Machine Learning: When Sentiment is News Nadia Massoud

Dec 2019
Sydney Banking and Financial Stability Conference
Keynote Address

Artificial Intelligence (AI)

The study of how to make computers do things, which at the moment, people do better.

Goals of Artificial Intelligence

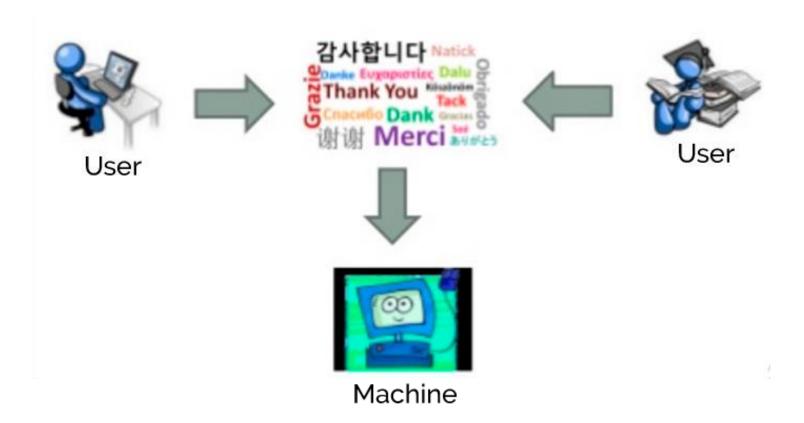
Reasoning

Automated Learning & Scheduling

Machine Learning

Natural Language Processing

Computer Vision


Robotics

General Intelligence

Natural Language Processing (NLP)

> Natural Language Processing (NLP) is "the ability of machines to understand and interpret human language as is written or spoken."

7 APPLICATIONS OF DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

- Text Classification
 - A popular classification example is sentiment analysis where class labels represent the emotional tone of the source text such as "positive" or "negative".
- Language Modelling
- Speech Recognition
- Caption Generation
- Machine Translation
- Document Summarization
- Question Answering

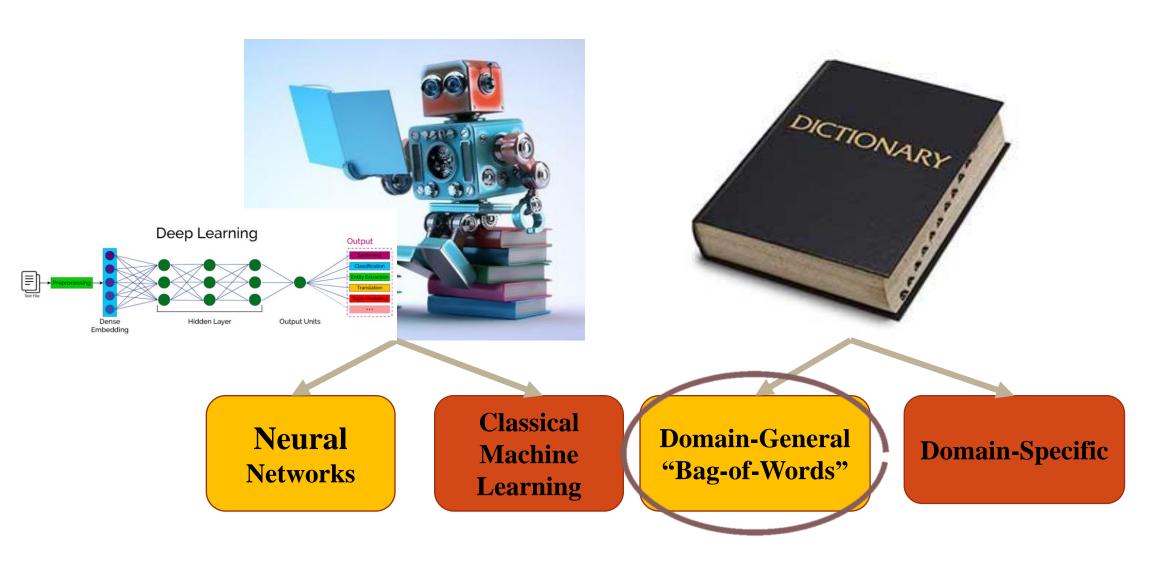
Sentiment Analysis (SA)

- ✓ "WiseTech shares plummet again after its short-seller launched another attack"
- ✓ "How Apple is Gearing Up for an Exciting 2020"
- ✓ "McDonald's And The Difficulty Of Repeating Its Past" ¬

Negative

Positive

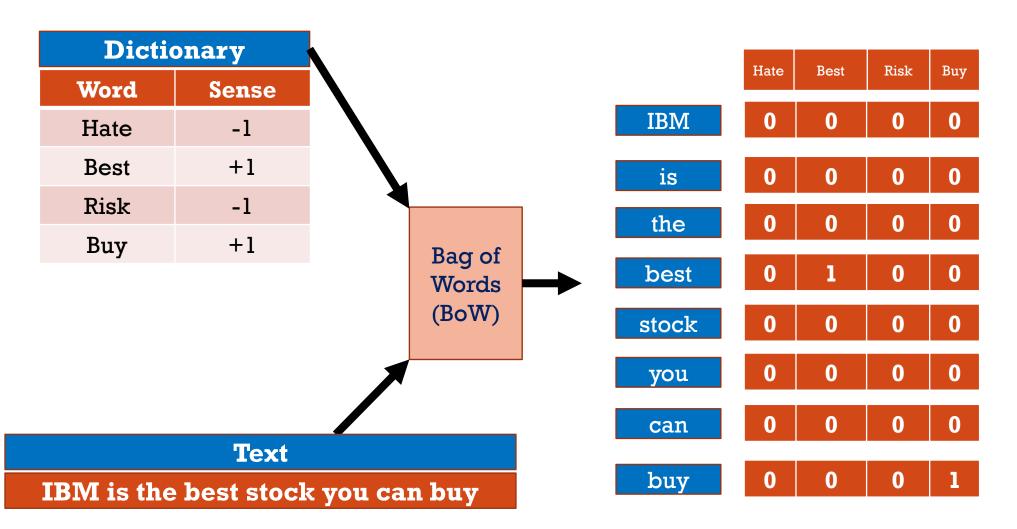
Negative


Why does Sentiment Analysis matter?

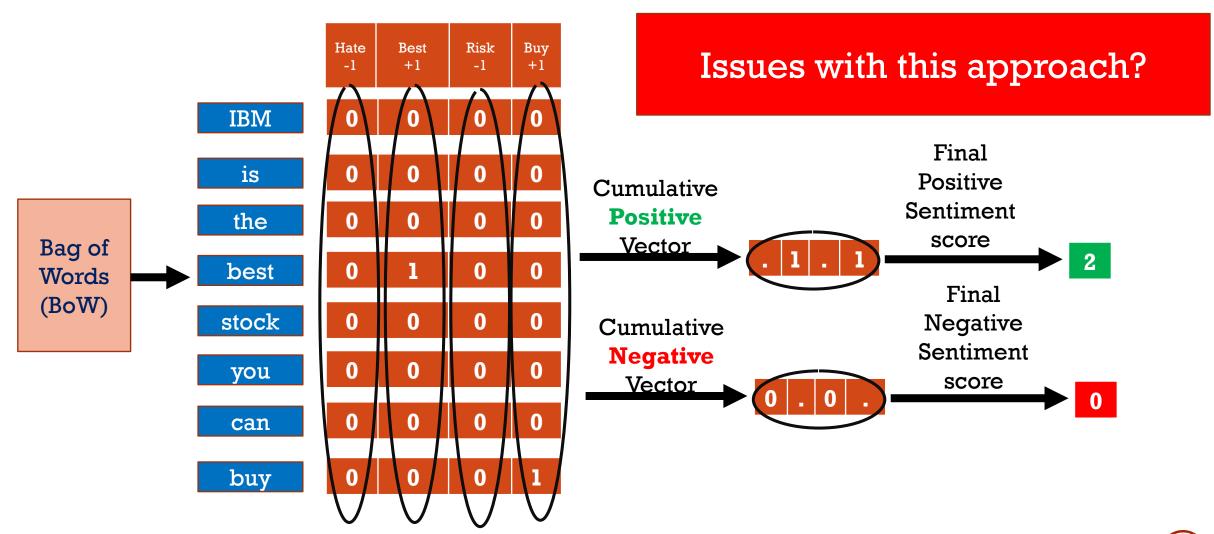
- ✓ It allows us to gain an overview of the public opinion behind certain topics.
- ✓ It is a tool to understand how people feel about a brand / person / system.
- ✓ It potentially affects stock prices.

√ ...

Sentiment Analysis Methods



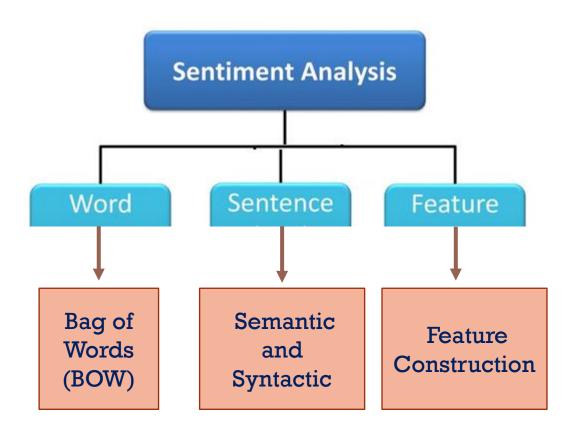
Bag of Words


Bag of Words (BoW)

In BoW approaches, text is represented as a <u>dictionary</u> in a multi-set (bag) of words, disregarding grammar and word order but recognizing multiplicity of meanings.

Bag of Words

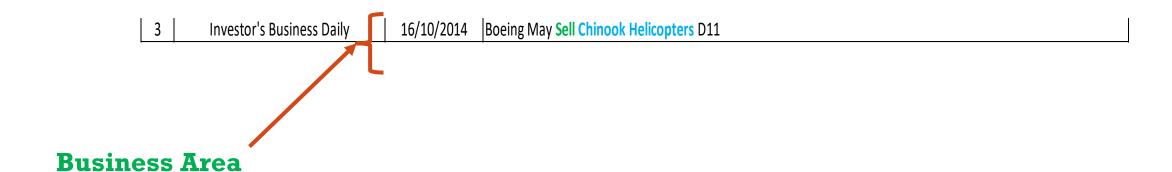
Bag of Words


THE PROBLEMS WITH THE BOW APPROACH

 Human limitation with ontology— It is almost impossible to think of all the relevant keywords and their variants that represent a particular concept.

- Lack of domain expertise:
 - Many words that have a negative connotation in one context, may have a positive connotation in another context.

• The BoW Approach is unable to learn and improve itself.


Levels of Sentiment Analysis

Semantic Patterns

Stock Market Area

1 Seeking Alpha 5/03/2014 Dr Pepper Snapple: 7 Different Insiders Have Sold Shares During The Last 30 Days	Row News Provider Date		Date	News Headline		
1 Seeking Alpha 5/03/2014 Dr Pepper Snapple: 7 Different Insiders Have Sold Shares During The Last 30 Days			/			
	1	Seeking Alpha	,	5/03/2014	Dr Pepper Snapple: 7 Different Insiders Have Sold Shares During The Last 30 Days	

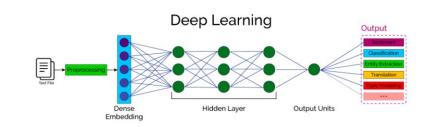
SOURCE OF DATA IN THE FINANCE LITERATURE

Recommendation trends >

Recommendation rating >

Earlier studies employed the dictionary-based approach in the textual sentiment literature.

- The General Inquirer (GI) built-in dictionary developed and used by Philip Stone (1966) a specialist in social psychology. GI includes 3,626 words.
- ➤ Perhaps the best-known polarity dictionary in finance built by Loughran and Mcdonald (2011) using 10-Ks and Bag of Words Method. That domain-specific dictionary includes 3,752 words.


General Polarity Dictionary							
General Inquirer (GI)	SentiWordNet	Diction	other				
Tetlock (2007)	Malo et al. (2014)	Rogers et al. (2011)	Siganos et al. (2017)				
Tetlock et al. (2008)	Nguyen et al. (2015)	Davis et al. (2012)	Ranco et al. (2016)				
Engelberg (2008)	Mo et al. (2016)	Ferris et al. (2013)	Allen et al. (2017)				
Feldman et al. (2008) Kothari et al.	Salas Zarate et al. (2016) Chan & Chon						
(2009)	(2017)						
Doran et al. (2012)	Yang et al. (2017)						
Ferris et al. (2013)							
Meyer et al. (2017)							
Jiang et al. (2017) Shapiro et al. (2018)							

Researchers document that 73.8% of the negative words in the GI are not considered negative when used in the context of finance

	General Polarity	Dictionary	Domain-Specific Pola	arity Dictionary	
General Inquirer (GI)	SentiWordNet	Diction	other	Loughran & McDonald (L&M)	Manual Words List
Tetlock (2007)	Malo et al. (2014)	Rogers et al. (2011)	Siganos et al. (2017)	Loughran & McDonald (a2011)	Henry (2006)
Tetlock et al. (2008)	Nguyen et al	David of al.	Ranco et al. (2016)	Rogers et al. (2011)	Li (2006)
Engelberg (2008)	These "Do	main-Speci	fic" et al.	Loughran & McDonald (b2011)	Henry (2008)
Feldman et (2008)	dictionaries	*		Jegadeesh and Wu (2012)	Rogers et al. (2011)
Kothari (200	sufficient ac	~ `		Loughran & McDonald (2013)	Njolstad et al. (2014)
Doran et al.		Meyer, Bikd		Liu & McConnell (2013)	Day & Lee (2016)
Ferris et al. (26	and Dai 201 Chor	7, and Chaing 2017).	n and	Ferris et al. (2013)	Oliveira et al. (2017)
Meyer et al. (2017)	Chor	15 2017).		Garcia (2013)	Zhang et al. (2017)
Jiang et al. (2017)				Malo et al. (2014)	Daniel et al. (2017)
Shapiro et al. (2018)				Prollochs et al. (2016)	Cerchiello et al. (2017)
				Tsai & Wang (2017)	Krishnamoorthy (2018)
				Shapiro et al. (2018)	
				Krishnamoorthy (2018)	

L&M and GI

Headline	GI	L&M
Boeing May Sell Chinook Helicopters D11	Sell (Neutral)	Sell (Neutral)
Dr Pepper Snapple: 7 Different Insiders Have Sold Shares During The Last 30 Days	Sold (Neutral)	Sold (Neutral)

- ➤ Machine learning, Li (2010).
 - A proportion of the complete corpus of text to be analyzed is designated as the **'training set'**. Each word in the training set is manually classified as 'positive', 'negative'.
 - A selection of sentiment analysis algorithms is then trained on the training corpus.
 - The algorithms 'learn' the sentiment classification rules (or 'grammar') from the pre-classified data set.
 - > Apply these rules out-of-sample to the whole corpus.
- ➤ Das and Chen (2007) use five algorithms to classify internet messages into bullish, bearish or neutral.
- ➤ Sinha (2010) uses the Reuters NewsScope Sentiment Engine to calculate the probabilities of news articles being positive, negative and neutral, respectively.

Machine Learning in literature

Method	Paper
Naïve Bayesian	Antweiler & Frank (2004)
Naïve Bayesian	Das & Chen (2007)
Naïve Bayesian	Feng Li(2010)
Support Vector Machine (SVM)	Hagenau et al (2013)
Support Vector Machine (SVM)	Smailovic et al (2014)
Support Vector Machine (SVM)	Malo et al (2014)
Othar	Prollochs et al (2016)
Othar	Oliveira et al (2016)
Support Vector Regression (SVR)	Tsai & Wang (2017)
Support Vector Machine (SVM)	Chan & Chon (2017)
Naïve Bayesian	Zhang et al (2017)
Support Vector Machine (SVM)	Meyer et al (2017)
Support Vector Regression (SVR)	Jiang et al (2017)
Neural Network	Lim et al (2018)

Sentiment Analysis Level in Literature

BOW	7	Syntactic and Semantic	Feature
Henry (2006) Li (2006)	Liu & McConnell (2013) Ferris et al. (2013)	Malo et al. (2014) Chan & Chon (2017)	Nguyen et al. (2015) Salas Zarate et al. (2016)
Tetlock (2007)	Garcia (2013)	Meyer et al. (2017)	
Das & Chen (2007)	Day & Lee (2016)		
Henry (2008)	Prollochs et al. (2016)		
Tetlock et al. (2008)	Oliveira et al. (2016)		
Engelberg (2008)	Ranco et al. (2016)		
Feldman et al. (2008)	Oliveira et al. (2017)		
Sinha (2010)	Tsai & Wang (2017)		
Loughran & McDonald (a2011)	Zhang et al. (2017)		
Rogers et al (2011)	Daniel et al. (2017)		
Loughran & McDonald (b2011)	Cerchiello et al. (2017)		
Jegadeesh and Wu (2012)	Yang et al. (2017)		
Doran et al. (2012)	Allen et al. (2017)		
Davis et al. (2012)	Siganos et al. (2017)		
Loughran & McDonald (2013)			

Sentiment Analysis Level in Literature

BOW	Syntactic and Semantic	Feature
Henry (2006) Liu & McConnell (2013) Li (2006) 4al. (2013)	Malo et al. (2014) Chan & Chon (2017) Meyer et al. (20	Nouver et al. (2015)
Issues with the exiting ML literature: 1. The small size of training data for machine learning 2. Tagging financial concepts directional-dependence without considering them in financial text (tagging tokens in sentences). 3. The small size of financial concepts word lists. Long	The im E.g. Mal. The continuous distribution of the continuous continuous distribution of the continuous conti	alo, et al. 2014: ey consider 347 financial ncepts from estopedia.com with rectional-dependence (252 sitive-If-Up and 95 egative-If-Up). ed 5,000 tagged news adlines ported improvement in the curacy index is from 0.74 to 82
Doran et al. (2017) Davis et al. (2012) Siganos et al. (2017)		
Loughran & McDonald (2013)		

HOW IS ACADEMIC FINANCE RESEARCH DOING COMPARED TO LEADING INDUSTRY RESEARCH?

Tesla, the data company

Tesla is harnessing artificial intelligence and machine learning to build one of the most innovative neural networks in the world.

It is then taking that data, analyzing it and utilizing it to improve its algorithms, create new algorithms and send those improvements over the air to the vehicles.

As of November 2018, Tesla has amassed 1 billion miles of Autopilot data. For comparison, Waymo has collected about 15 million miles.

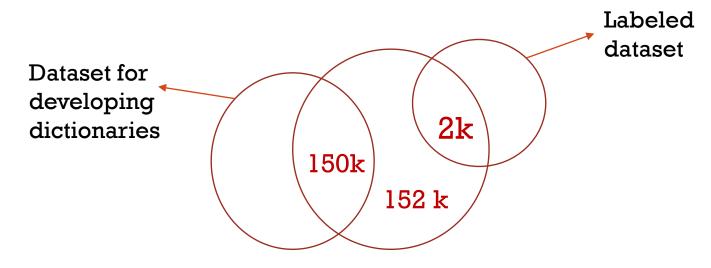
The Startup That Could Help GM Beat Google to the Self-Driving Car

real-world examples to train the system. That's why <u>Ford invested a</u> billion dollars into artificial intelligence outfit Argo AI, why General Motors bought a startup called Cruise, why Waymo has driven 10 million autonomous miles on public roads (and billions more in simulation). Safe driving requires more than just knowing that a person is over there; you also have to know that said person is riding a bicycle, how they're likely to act, and how to respond. That's hard for a robot, but these budding Terminators are getting better, fast.

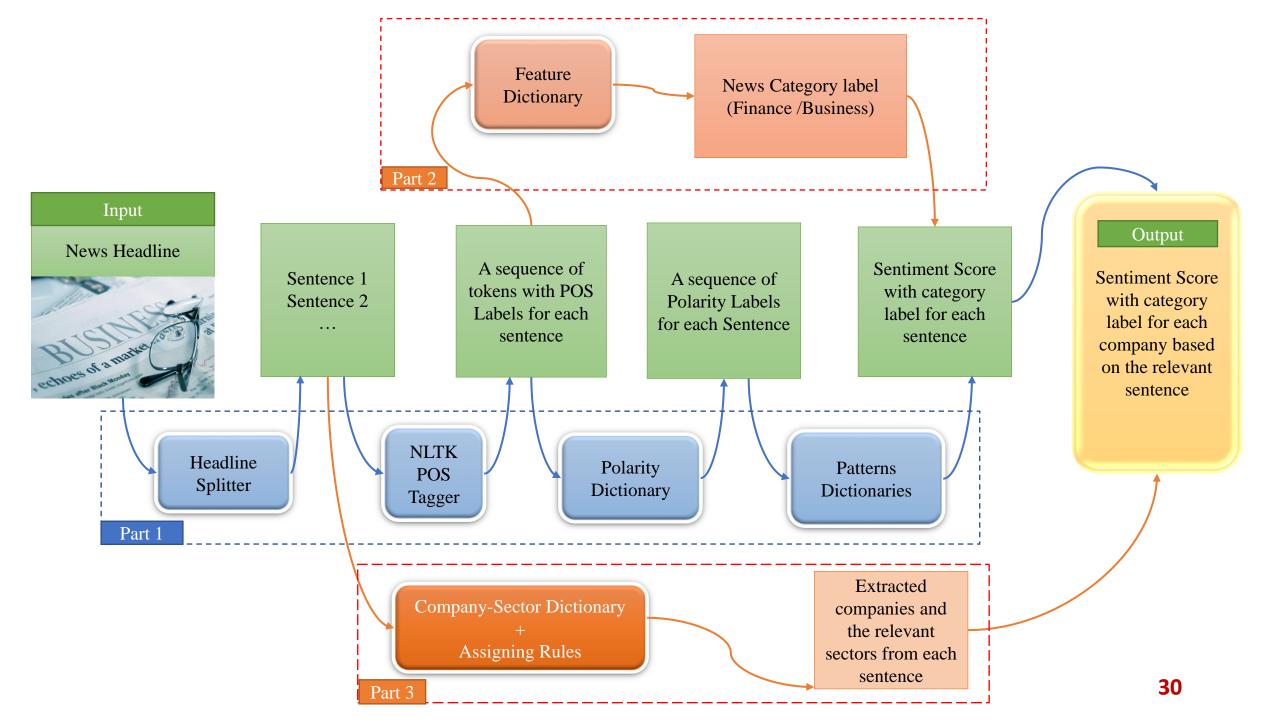
MAIN FINDINGS

- Sentiment in texts does convey incremental information over quantitative financial information.
- Sentiment in texts might have power in predicting market movements.
- The results are more robust for negative sentiments
- Sentiment is a pricing factor in addition to risk premia and other firm-level characteristics.

WHEN SENTIMENT NEWS

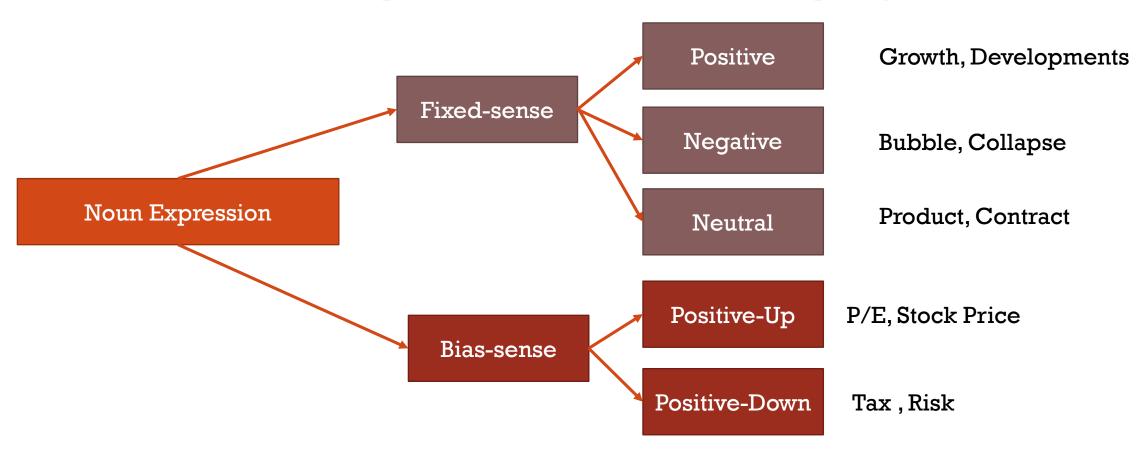

Nazanin Babolmorad

Nadia Massoud


Data Description

- ✓ We collect 304k news headlines From January 2014 to January 2019 to generate a meaningful daily sentiment index per company and choose randomly 150k of the collected headlines to create our dictionaries.
- ✓ 2k news headlines are randomly selected and have been tagged to cross validation phase. Those headlines are annotated by 21 Auditors and this sub-set is called Labeled Dataset.

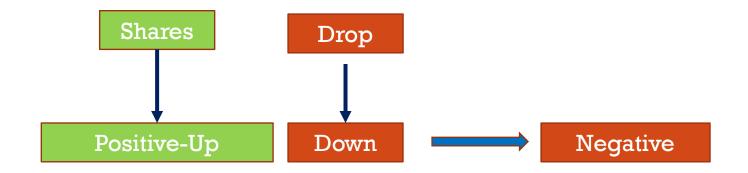
Data Description


- ✓ Dataset is collected from 15 leading news providers: Seeking Alpha, Zacks, Wall Street Journal, Market Realist, Motley Fool, Yahoo Finance, Reuters, Bloomberg, InvestorPlace, Investor's Business Daily, GuruFocus, 247WallSt, Barron's, Fox Business, and Benzinga.
- ✓ We search the digital archives of each newspaper from January 2014 to January 2019 to obtain a daily count of news headlines that labeled by the news providers for 163 companies on the US Market.

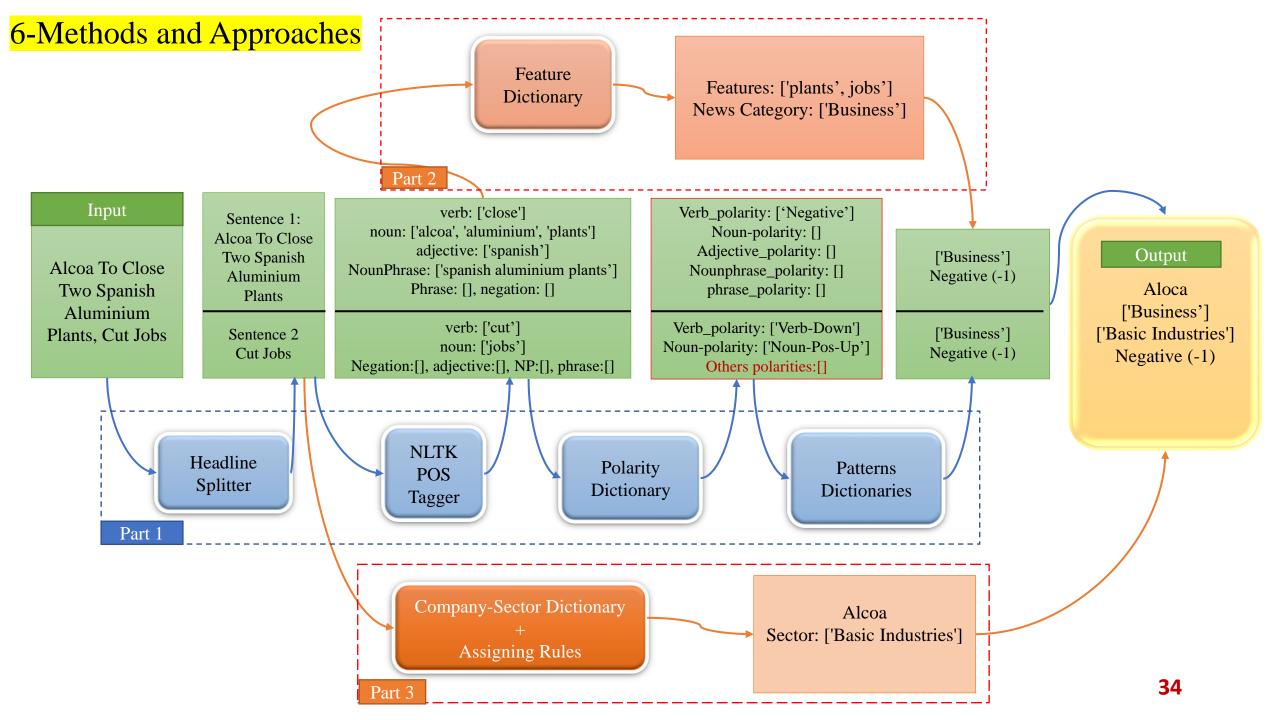
Polarity Dictionary

Nouns and Noun Phrases

2,721 Nouns and nouns-phrases are extracted Based on frequency in headlines (75%).


Methods and Approaches

Polarity Dictionary



News Provider	Date	News Headline
U 1	, ,	11 0
247 WallSt	3/11/2015	Could Chipotle Shares Drop Another \$200?

Our Approach VS. BOW Using L&M and GI

Headline	Our Polarity Dictionary	Our feature Dictionary	Final Label	L&M	GI
Boeing May Sell Chinook Helicopters D11	Sell (Positive)	Helicopters (Business)	Positive	Neutral	Neutral
Dr Pepper Snapple: 7 Different Insiders Have Sold Shares During The Last 30 Days	Sold (Negative)	Insiders (Finance)	Negative	Neutral	Neutral

Methods and Approaches

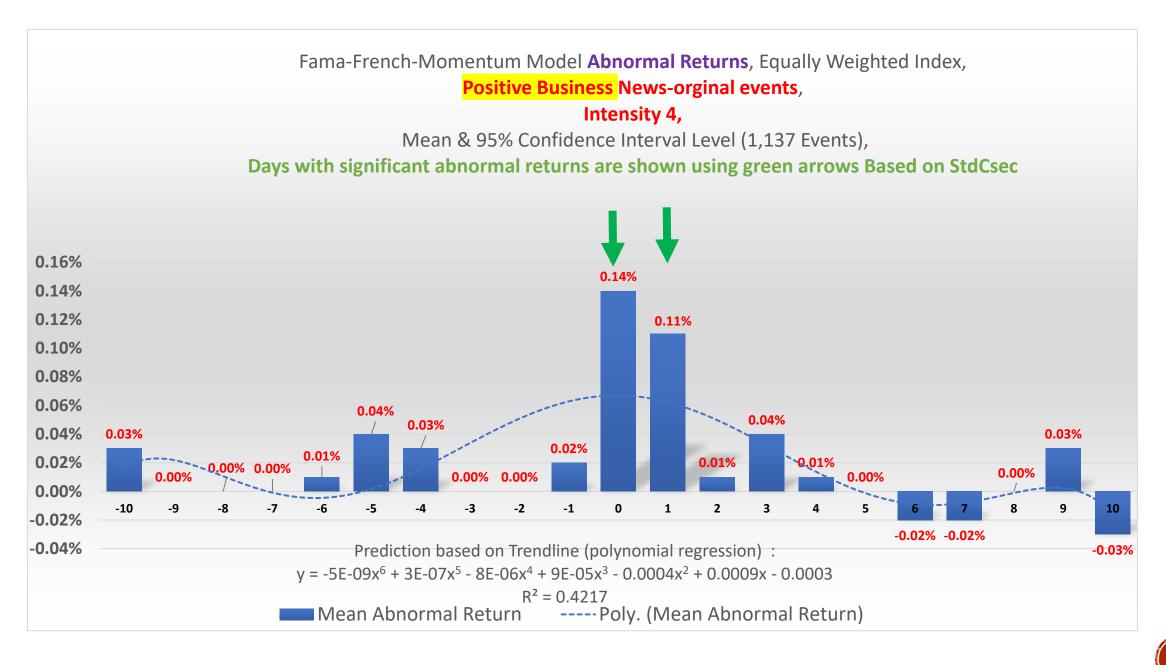
Accuracy of The Proposed Approach in Sentiment Analysis of News Headlines

Based on the 2K human tagged news headlines:

		Positive		Neutra	I	N	Negative
		RECALL	PRECISION	RECALL	PRECISION	RECALL	PRECISION
Our Me	ethod	0.89	0.71	0.83	0.91	0.88	0.7
BOW (LM-D	ictionary)	0.61	0.55	0.72	0.78	0.51	0.49

Fama-French-Momentum Model Abnormal Returns, Equally Weighted Index, Positive Finance News-orginal events, Intensity 4,

Mean & 95% Confidence Interval Level (923 Events), Days with significant abnormal returns are shown using green arrows Based on StdCsec



y = -1E-09x6 + 8E-08x5 - 1E-06x4 - 3E-06x3 + 0.0002x2 - 0.0008x + 0.0012

 $R^2 = 0.4193$

Mean Abnormal Return

---- Poly. (Mean Abnormal Return)

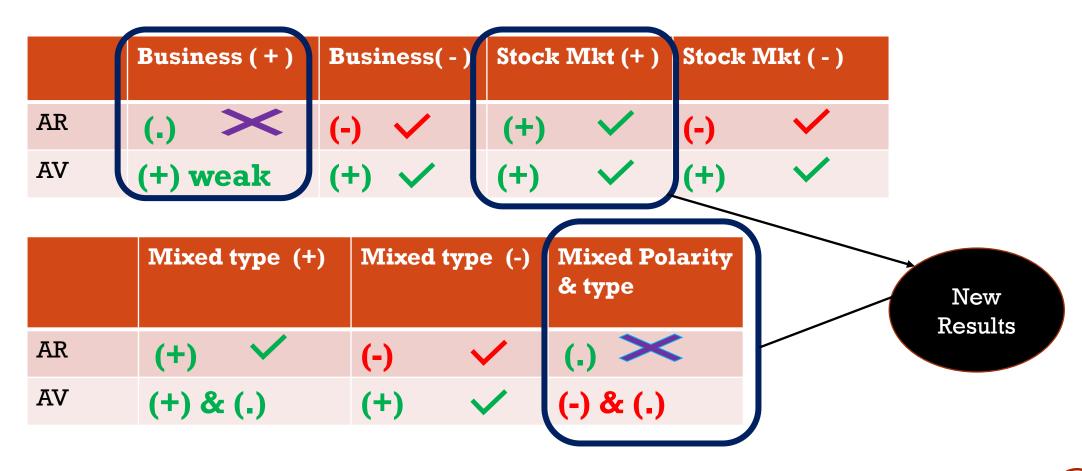
AR(0) Regressions with R(-1) to R(-3), AR(-1) to AR(-3), polarity, and news categories, across the quartiles of market capitalization in ascending order,

Report robust standard errors, clustered by industry, includes year fixed effect

t-statistics are in parentheses: * p<0.1, ** p<0.05, *** p<0.01

	es are in parentheses: * p<	market capitalization	market capitalization	market capitalization
Model	market capitalization Q1	Q2	Q3	Q3
DV	AR(0)	AR(0)	AR(0)	AR(0)
Business sentiment NEG	-0.4%***	-0.2%***	-0.1%***	-0.1%***
	(-3.21)	(-3.24)	(-3.33)	(-3.12)
Business sentiment POS	0.1%	0.0%	0.0%	0.0%
	(1.20)	(0.03)	(1.60)	(-0.19)
Finance Sentiment NEG	-0.5%***	-0.3%***	-0.2%***	-0.2%***
	(-2.92)	(-5.83)	(-3.26)	(-6.82)
Finance Sentiment POS	0.3%***	0.1%***	0.1%***	0.1%***
	(5.91)	(4.19)	(5.47)	(4.83)
Mixed sentiment NEG	-1.0%***	-0.4%***	-0.2%***	-0.2%***
	(-5.29)	(-3.71)	(-7.28)	(-3.51)
Mixed sentiment POS	0.4%***	0.1%***	0.1%***	0.1%***
	(5.00)	(4.58)	(3.17)	(4.46)
BUS. NEG x BUS. POS	0.0%	0.0%	0.0%	0.0%
	(0.50)	(-0.57)	(1.60)	(1.23)
BUS. NEG x FIN. POS	0.1%	0.0%	0.0%	0.0%
	(0.41)	(0.81)	(-1.57)	(-1.63)
BUS. POS x FIN. NEG	0.2%	0.0%	0.0%	0.000**
	(1.07)	(-0.39)	(0.32)	(2.20)
FIN. NEG x FIN. POS	-0.1%	0.0%	-0.000**	0.0%
	(-1.03)	(0.20)	(-2.58)	(0.87)
Constant	-0.1%	0.0%	0.0%	0.0%
	(-1.16)	(-0.04)	(-0.87)	(1.63)
Observations	14,408	14,183	14,269	14,243
Adjusted R-squared	0.014	0.011	0.019	0.015

log-AV(0) Regressions with V(-1) to V(-3), AV(-1) to AV(-3), polarity, and news categories,


Robust standard errors are clustered by industry,

t-statistics are in parentheses: * p<0.1, ** p<0.05, *** p<0.01

Model	(1)	(2)
DV	log-AV	log-AV
Business sentiment NEG	13.3%***	6.1%**
Business sentiment 1126	(3.67)	(2.17)
Business sentiment POS	8.8%***	3.5%*
	(3.07)	(1.76)
Finance Sentiment NEG	8.1%***	6.3%***
1 11101100 0 011011110110 1 1 2 0	(4.53)	(4.52)
Finance Sentiment POS	4.3%***	2.3%*
1 2 5	(2.84)	(1.88)
Mixed sentiment NEG	12.5%***	9.2%***
TVIMOG SOMMINGAT (20	(5.04)	(5.07)
Mixed sentiment POS	5.4%**	2.6%
1721100 501121110111 1 0 2	(2.70)	(1.52)
BUS. NEG x BUS. POS	-1.5%***	-0.6%
	(-3.37)	(-1.62)
BUS. NEG x FIN. POS	-0.9%***	-0.4%
	(-2.84)	(-1.51)
BUS. POS x FIN. NEG	-1.5%***	-0.8%*
	(-3.05)	(-1.80)
FIN. NEG . FIN. POS	-0.5%	-0.4%*
	(-1.40)	(-1.85)
Year fixed effect	yes	yes
market cap. Quartile fixed effect		yes
Constant	6.757***	6.372***
	(100.36)	(43.43)
Observations	58,127	57,184
Adjusted R-squared	0.060	0.229

Contributions

✓ Using abnormal returns and abnormal volume, our approach provides new results:

Contributions

- ✓ We develop a new polarity dictionary and a feature dictionary in finance, specially for news headline.
- ✓ We develop a pattern dictionary which includes 1,544 semantic patterns on news headlines.
- ✓ We propose a new approach based on polarity dictionary and semantic Patterns to Sentiment Analysis of news headlines.
- ✓ We increase precision of Sentiment Analysis of news headlines compared with literature.

FUTURE RESEARCH

- Developing new hypothesis
- Improved Machine learning approach
- Use new sources of data, social media, IOT
- •Improve training data set. Keep in mind it has to be customised to the research question.

THANKS...

