a false-positive error.

Note that we allow these costs to vary for each observation at time t.
Our application of an example-dependent cost-sensitive objective function to the return direction pre-

diction task recognizes that the cost of misclassification in financial forecasting is likely to be dynamic and
asymmetric. For example, during periods of heightened volatility, misclassification costs could be signifi-
cantly higher because we are more likely to observe larger price movements in both the positive and negative
directions. Moreover, asymmetries in the misclassification cost are likely to change during market cycles,
such as periods of financial market distress or bullish market rallies.

We consider two approaches to incorporate classification error costs into binary financial machine learning
models. The first approach is to use the average expected cost function (L2) directly as the objective to
be minimized during the learning process. This is the standard approach within the cost-sensitive machine
learning literature, although the application to stock return prediction tasks has not been explored yet. The
second approach is to use a novel bi-objective function that is the equal weighted combination of the log-loss
objective and the average expected cost objective. Our decision to combine these two objective functions
is motivated by the idea that a practical return direction forecasting model should consider both predictive
accuracy and the prevailing dynamics of costs derived from financial market estimates that are associated
with the predicted binary decision. The decision to use the equal-weighted combination scheme is supported
by the well-studied empirical results from the forecast combinations literature (see, e.g., Timmermann, 2006).
Moreover, by using the equal-weighted combination we alleviate the need to further estimate optimal, and
possibly time-varying, combination weights, reducing the likelihood that we over-fit noisy financial returns.

To combine the L1 and L2 objectives we use weighted-sum multi-objective optimization. This approach
involves constructing a single objective function from the sum of the individual objective functions using
user-defined weights u1 and u2. The weights express the relative importance of each objective as determined
by the investor’s preferences. Normalization of the individual objectives is important for ensuring consistency
of the optimal solution in the weighted-sum method. For example, in our case the log-loss objective is a sum
over T observations on the logarithmic scale while the AEC objective is the average over T observations. To
ensure that the contribution of each individual objective to the weighted sum aligns with the user-defined
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weights we introduce the normalization factors η1 and η2 so that the actual objective weights are computed
as w1 = η1u1 and w2 = η2u2. While several normalization schemes exist, we follow the approach that uses
the nadir and utopia points (see, e.g., Mausser, 2006).

Formally, the utopia points are the values obtained from minimizing each objective function individually,

sUi = min
θ

Li(y,x;θ), i ∈ {1, 2} (4)

The utopia points provide a lower bound on the values of the Pareto optimal set of solutions. The Nadir
points are obtained as follows

sNi = max
j∈{1,2}

Li(y,x;θj) (5)

where Li(·, ·;θj) means that we evaluate the ith objective function at the model parameters obtained by
minimizing the jth objective. The Nadir points represent an upper bound on the Pareto optimal set. Then,
the normalization factors are given by

ηi =
1

sNi − sUi
(6)

Taken together, we propose to train bi-objective LR and GBM models using

L(y,x;θ) = w1L1(y,x;θ) + w2L2(y,x;θ) (7)

We would like to use measures of misclassification costs that are forward-looking and match the desired
investment horizon. To do so, we use standardized at-the-money put and call option premiums (prices)
as such costs. Since options are contingent claims on the underlying asset, they provide forward-looking
information about the market’s expectations of future price movements of the asset. Moreover, asymmetries
in misclassification costs may reflect the market’s expectations about risk and returns. To understand why
option prices are a relevant measure of misclassification costs we consider a simple case, where an investor
who thinks that the return on the S&P500 index will be positive over the next month buys a call option
written on the index. If the investor is wrong then the option will finish out-of-the-money and the cost of
this prediction error is the call option price. Likewise, if an investor thinks returns will be negative they can
buy a put option, and the misclassification cost will be limited by the put option price.

Prior literature identifies several channels by which options markets may be informative about future
price movements in the underlying asset. First and foremost, a wealth of literature documents that informed
traders transact in options markets because of the implicit leverage embedded in the contracts (see, e.g. Roll
et al., 2010; Lin and Lu, 2015; Li et al., 2017; Augustin and Subrahmanyam, 2020; An et al., 2014). This
option-based leverage is often significantly larger than the leverage that could be gained from buying a stock
on margin (Cremers et al., 2019). In particular, Kacperczyk and Pagnotta (2019) use a sample of illegal
insider transactions with precise time and date information to show that informed traders make extensive
use of use option markets to trade on their private information, on average accounting for 30% of daily trade
volume. Shirvani et al. (2019) incorporate stock return predictability as an input into the Black-Scholes-
Merton option pricing framework and find that an option trader’s ability to predict stock returns affects
option prices. Taken together these ideas suggest that changes in put and call option prices can lead changes
in the underlying equity market index price, particularly when information asymmetry is high.

Goncalves-Pinto et al. (2020) find that option prices can act as a fundamental anchor during periods of
transitory price pressure. Hence option prices can provide a clearer signal about future equity market prices
during periods of elevated noise. Demand for downside protection by risk-averse investors and short selling
constraints, such as stock lending fees, may also strengthen the information content of option prices with
regard to future equity market movements. For example, when market makers hedge using options, they
incorporate the expected short selling fee into the put option price. Since it is widely documented that short
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sellers are informed, option prices may reflect this information via the size of the lending fee (Jones et al.,
2018; Atmaz and Basak, 2019).

All else equal, put and call option prices will increase when implied volatility increases (Sundaram and
Das, 2011). Consequently, our bi-objective function implicitly incorporates time-varying information about

implied volatility into the machine learning process. This works via the costs (c
(fn)
t , c

(fp)
t ) and scales the

relative contribution of each observation to the loss. The resulting dynamic formulation is useful because
spikes in implied volatility typically coincide with periods of elevated downside risk and financial distress.

2.2 Cost-Sensitive Logistic Regression Models

First we consider the LR model

pt(yt = 1|xt;β) =
1

1 + e−xT
t β

(8)

Such models have previously been applied to the equity market return prediction task (Ballings et al., 2015;
Mascio et al., 2021). Traditionally, LR models are trained by maximizing the log-likelihood. This process is
identical to minimizing the log-loss objective function over the training data. We use this traditional model
as a benchmark in our empirical analysis.

Instead, we consider two penalized LR models that are trained by minimizing either the AEC function
in (3) or the bi-objective function in (7). We can write these problems as follows

AEC LR: β̂ = argmin
β

L2(y,x;β) + λ [(1− α)∥β∥2/2 + α∥β∥1] , (9)

bi-objective LR: β̂ = argmin
β

w1L1(y,x;β) + w2L2(y,x;β) + λ [(1− α)∥β∥2/2 + α∥β∥1] , (10)

where || · ||1 and || · ||2 denote the L1- and L2-norms of a vector.
We incorporate elastic net regularization (λ [(1− α)∥β∥2/2 + α∥β∥1]) into the objective functions because

financial markets are a low signal-to-noise environment with many features and with time-varying feature
importance (see, e.g., James et al., 2023; Timmermann, 2018). This regularization involves two hyper-
parameters, namely λ and α. The former hyper-parameter controls the regularization strength while the
latter hyper-parameter bridges the gap between the logistic lasso regression (α = 1) and logistic ridge
regression (α = 0).

2.3 Cost-Sensitive Gradient Boosting Models

Recent literature that applies machine learning models in finance emphasizes the importance of non-linear
relationships and interactions among predictors (Freyberger et al., 2020; Gu et al., 2020; Bianchi et al., 2021).
As a consequence, the application of GBMs, a non-linear ensemble machine learning algorithm, to empirical
asset pricing and financial forecasting is becoming increasingly popular (Krauss et al., 2017; Leippold et al.,
2022). In particular, we are interested in how the two cost-sensitive objective functions can be used to
improve standard GBM models.

Boosting is an ensemble learning concept whereby K weak base learners hk(xt,θk), k = 1, . . . ,K, are
sequentially trained to minimize the aggregated prediction error of the ensemble at the current iteration.
As base learners, we use binary decision trees. A binary decision tree divides the feature space into non-
overlapping hyper-rectangles via a recursive sequence of binary splits. James et al. (2013) and Biau and
Scornet (2016) provide a formal treatment of decision trees, and Varian (2014) provide a discussion of
decision trees within the context of financial economics.
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At each step in boosting, a new decision tree seeks to explain the residuals from the aggregated model at
the previous iteration, thereby improving the prediction at the current iteration. The final boosted model is
the sum of the sequential predictions from the individual base learners,

f(xt;θ) =

K∑
k=1

hk(xt;θk). (11)

In gradient boosting we treat the predictions hk(xt;θk) as the ensemble model parameters (Friedman,
2001). Let f (k)(xt;θ) denote the ensemble model at iteration k where θ contains all base learner parameters,
and let the gradient of a loss function evaluated at the (k − 1th) iteration be defined as

gtk =
∂ℓ(yt, ξ)

∂ξ

∣∣∣∣
ξ=f(k−1)(xt;θ)

(12)

We seek to train a base learner in the direction that approximates the negative value of this gradient. The
boosting updates can be written as follows

f (k)(xt;θ) := f (k−1)(xt;θ) + νhk(xt;θk), (13)

where ν ∈ [0, 1] is the learning rate hyper-parameter that shrinks the contribution of the kth weak learner.
The predictions from a ridge logistic regression model are used as the initial values in the first iteration of
the boosting ensemble when we construct our gradient boosting models.

We use the LightGBM framework introduced by Ke et al. (2017). This framework is a highly efficient
implementation of the general gradient boosting algorithm and also offers several techniques that can improve
performance. In particular, LightGBM features histogram binning where the number of bins is a hyper-
parameter which can be tuned to reduce over-fitting and speed up computations. Moreover, LightGBM
grows the individual decision tree base learners leaf-wise, meaning that nodes of the binary decision tree are
expanded in a best-first order and not the traditional so-called depth-wise ordering. This approach has been
shown to achieve lower global values of the loss function when compared to the depth-wise approach (Shi,
2007).

We use the log-loss objective LightGBM model as a benchmark in our empirical analysis. For our AEC
and bi-objective functions the expressions for the first and second-order gradients for observation t required
by LightGBM are

∂ℓ1(yt, ξ)

∂ξ

∣∣∣∣
ξ=f(xt;θ)

=
1

1 + e−f(xt;θ)
− yt (14)

∂ℓ2(yt, ξ)

∂ξ

∣∣∣∣
ξ=f(xt;θ)

= −c
(fn)
t yte

−f(xt;θ) + c(fp)(1− yt)e
−f(xt;θ)

(1 + e−f(xt;θ))2
(15)

∂2ℓ1(yt, ξ)

∂ξ2

∣∣∣∣
ξ=f(xt;θ)

=
1

1 + e−f(xt;θ)

(
1− 1

1 + e−f(xt;θ)

)
(16)

∂2ℓ2(yt, ξ)

∂ξ2

∣∣∣∣
ξ=f(xt;θ)

=
c
(fn)
t yt(e

f(xt,θ))e−2f(xt,θ) − c
(fp)
t (1− ef(xt,θ))(yt − 1)e−2f(xt,θ)

(1 + e−f(xt,θ))3
(17)

To reduce the likelihood of over-fitting in the low signal-to-noise environment, we employ various algo-
rithmic novelties. Specifically, we always sub-sample observations (a process known as stochastic gradient
boosting) and only fit the base learner to a random sample of

√
p features at each boosting iteration. We
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also impose both L1-norm and L2-norm regularization explicitly within the boosting process. In classical
gradient boosting, the base learners added in the latter iterations have a tendency to affect the predictions
for a small number of observations (Vinayak and Gilad-Bachrach, 2015). In other words, these late-stage
base learners over-fit. To address this issue we use the DART approach of Vinayak and Gilad-Bachrach
(2015) which involves randomly dropping a fixed fraction, such as 10%, of the previously estimated base
learners when computing the gradient in (12). This means that the predictions from the ensemble model at
the ith boosting iterations are computed without using this random fraction of base learners. The DART
framework reduces the likelihood of over-fitting noisy financial data.

2.4 Hyper-parameter Optimization

Prior literature has typically used simple train/test splits when tuning model hyper-parameters (see, e.g., Gu
et al., 2020; Chen et al., 2023; Bali et al., 2023; Goyenko and Zhang, 2020), while others have simply fixed
model hyper-parameters at intuitively reasonable values or values used in prior literature (see, e.g., Krauss
et al., 2017). Both of these methods may result in erroneous conclusions about model performance since
hyper-parameters are critical to the machine learning process. Instead, we tune hyper-parameters using the
K-fold purged and embargoed cross-validation method of De Prado (2018) and the Optuna framework of
Akiba et al. (2019).

The K-fold purged and embargoed cross-validation method addresses issues associated with information
leakage when traditional K-fold cross-validation is applied to financial forecasting tasks. Moreover, K-fold
purged and embargoed cross-validation should be better at preventing over-fitting relative to the simple
train/test split approach. This technique first splits the training data into K contiguous folds. Then, we
remove (purge) observations in any of the training folds where there is known information overlap with
observations in the test fold that were used to compute yt, the forward-looking binary return direction
variable, in the training fold. Additionally, we also remove a fixed number of observations from the beginning
of the training fold that immediately follows the test fold to alleviate information leakage associated with
serial correlation in predictor variables, a process referred to as embargoing by De Prado (2018). We set
K = 5 and choose to embargo 2.5% of the training data.

Optuna implements efficient sampling strategies that focus the hyper-parameter optimization search
on regions that are most likely to achieve the smallest value of the loss function over the test set. Within
Optuna we use the Tree-structured Parzen Estimator algorithm to search for the best set of hyper-parameters
(Bergstra et al., 2011). By using this state-of-the-art hyper-parameter tuning framework we can be confident
that any differences in model performance are likely attributable to our cost-sensitive objective function
rather than sub-optimal hyper-parameters. We allow Optuna to use 200 iterations to find the best set of
model hyper-parameters.

For the logistic regression model, we find the optimal value of λ within a log domain search space between
0.1 and 10, and the optimal value of α between 0.1 and 1. For the gradient boosting model, we search for the
number of leaf nodes between 6 and 254, the value of the learning rate between 0.01 and 0.25, the fraction
of training data used to fit each base learner between 0.3 and 0.5, the number of bins used to construct the
histogram based approximations of each feature between 20 and 256, and the number of boosting iterations
between 50 and 200. The values of the L1 and L2 regularization penalties are chosen within the log domain
search space between 0.01 and 1. For simplicity we use the log-loss objective to select model hyper-parameters
for all models that we study. As such, any gains in performance observed for our cost-sensitive models likely
represents a lower bound and could be further improved by tailoring the hyper-parameter tuning specifically
to their individual AEC and bi-objective functions.
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3 Data and Experimental Design

Our models are evaluated using the S&P500, NASDAQ100, and Dow Jones Industrial Average (DJIA) stock
market indices. To ensure the robustness of our results we also evaluate the models using a sample of
24 individual U.S. equities that have remained constituents of the S&P500. The ticker symbols of these
individual equities are; AAPL, XOM, MSFT, GE, JNJ, WMT, JPM, PG, PFE, CVX, WFC, BAC, IBM,
C, KO, INTC, CSCO, VZ, ORCL, MRK, PEP, HD, DIS and UNH, and we estimate separate LR and GBM
models for each asset. We make rolling h-day ahead return direction forecasts using a training sample of
the last 1500 trading days, which is approximately six years of historical data. Our results are entirely
robust to an expanding window forecasting scheme but to save space we do not report these results. We
prefer the rolling window forecasting scheme because this limited memory estimator can provide a better
local approximation when the target series is auto-correlated and/or the prediction model is potentially
misspecified (see, e.g. Giacomini and White, 2006).5

Daily price data for each asset is obtained from Compustat and option prices are obtained from the
OptionMetrics IvyDB database for the period 03/07/1996 to 31/12/2021. The length of available option
price data differs for each asset that we consider. To make use of all available data, we evaluate out-of-
sample return direction forecasts for the S&P500 from 02/08/2002, the NASDAQ100 from 11/05/2005, and
the DJIA from 17/06/2008. Out-of-sample return direction forecasts for the sample of 24 individual U.S.
equities are evaluated over the sample period beginning 26/10/2010, as these securities have shorter option
price histories in the OptionMetrics IvyDB database.

Appendix A describes the predictor variables and their data source. Broadly speaking, our predictor
variables describe the behavior of past returns, including the use of various technical indicators that measure
trend and momentum of the market (see, e.g. Neely et al., 2014; Baetje and Menkhoff, 2016), financial
market volatility, skewness, and kurtosis (Anatolyev and Gospodinov, 2010; Bollerslev et al., 2009), and
economic and financial conditions (Aruoba et al., 2009; Kliesen et al., 2012; Long et al., 2022). We have
purposefully kept the predictor set at a moderate size and used theoretically intuitive predictors since our
contribution is to demonstrate the utility of a cost-sensitive learning framework, rather than to design the
most comprehensive return direction forecasting model. Each variable is constructed to ensure that there is
no look-ahead bias at the forecast time.

The hyper-parameters of all models are re-tuned at the beginning of every month. The performance
of the cost-sensitive models is benchmarked against their traditional log-loss objective counterparts. The
put-call spread (price differential) is included as a predictor in the benchmark models (LR (put-call spread)
and GBM (put-call spread))6. We also include the CBOE VIX index as a predictor variable in all models
(both the proposed cost-sensitive models and the benchmarks with the usual log-loss) when forecasting the
S&P500 index and the 24 individual equities, and the CBOE VXN and VXD indices when forecasting the
NASDAQ100 and DJIA respectively. This would be the simplest and most obvious way to incorporate option
prices and implied volatility information into a predictive model.

4 Classification Performance

To evaluate the classification performance of the proposed prediction models we use precision, recall, speci-
ficity, negative predictive value (NPV), F1 scores for both classes (F1 (+1) and F1 (0)), and balanced
accuracy. The precision score measures the proportion of h-day ahead returns predicted as positive that
were positive. The recall score measures the proportion of all positive returns that were correctly predicted

5The codes for our models are available at ???
6We do not include the put and call option prices separately as predictor variables in the benchmark models because they

are highly correlated.
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as positive. Specificity and negative predictive value scores are akin to the precision and recall scores for the
zero class, respectively. The F1 (+1) (F1 (0)) score is a harmonic mean of precision and recall (specificity and
negative predictive value), and it measures the trade-off between precision and recall (specificity and negative
predictive value). For example, a classifier that achieves high precision at the expense of recall will have
a low F1 (+1) score. Balanced accuracy is an average of the true-positive and true-negative classification
rates, essentially measuring classification accuracy for both classes.

The above measures depend on the threshold used for classification. As threshold-invariant measures, we
report the area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC), and Brier
loss function. AUROC evaluates how well a classifier distinguishes between positive and negative returns
and is a measure of the probability that the classifier will assign a higher score to a randomly chosen day
where the future return direction is positive than a randomly chosen day where the future return is negative.
The Brier loss is defined as the mean squared difference between the probability forecast and the realized
binary outcome and summarizes the accuracy of the probability forecasts from each classification model.

We also report the mean, median, minimum, maximum, and standard deviation of 30-day ahead returns
when ŷt = 1 and when ŷt = 0. Finally, we report the number of predictions for each class and % Gain/Annum,
which is the annualized return earned when ŷt = 1 and ŷt = 0. These statistics provide an indication of
the potential investment returns from each model; we provide a more thorough analysis of a long-short
investment strategy in a later section.

4.1 Equity Index Classification Results

Table 1 reports the mean performance measures for S&P500, NASDAQ and DJIA. The average ROC and
precision-recall curves are computed using threshold averaging for 100 unique values of the threshold between
zero and one (see, e.g., Fawcett, 2006). The area under these average curves is computed using the trapezoidal
rule.

We find that both our cost-sensitive LR and GBM models achieve a higher F1 score for the positive class.
This is primarily underpinned by a higher recall score. However, both the AEC and the bi-objective logistic
regression models tend to have slightly lower specificity, NPV and F1 (0) scores then benchmark models.
Collectively, these results suggest that adjusting the loss function used to train an LR model to incorporate
option-based costs disproportionately improves the prediction of positive future returns. The bi-objective
LR model outperforms the AEC LR model in terms of F1 scores and balanced accuracy scores.

The AEC GBM model has a larger F1 (+1) score but lower F1(0) and balanced accuracy than the
bi-objective GBM model. However, we note that balanced accuracy scores of our cost-sensitive models
are marginally smaller than the benchmark model scores. The Brier loss demonstrates that the AEC and
bi-objective LR models provide a more accurate probabilistic signal about the direction of future equity
market returns compared to benchmark LR models. Both the AEC LR and bi-objective LR models achieve
a higher AUROC and marginally lower AUPRC. This result is broadly consistent with the observation that
the cost-sensitive models tend to perform better for predicting positive future returns (the majority class)
than the benchmark models.

Tables 2 and 3 report summary statistics for realized returns categorized by the predicted class and model.
The bi-objective LR model has the smallest mean and median realized returns when ŷt = 0. While the mean
and median return for AEC and bi-objective GBM models are less favourable compared to the benchmark
models, we note that our models outperform the benchmark GBM in terms of the % Gain/Annum. This
may indicate an improved market timing ability of the AEC and bi-objective GBM models. Consistent with
higher (lower) recall (specificity) from Table 1, the AEC and bi-objective models issue positive (negative)
return5 forecasts more (less) often than the benchmark models.

Standardized 10-day ahead options are available for the the S&P500 index from 04/11/2005, and for
the NASDAQ100 and DJIA indices from 20/08/2007. Therefore, in Tables 4 - 6 we report classification
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Table 1: 30-day Ahead Equity Index Classification Performance Results
The table reports classification performance measures for 30-day ahead return direction forecasts for the
S&P500, NASDAQ and DJIA equity market indices. The acronym LR stands for logistic regression. The
acronym GBM stands for gradient boosting machine. The acronym AEC stands for Average Expected Cost.

(i) Logistic Regression

LR LR (put-call spread) AEC LR Bi-objective LR

Precision 0.7238 0.7238 0.7154 0.7178
Recall 0.6097 0.6100 0.6238 0.6790
F1 (+1) 0.6610 0.6611 0.6665 0.6976
NPV 0.3909 0.3917 0.3821 0.4005
Specificity 0.5168 0.5169 0.4829 0.4450
F1 (0) 0.4440 0.4443 0.4266 0.4212
Balanced Accuracy 0.5632 0.5634 0.5534 0.5620
Brier Loss 0.2929 0.2927 0.2635 0.2556
AUROC 0.5459 0.5471 0.5624 0.5604
AUPRC 0.7212 0.7208 0.6689 0.7161

(ii) Gradient Boosting Machine

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Precision 0.6991 0.6976 0.6863 0.6874
Recall 0.6844 0.6872 0.7939 0.7394
F1 (+1) 0.6916 0.6923 0.7361 0.7123
NPV 0.3712 0.3696 0.3645 0.3576
Specificity 0.3873 0.3806 0.2453 0.3011
F1 (0) 0.3790 0.3749 0.2931 0.3263
Balanced Accuracy 0.5358 0.5339 0.5196 0.5203
Brier Loss 0.2417 0.2395 0.2564 0.2485
AUROC 0.5528 0.5602 0.5252 0.5322
AUPRC 0.7090 0.7166 0.6946 0.6928
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Table 2: 30-day Ahead LR Equity Index Return Statistics
The table reports summary statistics for the realized returns across the S&P500, NASDAQ and DJIA equity
market indices. The acronym LR stands for logistic regression.

(i) ŷt = 1

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 1.7715 1.7520 1.6938 1.6940
Median 2.4154 2.4261 2.3224 2.3672
Min -35.4432 -35.4432 -35.4563 -35.2088
Max 23.1077 23.1077 18.3592 17.5322
Std 5.4234 5.4536 5.0103 5.0108
% of Time 56.8250 56.8385 58.8538 63.8627
% Gain/Annum 21.7630 21.0646 17.4068 17.5545

(ii) ŷt = 0

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 0.4072 0.4239 0.4843 0.3314
Median 1.4038 1.3786 1.5123 1.3161
Min -41.8663 -41.8663 -41.8663 -41.4685
Max 24.7162 24.7162 24.7162 24.7162
Std 6.6593 6.6383 7.1121 7.3916
% of Time 43.1750 43.1615 41.1462 36.1373
% Gain/Annum -2.0422 -1.2836 2.3282 0.2848
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Table 3: 30-day Ahead GBM Equity Index Return Statistics
The table reports summary statistics for the realized returns across the S&P500, NASDAQ and DJIA equity
market indices. The acronym GBM stands for gradient boosting machine.

(i) ŷt = 1

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 1.5039 1.4955 1.2965 1.3520
Median 2.1872 2.1841 2.0434 2.0958
Min -37.3635 -37.1158 -41.8663 -36.1531
Max 24.7162 24.7162 23.5020 23.5020
Std 5.5229 5.4452 5.5913 5.4870
% of Time 66.0904 66.4965 78.1011 72.6319
% Gain/Annum 13.6431 12.0855 13.4910 15.0917

(ii) ŷt = 0

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 0.5958 0.5981 0.8318 0.7767
Median 1.7126 1.6845 1.9688 1.9243
Min -41.4685 -41.8663 -39.4850 -41.8663
Max 23.1077 23.1077 24.4726 24.4726
Std 6.8577 6.9807 7.3331 7.2499
% of Time 33.9096 33.5035 21.8989 27.3681
% Gain/Annum 5.6335 8.4510 2.5305 0.3173
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performance metrics and return statistics for rolling 10-day ahead return direction forecasts using 10-day
ahead put and call option prices. We find that the behavior of the AEC and bi-objective models at the
10-day ahead forecast horizon is consistent with the behavior at the 30-day horizon. That is, our cost-
sensitive models tend to achieve higher F1(+1) scores, underpinned by a significantly higher recall scores
and marginally higher precision scores relative to the benchmark models, and lower F1(0) scores primarily
driven by a lower specificity score relative to the benchmark models.

Both the AEC and bi-objective LR models obtain a lower Brier loss static than benchmark models,
consistent with the results for one-month ahead forecasts. Moreover, both the bi-objective LR and GBM
models achieve higher AUROC and AUPRC than their respective benchmarks at the 10-day ahead forecasting
horizon.

Table 4: 10-day Ahead Equity Index Classification Performance Results
The table reports classification performance measures for 10-day ahead return direction forecasts for the
S&P500, NASDAQ and DJIA equity market indices. The acronym LR stands for logistic regression. The
acronym GBM stands for gradient boosting machine. The acronym AEC stands for Average Expected Cost.

(i) Logistic Regression

LR LR (put-call spread) AEC LR Bi-objective LR

Precision 0.6764 0.6757 0.6677 0.6725
Recall 0.5937 0.5915 0.6354 0.7029
F1 (+1) 0.6322 0.6305 0.6494 0.6871
NPV 0.3865 0.3852 0.3874 0.4004
Specificity 0.4747 0.4749 0.4182 0.3659
F1 (0) 0.4257 0.4249 0.3995 0.3817
Balanced Accuracy 0.5342 0.5332 0.5268 0.5344
Brier Loss 0.2843 0.2847 0.2645 0.2625
AUROC 0.5415 0.5414 0.5270 0.5515
AUPRC 0.6745 0.6742 0.6432 0.6866

(ii) Gradient Boosting Machine

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Precision 0.6513 0.6399 0.6459 0.6491
Recall 0.5640 0.5752 0.8178 0.7808
F1 (+1) 0.6044 0.6055 0.7216 0.7087
NPV 0.3538 0.3405 0.3357 0.3517
Specificity 0.4416 0.4039 0.1702 0.2187
F1 (0) 0.3928 0.3692 0.2235 0.2684
Balanced Accuracy 0.5028 0.4896 0.4940 0.4998
Brier Loss 0.2485 0.2480 0.2539 0.2464
AUROC 0.5059 0.5009 0.5002 0.5038
AUPRC 0.6528 0.6461 0.6570 0.6489

The proposed bi-objective LR and GBM models earn a lower mean return and % Gain/Annum than
benchmarks when predicting negative 10-day ahead returns, and a higher mean return than benchmarks
when predicting positive 10-day ahead returns. Consistent with the one-month ahead forecasting results, we
find that the AEC and bi-objective models issue fewer negative and more positive return forecasts relative
to benchmark models.
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Table 5: 10-day Ahead LR Equity Index Return Statistics
The table reports summary statistics for the realized returns across the S&P500, NASDAQ and DJIA equity
market indices. The acronym LR stands for logistic regression.

(i) ŷt = 1

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 0.6829 0.6700 0.6142 0.7021
Median 1.0018 0.9973 0.9496 0.9740
Min -23.9025 -23.9025 -24.2093 -26.4219
Max 10.9312 10.9312 11.0349 10.8908
Std 3.0889 3.1025 3.1721 2.9812
% of Time 57.0273 56.8756 61.7110 67.8716
% Gain/Annum 18.7978 18.6489 15.6448 21.0826

(ii) ŷt = 0

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 0.4231 0.4432 0.4444 0.2768
Median 0.6612 0.6558 0.6245 0.5433
Min -26.5290 -26.5290 -17.5890 -25.7820
Max 17.6675 17.6675 17.6675 17.6675
Std 3.2850 3.2654 3.2700 3.5570
% of Time 42.9727 43.1244 38.2890 32.1284
% Gain/Annum 11.8681 12.2042 15.3202 4.7751
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Table 6: 10-day Ahead GBM Equity Index Return Statistics
The table reports summary statistics for the realized returns across the S&P500, NASDAQ and DJIA equity
market indices. The acronym GBM stands for gradient boosting machine.

(i) ŷt = 1

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 0.5156 0.5350 0.5225 0.5664
Median 0.8925 0.8381 0.8185 0.8731
Min -26.7287 -26.9894 -26.9894 -26.7287
Max 13.1898 12.3756 13.5116 13.6623
Std 3.4561 3.3971 3.2311 3.2369
% of Time 56.2240 58.3113 82.2129 78.1096
% Gain/Annum 9.9665 13.8580 14.3707 15.7557

(ii) ŷt = 0

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 0.6327 0.6041 0.7690 0.5795
Median 0.8039 0.8443 0.9734 0.7539
Min -21.1336 -19.5025 -10.0618 -20.3866
Max 17.6675 17.3624 17.1950 17.1950
Std 2.8013 2.8646 2.9850 3.0090
% of Time 43.7760 41.6887 17.7871 21.8904
% Gain/Annum 23.6621 17.9208 20.6350 15.7779
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Table 7 reports averages of the performance metrics for the 30-day ahead forecasts of the 24 individual
U.S. equities.7 Consistent with the results obtained for the U.S. equity market indices, we find that the AEC
and bi-objective models achieve a higher F1 (+1) score and a lower F1 (0) score relative to their benchmark
models. The larger F1 (+1) score is underpinned by both higher precision and recall.

The bi-objective models continue to outperform the AEC models in terms of balanced accuracy. However,
now our bi-objective models achieve the highest balanced accuracy score, albeit by only a small margin.
The AUROC and AUPRC scores for our bi-objective LR and GBM models are higher than for all other
models that we consider, indicating that these models outperform the benchmarks regardless of the specific
probability threshold used to assign binary class labels.

Table 7: Individual Equity Classification Performance Results
The table reports the average classification performance results for 30-day ahead return direction forecasts
for the sample of 24 U.S. equities. The acronym LR stands for logistic regression. The acronym GBM stands
for gradient boosting machine. The acronym AEC stands for Average Expected Cost.

(i) Logistic Regression

LR LR (put-call spread) AEC LR Bi-objective LR

Precision 0.5984 0.5981 0.6002 0.6019
Recall 0.5043 0.5037 0.5587 0.5630
F1 (+1) 0.5435 0.5430 0.5754 0.5788
NPV 0.4144 0.4138 0.4183 0.4222
Specificity 0.5086 0.5081 0.4585 0.4610
F1 (0) 0.4528 0.4523 0.4330 0.4370
Balanced Accuracy 0.5065 0.5059 0.5086 0.5120
Brier Loss 0.3406 0.3412 0.2598 0.2802
AUROC 0.4872 0.4865 0.5052 0.5104
AUPRC 0.5833 0.5825 0.5764 0.5938

(ii) Gradient Boosting Machine

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Precision 0.5837 0.5789 0.5894 0.5982
Recall 0.3694 0.3720 0.4951 0.4703
F1 (+1) 0.4429 0.4434 0.5338 0.5228
NPV 0.4041 0.4029 0.4068 0.4125
Specificity 0.6199 0.6137 0.5018 0.5408
F1 (0) 0.4869 0.4838 0.4458 0.4657
Balanced Accuracy 0.4946 0.4929 0.4984 0.5056
Brier Loss 0.2556 0.2561 0.2773 0.2699
AUROC 0.5013 0.5003 0.4892 0.5028
AUPRC 0.5754 0.5713 0.5755 0.5868

Tables 8 and 9 report the summary statistics for realized returns across the 24 individual U.S. equities,
by model prediction. The benchmark LR models tend to outperform both the AEC and bi-objective logistic
regression models in terms of realized returns for both class labels. However, our AEC and bi-objective
GBM models outperform their respective benchmark model mean and median returns. Moreover, the AEC

7We did not consider 10-day ahead forecasts as standardized 10-day option data is only available from 2011, leaving an
unreasonably short out-of-sample testing period available for analysis.
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and bi-objective GBM models earn a higher (lower) % Gain/Annum when ŷ = 1 (ŷ = 0). Consistent with
the results for the equity market index backtest, we find that the AEC and bi-objective models tend to issue
more (less) positive (negative) class predictions than benchmark models.

Table 8: LR Individual Equity Return Statistics
The table reports averages of summary statistics for the realized returns across 24 individual U.S equities.
The acronym LR stands for logistic regression.

(i) ŷt = 1

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 1.3288 1.3070 1.2696 1.2601
Median 1.6377 1.6283 1.6716 1.6487
Min -37.5102 -37.4633 -40.2212 -37.3782
Max 28.1745 28.1745 29.0293 28.2126
Std 7.4353 7.4564 7.4323 7.3897
% of Time 49.8846 49.8698 55.0293 55.2779
% Gain/Annum 15.3441 14.9070 11.9485 12.8817

(ii) ŷt = 0

LR LR (put-call spread) AEC LR Bi-objective LR

Mean 0.9406 0.9649 0.9766 0.9502
Median 1.4698 1.4896 1.3967 1.4022
Min -39.8185 -39.5483 -40.9332 -40.2716
Max 26.3318 26.0917 27.0770 27.8379
Std 7.7253 7.7055 7.8658 7.9618
% of Time 50.1154 50.1302 44.9707 44.7221
% Gain/Annum 6.2884 6.7067 10.7654 8.0063

Broadly speaking, the bi-objective models outperform the AEC models for both the equity market index
and single stock 30-day ahead return direction prediction. This demonstrates the utility of combining a
traditional machine learning objective function with a second objective that incorporates the dynamics of
financial markets. This finding is also related to the forecast combinations literature, where it is often found
that the equal-weighted combination of forecasts is a competitive benchmark that outperforms individual
forecasts in noisy economic and financial environments (Timmermann, 2006). Including the put-call spread
as an additional predictor variable only yields a very minor improvement in classification performance for
backtests using both the equity market index and individual equities.

Some prior literature has found that non-linear and ensemble machine learning models outperform linear
regression models for stock return forecasting (see, e.g., Gu et al., 2020; Bali et al., 2023; Leippold et al.,
2022). However, we find no definitive evidence that gradient boosting comprehensively outperforms elastic-
net logistic regression for 30-day-ahead stock return direction forecasting. Instead, our result is broadly
consistent with that of Iworiso and Vrontos (2020) who show that elastic-net probit models outperform
gradient boosting for one-month ahead forecasts of the U.S equity risk premium direction. To reconcile
our results with some prior literature, we first note that Gu et al. (2020); Bali et al. (2023) and Leippold
et al. (2022) studied point forecasts of returns, not return direction forecasts. Moreover, Leippold et al.
(2022) find that the performance of GBM models is largely driven by small-cap stocks, whereas we study
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Table 9: GBM Individual Equity Return Statistics
The table reports averages of summary statistics for the realized returns across 24 U.S individual equities.
The acronym GBM stands for gradient boosting machine.

(i) ŷt = 1

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 1.0860 1.0363 1.1341 1.2787
Median 1.3935 1.3223 1.4859 1.6197
Min -38.7440 -36.8273 -39.1770 -37.4575
Max 27.6160 26.7197 28.4929 28.0217
Std 7.2950 7.3189 7.2815 7.1375
% of Time 37.4231 37.8344 49.6375 46.5584
% Gain/Annum 10.3855 8.5743 12.1812 13.6139

(ii) ŷt = 0

GBM GBM (put-call spread) AEC GBM Bi-objective GBM

Mean 1.1737 1.1781 1.1523 1.0713
Median 1.6718 1.6849 1.6077 1.5168
Min -42.0164 -41.6720 -40.3937 -40.7594
Max 27.9253 27.9695 27.3085 27.9797
Std 7.7851 7.7927 7.8840 7.9091
% of Time 62.5769 62.1656 50.3625 53.4416
% Gain/Annum 9.4721 11.0972 8.7930 8.5937
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equity market indices and large-cap stocks.8 However, when our AEC and bi-objective models do outperform
the benchmark models, the gains are larger for the GBM models. That is, the non-linear ensemble GBM
algorithm tends to benefit more from cost-sensitive learning, relative to the traditional log-loss objective
GBM model when there are gains to be extracted.

5 Economic Significance

Ultimately, an effective stock return direction prediction model is judged by its ability to generate superior
returns net of transaction costs in a relevant investment strategy. Even small differences in classification
performance between models have the potential to generate sizeable differences in long-run returns when
the forecasts are used to make trading decisions. We backtest two long-short market timing strategies that
trade an equal-weighted portfolio of the three equity market indices based upon the one-month and 10-day
ahead return direction predictions. That is, we long the index when the model predicts the class label +1
(positive), and short the index when the model predicts the class label 0 (negative). We use the equal weight
portfolio because it is a simple and robust benchmark portfolio construction method that outperforms more
complex portfolio construction methods out-of-sample (see, e.g., DeMiguel et al., 2009; Swade et al., 2023).9

Each long/short strategy trades the equal-weighted combination of the State Street SPDR, State Street
DIA, and the Invesco QQQ exchange-traded funds. These are the tradeable equity index instruments that
track the S&P500, DJIA, and NASDAQ100 indices respectively. Importantly these tradeable instruments
incorporate the real-world expense ratios that an investor would incur. All strategy performance statistics
are computed net of transaction costs which are assumed to be 0.3% of the value traded (Petraki, 2020).
We also include a cost equal to 0.1% of the prevailing mid price to account for slippage at the time of the
transaction.10

To mitigate path dependence, that is the dependence of the strategy returns on a given starting date, we
average results over all possible starting days between 18/06/2008 and 18/06/2009 for the strategy involving
one-month ahead predictions, and between 20/08/2013 and 20/08/2014 for the 10-day ahead predictions.
The exception is the maximum drawdown statistic, where we take the maximum instead of the average.
Both backtests end on 31/12/2021. The portfolio re-balancing period is set to match the forecast horizon.
Predictions generated by each model use information up to and including time t to forecast the direction of
return at time t+ h. Therefore, it is unrealistic to trade on any forecast at time t. We lag each forecast so
that at time t+1, we trade on the forecast produced at time t. This ensures that our strategies do not have
look-ahead bias.

Tables 10 and 11 present measures of investment performance for the one-month and 10-day ahead
predictions respectively. We report three ratios that measure returns per unit of risk. The Sharpe ratio
is the excess return divided by the standard deviation.11 The Sortino ratio is the excess return divided
by the standard deviation of only negative returns (downside deviation). The MAR ratio is the strategy’s
compound annual growth rate divided by the strategy’s maximum drawdown. Additionally, we report the
beta with respect to the equal-weighted market buy & hold portfolio.

8For the largest 70% of stocks by market-cap and the largest 70% average market capitalization per shareholder Leippold
et al. (2022) find that elastic-net linear regressions exhibit a higher out-of-sample R2 than GBM models.

9Our results are robust to using a weighting scheme based upon the confidence in the predicted probabilities, that is upon
how far away from 0.5 the predicted probabilities are for each equity market index. In this weighting scheme more confident
predictions receive larger weights.

10We checked sensitivity of our results to using the so-called square-root market impact model for transaction costs, in which
the costs are computed as C = 0.35σ(Q/V )0.4, where Q is the order size, V is the average daily traded volume, σ is daily
volatility, and 0.35 and 0.40 are default parameters of the model. Our results are fully robust to this alternate transaction costs
model.

11We always define excess returns as the strategy return above the return on cash.
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Table 10: 30-day Ahead Long/Short Investment Strategy Backtest Results
The table reports investment performance statistics for the long/short investment strategy backtest that
uses 30-day ahead predictions from the logistic regression and gradient boosting models. The acronym LR
stands for logistic regression. The acronym GBM stands for gradient boosting machine.

(i) Logisitic Regression

LR LR (put call spread) AEC LR Bi-objective LR

Annualised Return (%) 6.9455 6.8990 7.0799 8.9388
Annualised Std 14.8760 14.8667 14.0180 14.5484
Annualised Sharpe Ratio 0.5122 0.5091 0.5421 0.6441
Annualised Sortino Ratio 0.8247 0.8198 0.8734 1.0421
Max Drawdown (%) -31.4349 -31.4929 -29.1421 -28.0612
Max Drawdown Period (days) 250.8053 254.6374 152.2901 124.1794
MAR Ratio 0.2390 0.2389 0.2710 0.3361
Max DD/Vol 2.1092 2.1166 2.0779 1.9268
Annualised Downside Deviation 9.3066 9.3058 8.7569 9.0233
Beta -0.0811 -0.0764 -0.1137 -0.0653

(ii) Gradient Boosting Machine

GBM GBM (put call spread) AEC GBM Bi-objective GBM

Annualised Return (%) 8.2256 8.0872 10.5628 9.5228
Annualised Std 15.2176 15.1763 15.4006 14.9089
Annualised Sharpe Ratio 0.5809 0.5742 0.7162 0.6711
Annualised Sortino Ratio 0.9105 0.9066 1.1127 1.0519
Max Drawdown (%) -33.8870 -32.6567 -31.2007 -32.6957
Max Drawdown Period (days) 423.9924 476.9046 204.2634 358.6679
MAR Ratio 0.2613 0.2659 0.3628 0.3101
Max DD/Vol 2.2299 2.1527 2.0191 2.1919
Annualised Downside Deviation 9.7889 9.6990 9.9716 9.5591
Beta 0.3334 0.3043 0.4910 0.3738
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Table 11: 10-day Ahead Long/Short Investment Strategy Backtest Results
The table reports investment performance statistics for the long/short investment strategy backtest that
uses 10-day ahead predictions from the logistic regression and gradient boosting models. The acronym LR
stands for logistic regression. The acronym GBM stands for gradient boosting machine.

(i) Logisitic Regression

LR LR (put call spread) AEC LR Bi-objective LR

Annualised Return (%) 1.7399 1.2479 4.4511 8.9664
Annualised Std 14.5608 14.5489 12.6107 14.2428
Annualised Sharpe Ratio 0.1874 0.1565 0.3982 0.6605
Annualised Sortino Ratio 0.2878 0.2428 0.5958 0.9916
Max Drawdown (%) -32.5856 -32.9302 -28.2925 -31.5601
Max Drawdown Period (days) 235.6756 205.8397 203.0840 73.9771
MAR Ratio 0.0603 0.0472 0.1664 0.3267
Max DD/Vol 2.2335 2.2599 2.2384 2.2031
Annualised Downside Deviation 9.7005 9.7143 8.5217 9.6365
Beta 0.0739 0.0770 0.1989 0.2052

(ii) Gradient Boosting Machine

GBM GBM (put call spread) AEC GBM Bi-objective GBM

Annualised Return (%) 1.2366 2.8427 7.8442 7.6551
Annualised Std 14.4883 13.8423 15.4558 14.7814
Annualised Sharpe Ratio 0.1546 0.2618 0.5484 0.5573
Annualised Sortino Ratio 0.2302 0.3906 0.7857 0.8145
Max Drawdown (%) -39.7291 -36.9987 -35.5431 -32.8688
Max Drawdown Period (days) 763.7137 647.5000 123.2176 206.5763
MAR Ratio 0.0448 0.1029 0.2305 0.2705
Max DD/Vol 2.7306 2.6793 2.2994 2.2063
Annualised Downside Deviation 10.0550 9.5142 10.8274 10.2418
Beta 0.4013 0.4037 0.6653 0.5790
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It is clear from the tables that cost-sensitive models outperform their respective benchmarks for both the
one-month and 10-day ahead forecasts. Among the logistic regression models, the bi-objective models earn
the largest annualized returns and have the highest Sharpe ratio. Among the GBM models, both the AEC
and bi-objective GBM models earn higher annualized returns and have substantially higher Sharpe ratios
than their benchmarks. At the one-month ahead horizon the AEC GBM model marginally outperforms
the bi-objective model. The opposite is true at the 10-day ahead horizon. These results demonstrate that
combining log-loss and AEC produces machine learning models that generate superior risk-adjusted returns.

Long/short strategies that use forecasts from our cost-sensitive models have lower downside risk. First,
they have a higher Sortino ratio, underpinned by higher annualized returns and smaller annualized downside
deviations. Second, the cost-sensitive models have a maximum draw-down that is almost always smaller
than for the benchmark models, a maximum drawdown period that is significantly shorter than for the
benchmarks, and a smaller maximum-drawdown per unit of risk. Finally, our AEC and bi-objective models
have a higher MAR ratio. In summary, both logistic regressions and GBM models which incorporate cost-
sensitive learning generate forecasts that reduce downside risk in a long/short investment strategy, relative
to strategies that use forecasts from a traditional log-loss machine learning model.

This result that our AEC and bi-objective model strategies have a lower downside risk is particularly
interesting given that these models achieved lower F1 (0) scores than their benchmarks. These lower F1 (0)
scores were almost entirely attributable to a lower specificity score. To reconcile these results and to further
understand the dynamics of our AEC and bi-objective models, Table 12 reports the recall scores for the
subset negative returns that are larger than one standard deviation and for the subset of negative returns
that are smaller than one standard deviation. When compared to benchmark specificity scores, the AEC
and bi-objective models have relatively smaller specificity scores for the subset of negative returns that are
less than or equal to one standard deviation in absolute value. That is, our cost-sensitive models tend to
focus more on correctly classifying large negative returns rather than small negative returns. Our investment
strategy results show that this negative return classification behaviour is not economically detrimental and
can reduce investors’ exposure to downside risk.

Table 12: Specificity scores for large and small negative returns
The table reports specificity scores for two subsets of the out-of-sample forecast period. The first subset is negative
returns that are larger than one standard deviation (r

(−)
t < std(r)) in absolute value. The second subset is negative

returns that are less than or equal to one standard deviation (r
(−)
t ≥ std(r)) in absolute value.

h=30 h=10

r
(−)
t < std(r) r

(−)
t ≥ std(r) r

(−)
t < std(r) r

(−)
t ≥ std(r)

LR 0.5434 0.5087 0.4363 0.4876
LR (Put Call Spread) 0.5370 0.5116 0.4251 0.4904
AEC LR 0.5471 0.4629 0.4153 0.4223
Bi-objective LR 0.5267 0.4161 0.4463 0.3396
GBM 0.4674 0.3565 0.3819 0.4645
GBM (Put Call Spread) 0.4625 0.3512 0.3865 0.4102
AEC GBM 0.3271 0.2147 0.1562 0.1733
Bi-objective GBM 0.3884 0.2683 0.2118 0.2207

Figures 1 and 2 plot the average cumulative portfolio value for long/short strategies using the one-
month and 10-day ahead predictions, respectively. After initially under-performing between 2008 and 2012,
the long/short strategy that uses one-month ahead predictions from the bi-objective LR and GBM models
outperforms from 2014 onward. At the 10-day horizon both the bi-objective LR model and bi-objective

23



GBMmodel comprehensively outperform benchmark models. Hence, an investor could have realized material
economic gains by incorporating cost-sensitive machine learning into return direction forecasts for U.S. equity
market indices. Interestingly, all 10-day ahead long/short strategies suffer significant drawdowns during the
COVID-19 crisis while strategies that use the one-month ahead predictions do not.

We find that the strategies using GBM model forecasts earn higher returns and have higher Sharpe
ratios than the strategies using LR model forecasts at the one-month horizon. This is despite not being
able to comprehensively outperform logistic regression in terms of the classification performance discussed
in Section 4. That is, one-month ahead forecasts from non-linear ensemble machine learning algorithms
appear to translate into better investment performance than forecasts made by linear models. This finding
is consistent with our conclusion that GBM algorithm tends to extract a larger gain from a cost-sensitive
learning structure when compared to the elastic-net LR algorithm. Moreover, at the one-month ahead
horizon the GBM models appear to perform better over the COVID-19 crisis period than the LR models,
which make a substantial profit during the initial drawdown but give back most of the gains in the subsequent
market rally. This finding is broadly consistent with that of Bali et al. (2023) who also find that gradient
boosting models exhibited superior investment performance over the COVID-19 crisis.

The LR models have a substantially smaller beta to the equal-weighted buy & hold strategy, potentially
offering diversification benefits in multi-strategy investment settings. All GBM models have a positive
beta. When comparing strategies over different forecast horizons we find that one-month ahead investment
strategies earn higher returns and tend to have higher Sharpe ratios than 10-day ahead. Finally, since
institutional investors such as pension funds tend to be predominately long-only investors, we demonstrate
in Appendix B that our conclusions about relative model performance are mostly robust to using a long-only
investment strategy where short positions are replaced with equivalent long positions in the Vanguard U.S.
total bond market ETF.

6 Conclusion

Existing applications of machine learning models to forecast the direction of equity market returns assume
that misclassification costs are constant and equal. In this study, we design example dependent cost-sensitive
objective functions for this task. These objective functions incorporate time-varying and asymmetric costs
of false-positive and false-negative classification errors. In particular, we study a novel bi-objective function
that combines the average expected cost with the log-loss objective function. Hence, our models incorporate
the idea that the cost of making different classification errors changes over the business cycle.

As measures of the misclassification cost we use at-the-money put and call option prices. These prices
are naturally forward-looking and incorporate the investor’s expectations and preferences about future risk
and return. We train logistic regressions and gradient-boosting machines using the cost-sensitive objective
functions and we show that these models improve the classification performance of positive future returns.
In particular, our models always correctly classify a larger fraction of future positive returns at both a
one-month and 10-day ahead forecast horizon for both equity market indices and individual stocks. A long-
short strategy that trades an equal-weighted portfolio of three U.S. equity indices based upon the return
direction forecasts of the cost-sensitive models earns superior risk-adjusted returns. Moreover, strategies
that use cost-sensitivity have a lower downside risk. Investors could have earned superior returns by using
our cost-sensitive objective functions when traininng financial machine learning models.

This paper contributes to the growing literature that applies machine learning to forecast the direction of
equity market returns (Fischer and Krauss, 2018; Iworiso and Vrontos, 2020; Mascio et al., 2021). We show
that augmenting the objective functions in these models to better suit the dynamics of financial markets
improves classification performance. The paper is also related to the literature studying the informational
relationships between stock and option markets (see, e.g., Pan and Poteshman, 2006; Johnson and So,
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(a) Logistic Regression Long/Short Backtest Portfolio Values

(b) GBM Long/Short Backtest Portfolio Values

Figure 1: The Figure plots the average portfolio value for the long/short investment strategy backtests that
use 30-day ahead predictions from the logistic regression (LR) and GBM models.
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(a) Logistic Regression Long/Short Backtest Portfolio Values

(b) GBM Long/Short Backtest Portfolio Values

Figure 2: The Figure plots the average portfolio value for the long/short investment strategy backtests that
use 10-day ahead predictions from the logistic regression (LR) and GBM models.
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2012; An et al., 2014). We explore new ways of using options information in financial machine learning by
incorporating put and call prices into the objective function in a principled manner. Finally, our study is
also related to an emerging literature that compares the utility of linear and non-linear machine learning
models in financial modeling and forecasting tasks (see, e.g., Gu et al., 2020; Rasekhschaffe and Jones, 2019;
Christensen et al., 2021).

Promising directions for future research include using in-the-money or out-of-the-money option prices to
provides further incremental improvements in predictive power (see, e.g., Shirvani et al., 2019) and studying
the effect of different weighting schemes when combining the log-loss and average expected cost.
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A Predictor Variable Descriptions

This appendix provides a description of the predictor variables used in our LR and GBM models. We also
state the frequency at which the variable is available and the data source used to construct each variable.

1. ADS: The Aruoba-Diebold-Scotti Business Conditions Index (see, e.g., Aruoba et al., 2009). This
variable is available at a daily frequency. Data is obtained from the Philadelphia Federal Reserve.

2. US SCDI: The U.S. state coincident diffusion index constructed by the Federal Reserve Bank of
Philadelphia. This variable is the number of U.S state coincident indices posting a positive month-on-
month change. This variable is available at a monthly frequency and is obtained from Federal Reserve
Bank of Philadelphia.

3. OECD ACWI breadth: The fraction of OECD composite leading indicators, consumer confidence
indicators and business confidence indicators with positive month-on-month changes for all OECD
member countries in the MSCI ACWI index. This variable is available at a monthly frequency. OECD
indicator data is obtained from the OECD Main Economic Indicators database.

4. OECD LCI: The Conference Board’s leading credit index for the U.S. This variable is available at a
monthly frequency. Data is obtained from Macrobond.

5. FIBER IP The Foundation for International Business and Economic Research U.S. industrial pro-
duction index. This variable is available at a monthly frequency. Data is obtained from Macrobond.

6. BBKMCOIX: The Brave Butters and Kelly coincident index for the U.S. This variable is available
at a monthly frequency. Data is obtained from FRED.

7. 3yTnote yield: The 26-week change in the three-year treasury note yield. This variable is available
at a daily frequency. Data is obtained from FRED.

8. ISM US PMI: The ISM U.S. manufacturing PMI index. This variable is available at a monthly
frequency. Data is obtained from Bloomberg.

9. Default spread: The difference between the Moody’s Baa corporate bond yield and the Moody’s Aaa
corporate bond yield. This variable is computed at a daily frequency. Data is obtained from FRED.

10. term spread: The 10-year U.S. treasury bond yield minus the 3-month U.S. treasury bill yield. This
variable is computed at a daily frequency. Yield data is obtained from FRED.

11. MOVE: The Merrill Lynch Option Volatility Estimate index. This variable is available at a monthly
frequency. Data is obtained from Bloomberg.

12. Baa yield: The 26-week change in the Moody’s Baa corporate bond yield. This variable is available
at a daily frequency. Data is obtained from FRED.

13. CBLI diffusion: The diffusion index from the Conference Board’s U.S. leading economic index. This
variable is available at a monthly frequency. Data is obtained from Macrobond.

14. lag return: We compute 22 lags of daily returns (lag return1, ..., lag return22). Price data used
to compute this variable is obtained from Compustat.

15. RV: The daily range volatility estimator of Garman and Klass (1980). We compute the average of
this daily volatility estimator over the past 1-trading day (RV1), 5-trading days (RV5) and 22-trading
days (RV22). This variable is computed at a daily frequency. Price data used to compute this variable
is obtained from Compustat.
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16. realized kurtosis: The realized kurtosis of daily returns over the past 22-trading days
(realized kurtosis22), 63-trading days (realized kurtosis63) and 128-trading days
(realized kurtosis128).This variable is computed at a daily frequency. Price data used to compute
this variable is obtained from Compustat.

17. realized skew: The realized skewness of daily returns over the past 22-trading days (realized skew22),
63-trading days (realized skew63) and 128-trading days (realized skew128).This variable is com-
puted at a daily frequency. Price data used to compute this variable is obtained from Compustat.

18. realized semivariance: The realized semi-variance of daily returns over the past 22-trading days
(realized semivariance22), 63-trading days (realized semivariance63) and 128-trading days
(realized semivariance128).This variable is computed at a daily frequency. Price data used to
compute this variable is obtained from Compustat.

19. MA: The moving average (MA) return. We compute the 5-trading day MA (MA5), 22-trading day
MA (MA2), 63-trading day MA (MA63) and the 128-trading day MA (MA128). This variable is
computed at a daily frequency. Price data used to compute this variable is obtained from Compustat.

20. MACD histogram: The difference between the 12-day EWMA exponentially weighted moving av-
erage (EWMA) minus the 26-day EWMA and the 9-day moving average of the 12-day EWMA minus
the 26-day EWMA. This variable is computed at a daily frequency. Price data used to compute this
variable is obtained from Compustat.

21. Williams R: The Williams R technical indicator. This variable is computed at a daily frequency.
Price data used to compute this variable is obtained from Compustat.

22. ATR: The Average True Range technical indicator. This variable is computed at a daily frequency.
Price data used to compute this variable is obtained from Compustat.

23. RSI: The RSI technical indicator. This variable is computed at a daily frequency. Price data used to
compute this variable is obtained from Compustat.
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B Long-Only Investment Strategy Results

In this appendix we report the results from an equal-weighted long-only market timing strategy that uses the
one-month and 10-day ahead return direction predictions for the three equity market indices. This strategy
takes a long position in the equity market index when a model predicts the class label 1, and a long position
in the Vanguard Total Bond market ETF (BND) when the model predicts the class label 0. We use the same
transaction cost assumptions and the same method to mitigate path dependence as described in Section 5.

Tables 13 and 14 present measures of investment performance for the long-only investment strategy
based upon the one-month and 10-day ahead return direction predictions. We find that our AEC and bi-
objective models still earn higher annualized returns and Sharpe ratios than benchmark models. However,
the size of this difference is smaller at the one-month ahead forecast horizon. For a long-only investment
strategy all models tend to have similar maximum drawdown statistics. However, our AEC and bi-objective
models have substantially smaller maximum drawdown periods at the 10-day forecast horizon. Moreover,
the cost-sensitive models always have higher Sortino and MAR ratios. Hence, even when using a long-only
investment strategy, our AEC and bi-objective LR and GBM models outperform benchmark models by
generating superior risk adjusted investment performance and lower downside risk.

Figures 3 and 4 plot the average cumulative portfolio value for long-only strategies using the one-month
and 10-day ahead predictions, respectively. In all cases our AEC and bi-objective models outperform bench-
mark models by achieving a higher terminal portfolio value by the end of the backtest. Consistent with the
results for the long/short investment strategy, we find that bi-objective models outperform the AEC models
in three out of four cases. Moreover, we again find that the GBM models tend to earn higher returns than
the LR models, and that a long-only investment strategy that uses the one-month ahead forecasts earns
higher returns than a long-only investment strategy based upon the 10-day ahead forecasts.
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Table 13: 30-day ahead Long-Only Investment Strategy Backtest Results
The table reports the investment performance statistics for the long-only investment strategy backtest that
uses 30-day ahead predictions from the logistic regression and gradient boosting models. The acronym LR
stands for logistic regression. The acronym GBM stands for gradient boosting machine.

(i) Logisitic Regression

LR LR (put call spread) AEC LR Bi-objective LR

Annualised Return (%) 13.138446 13.114573 13.593156 14.438978
Annualised Std 11.799031 11.821157 11.009595 11.661907
Annualised Sharpe Ratio 1.091048 1.087995 1.181359 1.186636
Annualised Sortino Ratio 1.701953 1.697402 1.857297 1.870738
Max Drawdown (%) -21.24132 -21.357174 -16.75813 -18.346208
Max Drawdown Period (days) 85.725191 91.251908 68.736641 72.179389
MAR Ratio 0.738531 0.730719 0.882177 0.88244
Max DD/Vol 1.755288 1.762789 1.505025 1.547568
Annualised Downside Deviation 7.602151 7.616665 7.01355 7.409411
Beta 0.429683 0.432062 0.41288 0.438231

(ii) Gradient Boosting Machine

GBM GBM (put call spread) AEC GBM Bi-objective GBM

Annualised Return (%) 13.544344 13.521493 14.318291 14.119873
Annualised Std 13.83034 13.674085 14.885795 14.103368
Annualised Sharpe Ratio 0.965659 0.975043 0.955211 0.984737
Annualised Sortino Ratio 1.488028 1.509821 1.480223 1.531325
Max Drawdown (%) -25.7031 -24.279863 -27.00178 -25.192751
Max Drawdown Period (days) 48.183206 38.442748 42.530534 47.870229
MAR Ratio 0.573001 0.611103 0.588048 0.607738
Max DD/Vol 1.838044 1.75331 1.79078 1.768485
Annualised Downside Deviation 9.01478 8.873676 9.637017 9.09525
Beta 0.644486 0.630014 0.730442 0.667623
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Table 14: 10-day ahead Long-Only Investment Strategy Backtest Results
The table reports the investment performance statistics for the long-Only investment strategy backtest that
uses 10-day ahead predictions from the logistic regression and gradient boosting models. The acronym LR
stands for logistic regression. The acronym GBM stands for gradient boosting machine.

(i) Logisitic Regression

LR LR (put call spread) AEC LR Bi-objective LR

Annualised Return (%) 9.6204 9.3903 10.8715 13.5226
Annualised Std 12.1273 12.1425 12.2533 12.7268
Annualised Sharpe Ratio 0.7985 0.7829 0.8784 1.0334
Annualised Sortino Ratio 1.1688 1.1447 1.2902 1.5326
Max Drawdown (%) -20.0220 -20.5431 -21.0387 -21.1096
Max Drawdown Period (days) 13.4733 35.6031 17.6641 15.4695
MAR Ratio 0.5030 0.4780 0.5312 0.6824
Max DD/Vol 1.6403 1.6835 1.7110 1.6455
Annualised Downside Deviation 8.3292 8.3600 8.3647 8.6363
Beta 0.5288 0.5305 0.5902 0.5928

(ii) Gradient Boosting Machine

GBM GBM (put call spread) AEC GBM Bi-objective GBM

Annualised Return (%) 9.5120 10.0906 12.3127 12.4222
Annualised Std 13.8144 13.6658 15.4090 14.8237
Annualised Sharpe Ratio 0.7086 0.7500 0.8049 0.8390
Annualised Sortino Ratio 1.0168 1.0829 1.1730 1.2296
Max Drawdown (%) -27.4180 -26.7558 -30.9441 -27.8431
Max Drawdown Period (days) 58.0305 73.0725 21.9084 23.1985
MAR Ratio 0.3662 0.3840 0.3978 0.4517
Max DD/Vol 1.9719 1.9542 2.0085 1.8764
Annualised Downside Deviation 9.6562 9.4876 10.5780 10.1339
Beta 0.6882 0.6916 0.8286 0.7848
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(a) Logistic Regression Long-only Backtest Portfolio Values

(b) GBM Long-only Backtest Portfolio Values

Figure 3: The figure plots the average portfolio value for the long-only investment strategy backtests that
use 30-day ahead predictions from the logistic regression (LR) and GBM models.
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(a) Logistic Regression Long-only Backtest Portfolio Values

(b) GBM Long-only Backtest Portfolio Values

Figure 4: The figure plots the average portfolio value for the long-only investment strategy backtests that
use 10-day ahead predictions from the logistic regression (LR) and GBM models.
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Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). Algorithms for hyper-parameter optimization.
Advances in neural information processing systems 24.
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